Numerical Computation of Phase from
Amplitude at Optical Frequencies

By D. E. THOMAS
(Manuscript received January 31, 1963)

This paper presents phase tables for use in determining phase from
amplitude or vice versa at optical and higher frequencies. The new lables,
combined with tables previously published by the author, are believed to
malke possible the determination of phase from amplitude or vice versa of
any mintmum phase function occurring in any area of the physical sciences,
and at any place in the frequency spectrum. The phase 1s determined by a
summation process based on Bode’s straighi-line approximation method.
The paper gives a brief historical background of the method, discusses the
application of the numerical phase summation lechnique lo optical and
higher frequencies, describes the derivation of new tabulations useful a
these frequencies, and gives quantitative examples of their use. A table
expanding the exisiing lables of phase of a semi-infinite unit slope near
f/fo equal to one is given. Additional tables of phase of a unit line segment
and a new straight-line element, the unit wedge, are given. Finally, there 1s
a brief discussion of the potential of the method in solving physical and
engineering problems.

I. INTRODUCTION

The fact that nature ties the real and imaginary components of a
complex variable function of frequency inextricably together, when the
variable represents some physically real quantity or phenomena, has
been recognized to varying degrees for nearly half a century. For
example, Kramers! in 1927 noted the general relations between the
refractive index and absorption resulting from the simple relationships
to the real and imaginary parts of a complex dielectric constant. Because
one of the relations was contained in an earlier paper of Kronig’s,? this
relationship is commonly known in the physical science world as the
Kramers-Kronig relation. The awareness of the relationship between
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the real and imaginary parts of the impedance of an electrical network
emerged about the same time as the Kramers-Kronig work.?*

The usefulness of a quantitative solution to the general real and
imaginary component relationship was soon recognized. Bode has pro-
vided us with a key to the solution of this problem (Ref. 5, Ch. XIV).
He gives general integral equations relating the two components, but
points out what many have since discovered, namely, that the general
integrals can be readily evaluated for only the simplest of functions.
Bode, however, presents a practical numerical integration technique for
summing the imaginary component associated with a multiple straight-
line approximation to the real component as a function of frequency
(Ref. 5, Ch. XV). The accuracy of this summation is limited only by
the number of straight lines used to approximate the true real compo-
nent and the accuracy to which the imaginary contribution of each of
the straight line segments to the total imaginary component is known.
The author has published tables for accomplishing this summation at
telecommunication and radio frequencies.® These tables made possible
the computation of the nonlinear phase from which the delay distortion
(dispersion) to be expected in a projected transatlantic repeatered sub-
marine telephone cable system was determined and the delay distortion
correction required to make existing coaxial cable systems suitable for
the transmission of television programs. Van Vleck utilized the Kramers-
Kronig relation while studying microwave propagation during World
War II to establish that a significant difference in the refractive index of
the atmosphere between wavelengths of 3 em and 1 em would lead to
an unreasonably high absorption, in contradiction with experiment.’

The invention of the optical maser and the availability of coherent
light directed attention to the possibility of transmission of intelligence
beyond the microwave frequencies to the optical frequencies. The
realization of the potential usefulness of the numerical imaginary compo-
nent summation at optical frequencies resulted from a discussion initiated
by a colleague, W. L. Faust. This discussion concerned a proposal by
Miller and Lopez® that the difference in determination of the velocity
of light obtained from measurements at optical frequencies and at
microwave frequencies could be explained by the difference in delay time
experienced by a wave reflected from a high-quality reflecting surface at
optical and microwave frequencies. This is a recurrence at optical fre-
quencies of the delay distortion problem which the earlier phase tables
were computed to solve at telecommunication frequencies. These tables
were, therefore, extended to make possible similar computations at op-
tical frequencies.
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A use for this extension soon arose. Bennett,® in his analysis of hole
burning effects in a He-Ne optical maser, needed the phase associated
with an emission line, Gaussian in shape, but truncated due to an in-
crease in RI" power to the maser. The extended tables provided the
answer to Bennett’s problem and the motivation for writing this paper.

This paper will have two objectives. First, it will extend the nu-
merical computation of the imaginary part from the real part or vice
versa of a physical complex variable as a function of frequency from
telecommunication and radio frequencies to optical and higher fre-
quencies, Secondly, it will deseribe a mathematical tool which has
proved extremely useful in the telecommunications field and which, it
is believed, ean be equally useful in the physical sciences.

II. THE NUMERICAL PHASE COMPUTATION TECHNIQUE

In all the discussion to follow, the five statements listed below will
apply.

(a) Loss, attenuation, gain, or amplitude, all designated as A, and
phase, designated as B, will be used interchangeably with real and imag-
inary parts, respectively. This is because attenuation in nepers, which is
equal to log, of the magnitude of a complex voltage or current loss ratio,
or log, of the amplitude of a complex variable expressed in polar form,
and their associated polar angles in radians are identically and respec-
tively interchangeable with real part and imaginary part of a complex
variable expressed in rectangular coordinates in the numerical computa-
tions to be discussed. In communications problems loss in decibels and
angle in degrees rather than nepers and radians respectively are in
common use. However, if nepers and radians are considered as the basic
units and decibels and degrees as derived units, there will be no difficulty.

(h) Since B., the phase at w, = 2mf, , is given by Bode (Ref. 5, p. 335)

Ht
_ lfan dA
B =21 @ s

an amplitude characteristic constant from frequency f = 0 to f = =
contributes nothing to the phase. Therefore, a constant amplitude can
be added or subtracted from any amplitude characteristic without
affecting the associated phase characteristic,

(¢) Since frequency, f, appears only as a ratio in (1), all frequencies
can be changed in the same ratio without changing the attenuation-
phase relationship in magnitude or form.

w4+ w.

w — @

dw (1)
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(d) All frequencies will be considered on a log frequency scale. Linear
frequency scale is permitted in the narrow-band summations only
because log f and f are linearly related over a very narrow band. A
narrow band will be considered one in which the total frequency range
of interest is less than 10~° times the center frequency. All other bands
will be referred to as broad bands.

(e) As seen from (1) above, the phase is determined from the inte-
grated slope, d4 /dw, of the amplitude characteristic, A. The slope of a
given straight line section of a straight-line approximation to an ampli-
tude characteristic will be designated by k, and & will be defined as (4, —
A1) in nepers divided by log. (fn/fn—1) where A, and A,_, are the am-
plitudes at frequencies f, and f._, respectively on the straight line sec-
tion. A unit slope designated by & = 1 will be one in which there is
a change in A of one neper between two frequencies which are in the
ratio e = 2.7183. When A is expressed in decibels a unit slope is a change
of 6.02 decibels per octave or 20 decibels per decade.

2.1 Phase Summaltion Using the Semi-infinite Unit Attenuation Slope

The numerical phase computation is based on a straight-line approxi-
mation to the amplitude characteristic, A. A hypothetical attenuation
(real part) characteristic plotted on a log frequency scale along with its
straight-line approximation is shown in Fig. 1(a). In Fig. 1(b) this
straight-line approximation is in turn broken down into the sum of a
series of so-called semi-infinite constant slopes of attenuation. A semi-
infinite slope is an attenuation characteristic which has a constant
magnitude from 0 to some frequency [ and a constant slope from f to
f = . Thus, in Iig. 1(b), the first semi-infinite slope, ki, has the
constant slope k; extending from fp to c rather than terminating at f;
as in Fig. 1(a). Beginning at f; a semi-infinite slope equal in magnitude
to k; but opposite in sign adds to the %, slope to produce the straight
line segment of our amplitude approximation extending from fo to fi.
This process is continued until the complete approximation is obtained.
The semi-infinite unit (£ = 1) slope of attenuation or real part is the
fundamental element of all the numerical phase summations. The phase
associated with a semi-infinite unit slope is given by Bode (Ref. 5,
pp. 342-43) as

1+ =
1—=
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T
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Fig. 1 — (a) Straight-line approximation to attenuation. (h) Semi-infinite
slopes which add to produce straight-line approximation.

where B(x,) is the phase in radians at frequency f., @ = [/fy, @. =
fo/fo, v < 1.0, and fy is the frequency at which the unit slope begins.

B(x,) has a value of 0 at 2, = 0, increases monotonically to «/4
radian at x, = 1, and to /2 radians at v. = = with odd symmetry
about x, = | on a log frequency seale. I'rom the odd symmetry of B(x,)
around x, = 1, B(z.”) for f./ > fyis given by
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B(x) = fo/f!) = 7/2 — B(x, = x.). (3)

B(x,) is the function which was tabulated in the tables of Ref. 6.

The phase associated with a semi-infinite slope of magnitude k, is
I, times B(x,) of (2). To get the total phase associated with the straight-
line approximation and thus with the true amplitude characteristic within
the limits of error of the approximation, it is only necessary to sum
the phase contributions of each of the semi-infinite slopes making up
the straight-line approximation. Thus, the total phase 8(f) at frequency
[ is given by

3(.“ = (6 — 91) + ]'72(91 — ) 4 e k(8 — 5,.) (4)
where 8, is the phase of a semi-infinite unit slope commencing at f, ,

o (A, — A,y) innepers _ (4, — A4 1) in decibels (5)

- lf'g.- (,fﬂ,"fflifl) - 2') loglﬁ (_{H "‘j.n—l)

A separate summation must be made for cach frequency at which the
total phase is desived.

Note the following:

(a) That, as expected, adding or subtracting a constant amplitude
to the characteristic does not affect the phase summation of (4).

(h) That initial and final amplitudes need not be the same.

(¢) The amplitude need not approach a constant at high or low fre-
uencies but may have a constant slope extending to f = 0 or =. This is
common in electrical networks. A slope extending to = is covered by
B(x.) of (2). The phase of a slope extending to 0 can be read from the
B(.x,) tables for the constant slope extending to = by reading the phase
for f/fo < 1 from Table IV designated f > fy and the phase for fy/f < L
from Table IIT designated f < fy (see Ref. 6, B.S.T.J., p. 881).

Complete’ step-by-step examples of summing phase using (4) and
the tables of phase of a semi-infinite unit attenuation slope are given in
Ref. 6.

9.9 Phase Summation Using the Unit Allenuation Line Segment

When the value of k, as given by (5) is substituted in (4), (4) can
be rewritten as

n

. 0,1 — 0
B(f) = (An - An-— ) ___H_.—.”_‘
' 1 ! l()gc (.)‘u/’l‘)‘nfl)
where (A, — A,_;) is the change in amplitude or real part (nepers) on
the straight line segment of the approximation to the amplitude charac-
teristic between f,_, and f,, and (8,-, — 6,)/log. (f./f.—1) is the phase

(6)

n=
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contribution of a straight line segment of attenuation or real part
having a one-neper change in amplitude between frequencies f,_, and
fu. and a constant amplitude below and above f,_; and f, , respectively.
This line segment is identified in its position by the geometric mean of
fumvand ., V7, f._, and by a slope parameter, a, defined as the ratio of
this geometrie mean frequency to f,_, .

The “unit line segment” was introduced by Bode (Ref. 5, Ch. XV,
Charts V-IX), who gave graphical plots of the phase associated with
this element as a function of v, = f./fo with (a) as a parameter. In a
reasonably precise phase summation over a broad band of frequencies,
using these charts involves a nonlinear interpolation between curves
for different values of a. Therefore, it often proves easier to sum the
phase using (4) and the semi-infinite slope charts or tables.

However, in narrow-band problems at optical frequencies, the unit
line segment is extremely useful in fast and accurate phase summation.
A unit line segment for use with narrow bands is illustrated in Iig. 2.
By virtue of the fact that log, fi./f = log. (f + Afwe)/f = Afia/fr» when
Afiz < 107"y, to better than the accuracy to which the amplitude
data is likely to be known, a linear frequency plot of amplitude may be
used.

The phase of the unit line segment of Fig, 2 will be designated as ®
and will be identified in tabulation by its frequency width Af and the
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Fig. 2 — Unit attenuation line segment.
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difference, Afis, between its geometric mean frequency fi. = Vfife =
(fi + f2)/2 and f.

Using unit line segments having a phase contribution of @, (6) can
now be written

8(f) = (A, — Ap)®or + (Ay — A)) P2 + - -~ (A, — A, )®e-nn (7)

where ®,_p, is the phase contribution of a unit attenuation line seg-
ment of width Af = f, — fu_r and a Afp of (fuer + fa)/2 — J.

& is evaluated in the next section and tabulated in Table V for fi» = 10°.
® is always positive for a positive slope and increases monotonically
from 0 at f = 0 to a maximum at f = f;» beyond which it decreases
monotonically to 0 at f = «. As a function of Afy; it has even symmetry
about Afi; = 0 so that

P(Afi) = ®(—Af2).

Note the restriction of Fig. 2 and of Table V that fi, = 10°. This
restriction applies only if the initial and final values of the amplitude
of the characteristic are not the same. If they are not the same, the
problem must be expanded or contracted about f = 0 to a center
frequency of 10° by multiplying all frequencies by the ratio of 10° to
the center band frequency. If they are the same, then the problem can
be linearly expanded or contracted about its center frequency to best
fit the range of Afi, of Table V, and the phase will expand and contract
to bear the same relationship to the magnitude. Proof that this is per-
missible will be given in Section 3.2. If the initial and final values are
not the same, they can be made the same by truncating the main high-Q
portion of the band from the rest of the band on a constant amplitude
line. The phase of the truncated portion having equal initial and final
amplitudes can then be summed using the permissible linear expansion
or contraction of the band about its center frequency. The residue is
then evaluated using the semi-infinite slope summation if the residue
becomes a broadband problem. If the residue remains a narrow-band
problem, the line segment summation may be used by expandmg or
contracting about f = 0 to make the center frequency equal 10°, In
reassembling the problem and adding the phase of the two parts, the
inverse frequency transformations must, of course, be made.

An example of phase summation using the unit line segment phase of
Table V in (7) will be given in Section 4.2.

2.3 Phase Summation Using the Unit Wedge of Altenuation

The unit wedge of attenuation is a convenient element for very ac-
curate narrow-band phase summation. Although it has been developed
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primarily for use with an automatic computer, it is equally useful for
rapid but less precise desk computer phase summation.

The summation is limited to characteristics having equal initial and
final amplitudes. If they are not equal they can be made so by the
division of the problem into two problems by constant amplitude
truneation as discussed in Section 2.2.

Since it is assumed that 4, = 4,, 4, and A4, can each be made 0 by
subtracting a constant amplitude A, from the amplitude characteristic.
Equation (7) can then be written:

B(f) = 4'11(¢I)|H - (I)lﬂ) + A2((I’12 - ¢23) + et "’ln-—l(q)(nfﬂ)(n-l} - @(n—-l)n)-

Each of the terms of the above equation is a magnitude A, multiplied
by the phase difference of two unit line segments of the type illustrated
in Fig. 2. The first line segment extends from f = n — 1 to f = n and
the second from the terminal of the first at f = n to f = n 4+ 1. If the
widths Af of these two line segments are equal, they produce the ‘“unit
wedge of attenuation,” which is the third type of amplitude element
used in the numerical phase summation. In using this element the
straight-line approximation is limited to equal frequency interval seg-
ments. Therefore, the hypothetical problem of I'ig. 1 is no longer useful
in the discussion and a new problem shown in Fig. 3 will be used. In
Fig. 3 the amplitude characteristic is plotted on a linear frequency
scale consisting of equally spaced intervals between frequencies which
are designated as either [ or n. The straight-line approximation is now
obtained by taking exact values of A at even values of n on the true
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Fig. 3 — Phase summation using wedge element.
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amplitude characteristic. Since the accuracy of phase summation is
greatest at the midfrequency of the straight line segments approximating
the amplitude characteristic, phase will be summed at odd values of n.
For rapid desk computing using a less accurate approximation, it may
be desirable to take A’s which lie off the true curve. This will be covered
in Section 4.3.

The total phase at f associated with the full magnitude characteristic
of Fig. 3 is then given by the sum of the individual phases contributed
by each successive line segment from Ay to As, Agto Ag, -+ A,» to
A, . Therefore, from (7)

0(f odd) = (Ag — Ag)Parps s + (As — Ae)Pasypmr—y + -+
+ (-‘4-n—? - A-ri—tl)(ljﬁ_ﬂ'm:(n—:k)ﬁf + (An - An—2)¢AI12—(n—1)—J’
and since the initial value 4, and the final value A, are zero

0(f odd) = Ae(Pay -5 — Dpspmry) + oo

+ A, a(Pagyymn—s— — Pasypen—is) (8)
= > Au(Barypmn—iran = Pafypmn—trin )
n even

in which the ®’s all have a Af of 2.

Tach term of (8) represents the phase due to a wedge of attenuation
in the shape of an isosceles triangle having an amplitude A, and a base
width of 4 frequency intervals, The first of such amplitude elements in
Ifig. 3 is defined by points (A4 = Ay = 0, f = 4), (4s, f = 6), and
(A = 0,f = 8), the second by (4 = 0, f = 6), (dg, [ = 8), and
(A 0, f = 10), ete. These amplitudes add to approximate the true
curve. When the amplitude A, is unity, this element is called a unit
wedge of attenuation, and its phase contribution is designated by ¥.
¥ is identified by a subscript which is equal to 500 + its lower frequency
line segment’s Afi or by 500 + n — (f 4+ 1). The 500 is added to
n — (f + 1) to avoid negative subscripts in tabulation. Equation (8)
can now be written

8(f odd) = 2 A¥s004n—r41) 9)
neven
where
W0 4n-r+1) = Pase, afyamn—r4) — Pasez, Afamn—tr 40 42- (10)

¥ is given in Table VI for 500 + n — (f + 1) even from 0 to 1000. In
summing phase using (9) the center of the band of the problem is placed
at n = 500. The band is then linearly expanded or contracted about
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n = 500 to get a maximum number of amplitude evaluations consistent
with the frequency range of the phase summation desired. With ¥
tabulated for 500 + » — (f + 1) even from 0 to 1000, the maximum
and minimum permissible values of f and n are related as follows

500+ f+1>n>f+1— 500.

Thus, for a low value of n.e = L and a high value of #even = H, the
phase @ at f can be summed only for odd values of f between f = H — 501
and f = L + 499,

The ease and accuracy of automatic computer summation of phase
using the unit wedge tables and (9) will be demonstrated in Section 4.3.
A fast and good phase summation using a less accurate straight-line
approximation and a desk computer will also be illustrated.

2.4 Requirements on the Complex Variable for the Numerical Method to be
Applied

A rigorous discussion of the requirements which must be met by a
complex variable if the phase computed from its amplitude charac-
teristic is to represent its true phase is beyond the scope of this paper
(see Ref. 5, Ch. XIII). Briefly, it is required that the function be an
analytic function of frequency in the right half p (p = 4w) plane and
that its real and imaginary components be even and odd functions of
frequency, respectively, on the real frequency axis,

Actually, if there is sufficient information available to rigorously
determine the applicability of the method, the numerical phase sum-
mation technique will usually not be needed. I'ortunately, when it is
needed the phase summed by the numerical method almost always
contains the desired information in spite of the fact that a portion of
the phase referred to as nonminimum® phase may be missed in the
summation. l'or instance, in a long electrical, optical, acoustical, or
other transmission path, where a long path is defined as one in which
the length is many multiples of the wavelength of the transmitted
signal, there will be an integer multiple of 27 radians which will not be
included in the phase summed by the techniques described. However,
the phase summed will, in general, contain all of the phase nonlinearity,
and in this type of problem the nonlinear phase is usually the phase of
interest. Therefore, delay distortion in television transmission lines was
successfully delay distortion equalized using phase data obtained by
numerical phase summation based on the loss or absorption charae-
teristics of the lines. Also, in Bennett’s He-Ne maser problem,” the
nonlinear phase in the truncated Gaussian line was obtained by nu-
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merical phase summation in spite of the fact that an integer multiple
of 27 radians in the total phase was missed in the numerical summation.

Similar situations exist with regard to nonminimum imaginary part
complex variables where a portion of the imaginary component is
missed in the summation. Here again, however, the minimum possible
imaginary part associated with the real part which is obtained by the
numerical summation, is usually of sufficient interest to make the
summation valuable.

There is one important type of nonminimum phase funetion for which
the numerical summation may not be useful. A good example of such a
function is an electrical bridge having zero transmission or infinite loss
at a real frequency due to bridge balance. This violates the requirement
that the function be analytic in the right half p plane. In this case,
the phase summed may be the true phase or it may depart radically and
nonlinearly from the true phase over a wide frequency band centered at
the infinite loss frequency (Ref. 6, B.S.T.J., p. 896). By analogy to the
electrical case, the application of the numerical phase summation to
optical or other amplitude characteristics having infinite loss obtained
by interference (as in an interferometer) or multilayer reflection inter-
ference should be approached with caution if not entirely avoided.

2.5 Compulation of Amplitude from Phase

So far only the determination of phase from amplitude has been
considered. The same technique and tables can be used for the reverse
computation. However, since a constant amplitude does not change the
phase, the amplitude determined from a given phase characteristic
must contain an additional arbitrary constant. This is taken into
account by considering the attenuation determined as the difference
hetween the true attenuation and the attenuation at either zero or
infinity.

In the reverse computation the complex variable A + B is replaced
by either iw(A — A, + iB) or (A — Ay + iB) /iw. The multiplication
by 4w or its reciprocal has the effect of interchanging the real and
imaginary components and their even and odd symmetry charac-
teristics. Thus in iw(A — A, + iB), the real component becomes —wB
with even symmetry and the imaginary component becomes tw(d — Ag)
with odd symmetry. Similarly in (A — A, + iB)/iw, the real compo-
nent becomes B/w with even symmetry and the imaginary component
becomes —i(A — Ap)/w with odd symmetry. The transformed variables
are then in suitable form for determining B from A using the same
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formula and tables and the same techniques as were described for de-
termining A from B. It must be remembered, of course, that the values
of A determined from the summation will include an arbitrary additive
constant (Ref. 5, pp. 320-330).

[II. COMPUTATION OF PHASE TABLES

4.1 Semi-Infinite Unit Slope Phase Computation

The original tables of phase of a semi-infinite slope of Ref. 6 are
adequate except for the very steep slopes which may occur at micro-
wave frequencies and frequently occur at optical frequencies. Ifor
instance, in the first optical problem to which they were applied, the
delay distortion or time dispersion at the surface of a mirror," the
critical phase values fell within the final 60 of 9,640 tabulated values of
phase in radians falling in the vicinity of = f/fy = 1.0. Therefore,
the extension of the earlier tables is limited to values of f/f, > 0.9999.
In this region, the best expression for obtaining the phase B is given
by Bode as

Blx.) + B(y.) = =~ — 7%_ log, x, log, y. (11)

m
1
where

1 — ) 1 — .

T+ "1+

Ye =

[From (2)

o2l =ye =N T 1 ‘
B(""')_%[1+ye+5(l+yc)+ ]_ 7 LB v (12)

to better than 2 X 10~ radian for (1 — y.) < 107%,
Substituting (12) in (11)

Bly.) ="+ llnge ve log, <
4 v,

SLe

e = 1.0, log g = ye + 1

and
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211 — ye e(l + Iie):|
B(y,) = T_=Z 22 log, = . 13
(ye) 1 w[1+yu L — (13)

Equation (13) is good to 3 X 107" radian for 3. > 0.9999. This equation
was used to compute B(y.) to 12 significant figures for

e = .99990(.0'1) 99998(.0°5) .999995(.0"5"
999998(.0"2) .9999998(.0°1) 1.0.

These values were then extended by the numerical integration technicue
described in Ref. 6 to obtain B(y,.) for

e = .999900(.0°1) .999980(.0%5) .9999980(.0°2)
0999998(.0°1) 1.0.

These values were then graphically interpolated to obtain 11 significant
figure values of B(y.) for

y. = .999900(.0°1) .999980(.0"1)
.9999998(.0°5) 1.0.

These final values were rounded to 9 figures to obtain the values given
in Table IIL. The odd symmetry of B(a,) about x. = 1.0 was used to
obtain Table IV in accordance with (3).*

The initial 12-figure computations were good to =1 in the 12th
figure. The maximum error in numerically integrating and graphically
interpolating to 11 significant figures is estimated to be less than 5
figures in the 11th figure. The nine-figure tables are, therefore, believed
to be subject only to rounding errors in the last figure.

In order to extend the range of use of Tables IIT and IV of this paper,
values of B(z,) for &, = .9970(.0001) .9999 from the Ref. 6 tables are
included.

3.2 Unit Attenuation Line Segment Phase Computation

Fig. 2 shows a unit attenuation line segment meeting the restrictions
that Afi < 10""1» and fi» = 10°. The phase associated with this ampli-
tude element will be designated as ®. It is determined by the difference
between the phase of a positive semi-infinite slope beginning at 4 = 0
at f; and extending to infinity, passing through amplitude A = 1.0 at

* Tables of phase functions are numbered the same as tables previously men-
tioned (Ref. 6). Therefore Tables I and II do not appear in this paper, since angles
are given in radians only. Furthermore, additional tabulations in the present

paper are numbered consecutively, even though the numbers sometimes duplicate
table numbers used in illustrative examples in Ref. 6.
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f> and the phase of a semi-infinite slope of equal magnitude but opposite
in sign beginning at A = 1.0 at fu . In accordance with the definition of
slope given by (5), the slope & of these semi-infinite slopes will be

A =10 _ 1

" log o/ logﬁfrm + igg

u

or

14 Af/2f.  Af
1/k = log, —— == ~° = ¥ 14
= o e T T (14)
to better than 1 in 10" for the maximum value of Af = 40 for which
® will be tabulated. Referring to Fig. 2,4 will therefore be given by:

& = K[B(f/fi) — B(f/f)] (15)
= (10°/ANB(f/f)) — B(f/fH)],f < fu (16)
= (10°/ANB/f) — BU/D))fe > > N (17)

in which the B’s are the phases of semi-infinite unit slopes of attenua-
tion. ® need bhe evaluated only for f < fi. since ®(Af1p) = &( —Af12) as
a result of the even symmetry of @ about f = f. .

Referring to Ifig. 2, when [ < fy, f/f; is given by

. )r[ - Arl _Xfl Afl-; - Affz
/ = " —_ = 1 - = 1 —_ v
J/.’l fl

S 108

and B(f/f1) of (16) is read from Table III for f < fy. When f > [,
A/ =1 —=[(Af/2 — Afi2)/10% and B(f,/f) of (17) is read from Table
IV for f > fo. Since f < fia < fo, f/fo = 1 — [(Afie + Af/2)/10%] and
B(f/f:) of (16) and (17) is always read from Table III for f < f, .

Equations (16) and (17) and the approximations to f/f; and f/f,
above may be used to evaluate ® for Af, < 50, Af < 40 to an accuracy
of better than 0.0002 radian. This is sufficient since ® is only given to
0.001 radian in Table V. These equations were therefore used to
compute ® of Table V for Afi. = 0 (1) 50 for each of the following
Af's: 2, 4 6, 10, 20, and 40.

For Afis > 50, Af < 40, and f < fi, (15) is used to compute @.
However, the B’s are determined from (13) with y. = . = f/fi, or
Ye = Y2 = f/fs. Thus

® = k[B(y) — Bly)]

21—y el+y) 11—y el + yn] (18)

T+ " Ty 1T+un 21—y
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The error in ® as determined from (18) is less than 1077 radian for
Y12 = f/f12 > 999, Af < 40.
Referring to I'ig. 2

1—?fz=1—f/fz=1—&_';TAi3=%

fo— Bf _ _Ap
1+ fo =2 (1 Zfz)

Af1 Afl
7’1”1:2( _—f)

1+ i

L ==
Substituting in (18)
Iy fg)
1 — =42
_ 2fn Af 2€f2( 2/

= log,
=af] . Af, Afs
A

and as shown in the Appendix, (19) can be reduced to:

1 aefu 2efia _ Afi
v = Af[Af2 cap  Ahlo Af.] 2o (20)

(Af < 40, 1000 > Afip > 50).

The error term Afiz/27f12 1s only 1.6 X 10~* radian for Afy, = 1000,
Since & in Table V is only given to 0.001 radian, this error term is
dropped. ® as given in (20) can then be further reduced, as shown in
the Appendix, to

1 2¢f1n _ ft Afe

- [log" AL  AfE Afl] (1)
_ lﬂg,. 10‘ 2f|2 Af] Afz
== [log e + logw —= AT, ,Af Af;] (22)

& was computed using (22) for Af = 10 at Afis = 50(2) 80(5) 160(10)
300, and for Af = 40 at Afi, = 50(2) 100(5) 130. Five figures to the
right of the decimal were retained in spite of the fact that the error
term of (20) puts an error of as much as 5 in the last figure, since in
deriving unit wedge phase from this data, for @ (Afy) differences of
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Afie — Afw’ = 2, the difference error is moved out to 3 in the 7th figure.
The computed data was then graphically interpolated to give ® for
Af = 10 at Af, = 50(1) 300 and ® for Af = 40 at Afi, = 50(1) 130,
The final data was rounded to 3 figures to the right of the decimal and
is subject only to rounding errors. In tabulation, however, the Af = 10
values are tabulated for Af £ 20 at Afi; = 50(1) 130 and for Af = 40
at Af;s = 130(1) 300, This introduces a maximum error for the tabulation
of 0.0015 radian for Af = 20, Afi, = 50 and 0.0011 radian for Af = 40,
Afis = 130 to give a maximum percentage error in ® as tabulated
between Afis’s of 50 and 300 of 0.05 per cent.

For Afia > 300 it is shown in the Appendix that (21) can be reduced

to
212 1 (A f>3
b = ._l = | =L
% 3 T 247 \ATw (23)
(Af < 40, 1000 > Afyy > 300)
The error term (1/247)(Af/Afie)* has a maximum at Af = 40,

Afir = 300 of 2.3 X 10 and can be neglected. Equation (23) can then
be written for fi, = 10°

b = M (60 — logm .A_fw)
T 2

(Af < 40,1000 > Afi > 300).

Equation (24) was used to compute ® for Af = 40 at Af;, = 300(10)
1000 as tabulated in Table V.,

One other source of error must be considered. In using the tables the
actual center of the line segment being summed will not be at f, = 10°
but may depart from this by half the band spread of the problem. Ior
a band of 10" this will be 500. Equation (23) may be used to evaluate
this error. It will be given by

(24)

« ’r' (

Mas i # 10 eror = Lo il}li ~ log. 2_%‘1_)0)
1 2f12 500 —4 H
= 11ou = 107" radi:

z 08 2 f12 =4 500 :':27rf12 < racian

which is acceptable for our tabulation.

Recapitulating, the Table V phase values may be considered to be
reliable to --0.002 radian or less than 0.1 per cent, which is better than
the amplitude approximations which are usually used for the unit
attenuation line segment phase summation.
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The reason for the restriction on center-band frequency in line seg-
ment phase summation when the initial and final amplitudes are not
the same is now apparent. f» appears as a factor term in all equations
for ®. Since & was computed for fi» = 10°, the problem must be trans-
formed to a center frequency of 10° by multiplying all frequencies by
the ratio of 10° to the actual center frequency. This does not change
the attenuation-phase relationship, since all frequency terms in the &
expression appear as ratios.

Now consider the problem when the initial and final amplitudes are
the same, as shown in the hypothetical problem of Iig. 4. Note that the
entire amplitude characteristic can be constructed of trapezoidal ele-
ments by successive constant amplitude truncations. A typical element
is abed. Tts phase at f is given by the sum of the phases of the two line
segments ab and ed. Thus:

®(f) of abed = Au[®(8f12) — P(Afs)] (25)
and from (21)

(gl — wap) = [ lon 5 - S e 57

o, 2y Afyo Ay
log, AL - AT, log, A fa]

_ 1 2cfin  Afs
S [Iogn Afs 2e(frz + F)

_Afiy Afe  Afy, Afs
Mmﬁﬁﬂ%ﬂ

[ 1o, s _ Aftop AR
- [log., AL AL log, AT,

Aﬁ.] _F

(26)

Afs
=L log, —= —.
Afy OF Afs mf1a

F/fi» < 107° by the narrow-band limitation of our problem, <o the second
term of (26) is less than 0.0003 radian, which is negligible. Note that
fi2 has disappeared from the first term and that the phase is now de-
pendent only upon ratios of linear frequency intervals. Although f was
chosen </, in obtaining (26), the dependence of ®(Afiz) — ®(Afz) on
ratios of linear frequency intervals only, can be shown for all values of f.
The problem can, therefore, be linearly expanded or contracted about
its center frequency to best fit the range of tabulated values of ® with-

+
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LINEAR FREQUENCY, f, F <1073f,

Fig. 4 — Line segment phase summation.

out changing the attenuation-phase relationship, as noted ecarlier in
Section 2.2,
3.3 Unit Wedge Phase Computation

The phase contribution of a unit wedge of attenuation is given by
(10) as

Woiotn—41) = Pasipmn—an — Pasmn—4n42

where Af = 2 for both ®’s and »n and f are even and odd integers respec-
tively. If f of (10) isn + b then

Psoo—vn) = Pagp—wrny — Paja—bi1- (27)
If fof (10) is n — b then
Ws0045-1 = Pagie—b1 — Pas ,obi1. (28)

Because of the even symmetry of & about f = fi and therefore about

Afe = f — fiu =0,
Pasige—vi) = Pariombp

and

Pasysmtir = Pajyap -
Therefore, from (27) and (28)

Yago- = —Wise4n . (29)
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Wyo0en_r+1) for 500 4+ n — (f + 1) even from 500 to 600 was computed
using the 11-figure tables of B(x,) — before reduction to 9 figures for
tabulation — to compute the @ values needed in (10). The & values
were computed in accordance with the procedure given in Section 3.2
for ® (Af < 40, Afiy < 50). The extension of this ® computation to
Afis = 100 is permissible because of the small value of Af = 2. The
use of 11-figure tables of B(z.) good to only five in the final figure is
permissible because small differences (Af = 2) in this table are good
to at least one more significant figure. The final figure in the tabulated
values of ¥ depends upon differences in the 11th figure in B(x.). They
are, therefore, estimated to be good to better than +2 in the last figure.

Weoo4n—cr+1) fOr 500 + 7 — (f 4 1) even from 600 to 1000 was computed
using 5 decimal figure values of ® computed before rounding for tabula-
tion in accordance with the procedure given in Section 3.2 for 1000 >
Afi > 50. In accordance with the discussion of the reliability of these
computations in Section 3.2, the resultant 5-decimal figures of ¥ are
estimated to be reliable to better than 42 in the final figure. Values of
Wsoopn_g+ny for 500 + n — (f + 1) < 500 were obtained from the
values for 500 4+ n — (f + 1) = 500 using (29).

Table VI, giving Ws04n_¢41y for 500 + n — (f + 1) even from 0 to
1000 to 5 decimal figures, was tabulated using the above data.

IV. EXAMPLES OF PHASE SUMMATION

£.1 Semi-Infinite Unit Slope Phase Summation

Summation of phase using the semi-infinite slope of attenuation is
described in Section 2.1 and fully illustrated in Ref. 6. Therefore, an
actual numerical summation is not considered necessary here.

4.2 Unit Line Segment Phase Summaltion

A part of the truncated Gaussian problem solved for Bennett? will
be used to illustrate unit line segment phase summation. I'ig. 5(a) shows
the top portion of a Gaussian amplitude characteristic, A, normalized
to a peak amplitude of unity and truncated at A = 0.712 and A = 0.5.

The characteristic has a half width at half maximum of 800 me,
corresponding to the full Doppler width at half maximum for neon
atoms at the temperature of the He-Ne optical maser. It has a center
frequency of approximately 2.6 X 10 cps, corresponding to the fre-
quency of oscillation of the maser. Since the ratio of the bandwidth to
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center frequency is ten orders of magnitude smaller than the narrow-
band requirement, and the initial and final amplitudes of the truncated
section are the same, a linear frequency summation scale was chosen
for convenience in unit line segment summation as shown on Fig. 5(a).

The phase wanted is the phase due to that portion of the Gaussian
lying between A = 0.5 and 4 = 0.712. Since the two sides of this area
which are defined by the Gaussian are essentially straight lines, the
characteristic was approximated by the two straight lines, ac and c’e,
and the three constant amplitude lines 4 = 0.712 fromcto¢’, A = 0.5
from f = 0tof = 0, and 4 = 0.5 from f = 80 to f = . This ap-
proximation was then broken into four line segments, ab, be, ¢'d, and de.
The desired phase is then given by (7) as

0(f) = (Ap — A)®w + (A — Ap)®pe + (Ada — Ao )Bera + (A, — Aa)Pu,
and since

(Ay — 4s) = (A, — 4y) = —(Ayg — A.) = —(A. — Ay)

0.106 neper, (30)
0(f) = 0.106[®w + Py, — ®.ra — $a] radians.

From I'ig. 5, Af = 6 for all the line segments, and

ab has a center frequency of 3 and its Af. = | (3 — f) |,
be has a center frequency of 9 and its Af, = | (9 — ) |,
¢'d has a center frequency of 71 and its Afi. = | (71 — ) |,
de has a center frequency of 77 and its Afy. = | (77 — 1) |.

Table VII gives the entire tabulation and phase summation of (30).
The first column gives frequency, f, at which phase is to be summed. The
second column gives Afj. for line ab at each value of f, and the third
column gives &, for Af = 6 from Table V for each value of Afy, at f.
This is repeated for &, , ®..a, and @4 . Note the orderly recurrence of
values of &, which made for easy tabulation.

A desk computer was used to sum the four unit line segment phase
contributions horizontally [®..4 and ®4. negatively from (30)] and then
multiply the sum by 0.106 to get 8(f) of the last column in radians. This
summed phase is plotted as B on Iig, 5(b). The precision of the summa-
tion is demonstrated by the smoothness of the data.

The ease of the computation is illustrated by the fact that the ap-
proximation and phase summation was completed in one hour.
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Fig. 5 — (a) Double truncated Gaussian amplitude characteristic. (b) Phase
determined by unit line segment summation.
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4.3 Unit Wedge Phase Summation

The quantum-mechanically derived expression for the complex di-
clectric constant, e = ¢ — e, will be used to illustrate phase summation
using the unit wedge for three reasons.

I'irst, € is defined by a Lorentzian whose real and imaginary parts
are known. Phase summation of e can therefore be checked against
known data. Secondly, it is derivable from the classical equation for a
damped harmonic oscillator which oecurs repeatedly in science and
engineering." Finally, the real part of ¢ is summed from the imaginary
part and serves to illustrate the reverse summation discussion in Section
2.5.

The formula for complex dielectric constant given by Van Vleck
(Ref. 7, p. 644) can be written as the sum of two Lorentzians as follows

/ A V y
e— 1 =4 - 2 {(V — ) — il T (» + m) — iAV} By

where » = frequency (f), Av = half bandwidth at | e — 1 | = 0.5
maximum, and A is a constant.

For a narrow band about », only the first term of (31) is important
and (31) can therefore be written

e—1 =4 {(1 } (32)

2 (v — w) — idw

I'rom (31), A is seen to be ¢ — 1 where ¢ = e(» = 0). Substituting
for the isolated A term in (32), and separating into real and imaginary
parts (32) becomes

; . o Ab‘n (Vn — V) . Av
o) i = 0 ]

=

It is desired to obtain refraction from absorption, and the absorption
term is in the imaginary part of (33). Therefore real and imaginary
must be reversed by multiplying by iw or 27» as discussed in Section
2.5, Since 27y is effectively constant across a narrow band, (33) need
only be multiplied by ¢ to obtain

» ~ Aw Ap . vo — ¥ .
e+ ila —ea) = o [(V —n)? + A + 1 (v — m)® + AVE]. (34)

Multiplying (34) by 1/Ae where Ae = Awy/2Ap, a constant which does
not change the real-imaginary relationship, (34) hecomes
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0
€ e — e Ay . Avivy — v
( 1 ) _ 4_ ( ) (35)

A T Ae (v —wm)+ A ! (v — w)? + Ar?’

Van Vleck plots ( e/Ae)2r log e and (& — &)/Ae in his atmospheric
absorption study at microwave frequencies (Ref. 7, Fig. 8.2). Equation
(35) is also identical with the expression for the impedance of a parallel
RLC ecircuit having a half width of Af which shows the recurrence of
the damped harmonic oscillator problem noted above.

The real and imaginary parts of (35), hereafter designated as A and
B, respectively, were arithmetically computed to four significant figures
for vy = 105, Av?2 = 10%. A and B are plotted in Fig. 6(a) on an f (also n)
scale chosen for summation convenience in summing by (9). Because of
the even and odd symmetry of A and B respectively about the center
frequency, only half of the curves are shown.

Amplitude A data for phase summation were taken for n even from
950 to 750 from the four figure computed values of A. However A was
cut off linearly from 4 = 0.016 at n = 258 to A = 0 at n = 250, even
though A was decreasing very slowly for n < 250. In accordance with
Section 2.3, phase can then he summed between f = 249 and 749 odd.
Equation (9) then becomes

760

B(f = 249 to 749 odd) = 2 A W¥s00n—ts+1) (36)

n=2560
even

B(f) of (36) was summed on the 7090 computer.

The difference between B(f) summed and four-figure B(f) computed
from (35) are plotted as the “Error in Radians — Precision Summa-
tion” in Fig. 6(b). The maximum error between f = 419 and 499 is only
0.001 radian. For f < 419, the error gradually increases. This is due to
the arbitrary cutoff of A at n = 250 noted above. If a correction is made
for this cutoff, the error at f = 369 drops from point ¢ = +0.0022
radian to point b = 0.0002 radian [see Tig. 6(b)]. This shows that the
potential overall accuracy of the phase summation is equal to the ac-
curacy of the amplitude data.

In order to illustrate the accuracy of an order of magnitude poorer
approximation to 4, the summation frequency scale was reduced by a
factor of 10 to the scale for f or n marked “Desk Computer Summation.”
Now A changes an order of magnitude more in frequency interval of
Af = 2 then on the precision f or n scale. Therefore a better approxi-
mation to A is sometimes obtained by taking straight line terminal
points off the true A curve. The points selected are indicated and
several of the resultant line segments making up the approximation are
shown in dotted lines.
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The summation performed was
520

0(f = 491 to 499 odd) = > A, Ws004m_irs1) -
0

n=48
even

This summation required 30 minutes with a desk computer and pro-
duced the good approximation to the true phase shown on Fig 6(a).

V. VALUE OF THE NUMERICAL PHASE SUMMATION TECHNIQUE

A knowledge of the imaginary as well as the real part of experimentally
observed physical phenomena adds a new dimension to the under-
standing of the phenomena especially when the physical mechanisms
involved are only partially understood. Consider for instance the
difficulty of solving the time dispersion of reflection at the surface of a
mirror as discussed in Ref. 9. This problem was easily solved using the
phase tables, with no need for a quantitative knowledge of the physical
mechanisms involved.

When the phenomena can be represented by a Lorentzian or Gaussian,
as is often the case, the numerical solution of phase is not necessary.
I'or instanee a Lorentzian approximation to the common-base current
gain of a transistor revealed that the high common-emitter current gain
is obtained at the price of a corresponding loss in frequency band.?
However this approximation was not good enough for later study of
VHI" transistors., Here a knowledge of the numerical relationship be-
tween amplitude and phase made possible an understanding of eurrent
gain and phase from simple amplitude measurements only. The results
not only prove good for all types of junction transistors but also reveal
rather than require information on the gradient of the base layer impu-
rity distribution.” And the computations of delay distortion mentioned in
the introduetion, although theoretically possible, would have been
extremely difficult without a knowledge of the numerical computation
of phase.

I'inally, consider the potential range of usefulness of the phase tables.
It is believed that the phase tables presented in Ref. 6 combined with
the phase tables of this paper are sufficient to sum the phase of any
minimum phase funection oceurring in any area of the physical or
engineering sciences and in any part of the frequency spectrum.
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APPENDIX

Equation (19) of Section 3.2 is reduced to (20) as follows: leaving
out the coefficient 2f./7Af and treating only the portion in brackets

Afy 2¢f2 (1 - ?{2)
o log, — 2N/
. Afe Afs
.3f2 (l - 5 ) )
2
, _AhQ
2/ (1 -~ 3—}:‘) Ah
()2
J log, Jiz 2 J1o
2f12(1 + %) (1 = ‘?E) Af
A Afy
Al log 2fu (1 B Z—flfz)(l B 2.f12)—|
e
s 2 2
Afe 2ee (l B %f_—AI)
= — log, J12
. Afs — AJ Afe
o
Afi + A
Afl folz (1 - f2f|2 f)

— log,
2112(1 _An+Af Af) AR
2 f12
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log,
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2 +log

Afy
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Afe
212
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AfAf fl
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Zfl
Afy
T (l + gfn_z) (
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-1

When the above is multiplied by the coefficient 2f1s/7Af it becomes:

1
mAf

ztflz
Af

I:Af log

1
TAf

28f12
Af 1 :| +

—Afilo
2(3}‘-13

Af'_l loge Afg

- Af]_ log

2t/
Al

1 Afg I.Og‘;

—_ — 1
’ﬂ'A_f__ Afl()

1
mAf L

2({f12

AfZ logr A_fg_

— Afl lﬂge

Af 1Af s
27Aff12

2€f12_
C AN

Zef 12_
e Afr

Qefm_
Afr

+ Afidfz

Afi
log. Af

Af

Aflz - ?

27A ff1a

Al
2‘JTA_f:f12

(Af < 40,
Afis

27 f12

(Af < 40,

afe 3

A
Afie
1000 > Afi > 50)

1000 > Afm > 50)

which is the value of ® given in (20). The first term of (20) can be

further reduced as follows
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! I:Af log, :E’i'-' — Afi lo e'prl’]

‘Jl'Af l_\fl
=5 [(Aﬁ + Af) log, “"j:‘"’ — Afy log, %}
1 2ef1n 2ef12 fa
= 57 Aflog, === A Afy log, A X ’ane]

1 2ef1 Afl _
- l e - - Be
w[og Af, Af o8 Aj
which is the value of & given in (21).

Equation (21) can be still further reduced for Af;, > 300 as follows.
Leaving the factor 1/7 and taking only the bracketed terms of (21)

21”,1"1'_' _ f:\jl 1 A,f'_’

log, Afa A:f_ O'L.Afl
f
. Afin + -
= log, 26/ Y] — 2_;1 ]ng—“Tz}-
Afe (1 + )—) Afu ==
2Af 1 2
oy, 26 . Al Al 1 o/
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= loe 5w ~3am T3 (’Afv) 3 (m) i
) ) )
(Afm l) 28fr 2\20fu/ T 3\2Af/ 4 \24fe
af 2 Af L1 AP S Yy
+ mfﬁz(:mfw) +3(2Af1-.- +i(9ﬂfm
_ 2efn _ Af AVAY 1A )3 o l( o )3
Sl e T o T (u_m) 3(3Afv T oag T s\ar
1 2 ( Af )”
21 2Af2
— o Qfm _l. _\f ‘
= lUnc Afl'.' + 29 (Afl‘.’)
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which when multiplied by 1/x becomes

Dog 22 1 (ALY
‘J; logr Afl'_' + 247 (Afli’)

which is the expression for @ in (23).
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Tasres IIT axp IV

— TABLES oF PHASE OF A
SEMI-INFINITE UNIT ATTENUATION SLOPE

I1fo ot folf Tuble UL < o Bin | Table 1V £ > /o B in st Difference
.999 700 0.784 4618 0.786 3316 —
710 1898 3065 o
720 5180 2783 e
730 5161 2500 31
740 5748 2216 286
999 750 0.784 G033 0.786 1930 pios?
760 (320 1643 -
770 G608 1355 e
780 (3898 1066 201
o U b 2
790 7189 0775 203
099 800 0.784 7481 0.786 0482 (4904
810 7775 0188 onE
82(0) 8071 0.785 9893 208
83(0) 8368 9595 e
840 8668 9296 e
.99 850 0.784 8069 0.785 8994 .
860 9273 8601 s
870 9578 8385 308
880 0886 8077 a1
800 0.785 0197 7766 o
2909 000 0.785 0510 79 0.785 7452 48 \
901 0512 33 7420 94 -073154
002 0573 01 7389 36 58
903 0605 51 | 7357 75 61
004 0637 15 7326 11 g;
090 905 0.785 0668 83 (0.785 7204 44 ain
906 0700 53 7262 73 073171
907 0732 27 7230 99 74
908 0764 05 7199 22 77
900 0795 86 7167 41 81
84
099 910 0.785 0827 70 0.785 7135 57 N
911 0859 58 7103 69 -“"31{%
012 0891 50 7071 77 92
013 0923 45 7039 82 33
914 0955 14 7007 83 o0
999 915 0.785 0987 46 0.785 G975 81 .
916 1019 52 (943 74 073207
917 1051 62 G011 64 10
018 1083 76 6879 50 14
919 1115 94 6847 33 o
.999 920 0.785 1148 16 0.785 6815 11 -
921 1180 41 6782 85 073226
922 1212 71 8750 56 29
923 1245 05 6718 22 34
924 1277 43 6685 84 38
42
.999 925 0.785 1309 85 0.785 6653 42 -
926 1342 31 6620 96 -0°3246
927 1374 82 6588 45 51
928 1407 37 6555 90 55
929 1439 96 6523 31 50
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Tapres III anp IV — Continued

J1fo ot fo/f

Table IIL f < fo B in

adians

Table IV f > fo B in
Radians

1st Difference

.999

999

999

999

999

999

999

.999

.999

.999

930
931
932
933
934

935
936
937
938
939

940
941
942
943
944

945
946
947
0948
949

950
951
952
953
954

955
956
957
958
959

960
961
962
963
964

965
966
967
968
969

970
971
972
973
974

975
976
977
978
979

0.785 1472 60

0.785

0.785

0.785

0.785

0.785

0.785

0.785

0.785

1505
1538
1570
1603

5 1636

1669
1702
1735
1768

1801
1834
1868
1901
1934

1968
2001
2035
2068
2102

2135
2169
2203
2237
2271

23056
2339
2373

2407 9

2442

2476
2511
2545

2580 ¢

2615

2649
2684
2719
2754
2790

2825
2860

2896 ¢

2032
2067

3003
3039
3075
3112
3148

28
01
79
62

49
41
38
40
48

60
78
01
30
64

04
50
02
59
23

93
69
52

63
77
04
46

0.785 G490 67
G457 98
6425 25
6392 48
6359 65

0.785 6326 78
6293 86
6260 89
6227 87
6194 79

0.785 G161 67
6128 49
6095 26
6061 97
6028 63

0.785 5995 23
5961 77
5028 25
5804 68
5861 04

0.785 5827 34
5793 57
5759 75
5725 85
5691 89

0.785 5657 86
5623 75
5589 58
5505 33
5521 00

0.785 5486 60
5452 12
5417 56
5382 91
5348 18

0.785 5313 36
5278 44
5243 44
5208 33
5173 13

0.785 5137 83
5102 42
5066 90
5031 26
4995 51

0.785 4959 63
4923 63
4887 50
4851 23
4814 81

083269
73
77
83
87

033292
97

.0%53318
23
29
34
40

083346
52

57
64
70

083377
82

90

96
3403

083411
17
25
33
40

053448
56
G5
73
82

083492
3500
11

20

30

093541
52
64
75
88

.083600
13
27
42
57
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TasrEs IIT anp IV — Continued

Table 111 § < fu B in

Table IV f > fo B in

f/foor fo/f Radians Radians 1st Difference
.999 9800 0.785 3185 03 0.785 4778 24
0l 3188 69 4774 57 -0%0367
02 3192 36 4770 91 67
03 3196 03 4767 24 67
04 3199 70 4763 57 E’}
.000 0805 0.785 3203 37 0.785 4759 90 .
06 3207 05 4756 22 -0%0367
07 3210 72 4752 55 68
08 3214 40 4748 87 68
09 3218 08 4745 19 gg
.000 9810 0.785 3221 76 0.785 4741 51 o
1 3225 44 4737 83 -0°0368
12 3229 12 4734 15 68
13 3232 81 4730 46 6y
14 3236 50 4726 77 85
999 0815 0.785 3240 18 0.785 4723 08
16 3243 87 4719 39 -0°0369
17 3247 57 4715 70 69
18 3251 26 4712 01 69
19 3254 96 4708 31 ,7(8
999 9820 0.785 3258 65 0.785 4704 61 .
21 3262 35 4700 92 -0°0370
29 3266 05 1697 21 70
23 3269 76 4603 51 70
24 3273 46 1689 81 ;[1’
999 9825 0.785 3277 17 0.785 4686 10 .
2% 3280 88 1682 30 -070371
27 3284 50 1678 68 71
28 3288 30 1674 97 71
29 3202 01 4671 26 %
L0990 9830 0.785 3205 73 0.785 4667 54
31 3200 44 4663 82 -0°0372
32 3303 16 4660 11 72
33 3306 88 4656 38 72
34 3310 61 4652 66 ;?;.
099 9835 0.785 3314 33 0.785 4648 94 050373
36 3318 06 1645 21 -0%037:
37 3321 79 1641 48 (i
38 3325 52 1637 75 73
30 3329 25 1634 02 ;3
099 0810 0.785 3332 99 0.785 4630 28
41 3336 72 4626 54 00374
42 3340 46 4622 81 [
13 3344 20 4619 07 7
14 3347 95 4615 32 ;i
.999 9845 0.785 3351 69 0.785 4611 58
16 3355 44 4607 83 -0°0375
47 3359 19 4604 08 75
48 3362 04 4600 33 ;’g
49 3366 69 1596 58 O
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TasreEs 1II anp IV — Continued

Sl or folf

Table TIT f < fo B in

Table IV { > /3 B in

1st Difference

Radians Radians
.99 9850 0.785 3370 45 | 0.785 4592 82 .
51 3374 20 4580 06 -0°0376
52 3377 96 4585 31 76
53 3381 72 4581 54 76
54 2385 40 4577 78 ?!9{
.999 9855 0.785 3389 25 0.785 4574 01 .
56 3303 02 4570 25 -0°0377
57 3396 790 4566 48 77
58 3400 57 4562 70 77
59 3404 34 4558 93 gé
.900 9860 0.785 3408 12 0.785 4555 15 )
61 3411 90 4551 37 -0°0378
62 3415 68 4547 59 8
63 34190 46 4543 81 8
64 3423 25 4540 02 ;g
.090 9865 0.785 3427 04 0.785 4536 23
66 3430 83 4532 44 00379
67 3434 G2 4528 65 79
68 3438 42 4524 85 80
69 3442 29 4521 05 gg
099 9870 0.785 3446 02 0.785 4517 25
71 3449 82 4513 45 00380
72 3453 62 4500 64 81
73 3457 43 4505 84 81
74 3461 24 4502 02 g}
999 9875 0.785 3465 06 0.785 4408 21 )
76 3468 87 4494 40 0°0382
77 3472 69 4490 58 82
78 3476 51 4486 76 82
79 3480 33 4482 03 35
999 9880 0.785 3484 16 0.785 4479 11
81 3487 99 4475 28 0%0383
82 3491 82 4471 45 83
83 3405 G5 4467 61 83
84 3499 49 4463 78 gi
999 9885 0.785 3503 33 0.785 4459 94
86 3507 17 4456 10 0°0384
87 3511 02 4452 25 84
88 3514 87 4448 40 85
89 3518 72 4444 55 gg
999 9890 0.785 3522 57 0.785 4440 70
01 3526 43 4436 84 0°0386
92 3530 29 4432 98 86
93 3534 15 4429 12 86
94 3538 01 4425 25 gg
.999 9895 0.785 3541 88 0.785 4421 39 i
96 3545 75 4417 51 0:0387
97 3549 63 4413 64 87
98 3553 50 4409 76 88
a9 3557 39 4405 88 gg
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Tanres III axp IV — Continued

Tlfo or fo/f Table I}‘g iﬂﬁsf" B in Table II{‘; iaisfn B in 1st Difference
.999 0900 0.785 3561 27 0.785 4402 00
01 3565 16 4308 11 -070388
02 3569 05 4394 22 89
03 3572 94 43090 33 89
04 3576 84 4386 43 gg
.099 9905 0.785 3580 74 0.785 4382 53 .
06 3584 64 4378 63 -0°0390
07 3588 55 4374 72 91
08 3502 46 4370 81 91
09 3596 37 4366 90 g;
999 9910 0.785 3600 29 0.785 4362 98 s
11 3604 21 4350 06 -0%0392
12 3608 13 4355 14 92
13 3612 06 4351 21 93
14 3615 00 4347 28 gi
999 9915 0.785 3619 93 0.785 4343 34
16 3623 87 4339 40 -0°0394
17 3627 81 4335 46 3§
18 3631 76 4331 51 ;
19 3635 71 4397 56 dg
099 0920 0.785 3639 66 0.785 4323 61 1200
21 3643 62 4319 65 -070396
22 3647 58 4315 69 o
23 3651 55 4311 72 9
24 3655 52 4307 75 L};
L999 9925 0.785 3659 49 0.785 4303 77 .
26 3663 47 4299 80 090398
27 3667 46 4295 81 fo
28 3671 44 4291 82 o
90 T8, o
29 3675 44 4287 83 o
.099 9930 0.785 3670 43 0.785 4283 84
31 3683 43 4279 83 -0°0400
32 3687 44 4275 83 01
33 3691 45 4271 82 o
24 3605 46 4267 80 2
02
.909 9035 0.785 3600 48 0.785 4263 78 )
36 3703 51 4250 76 -0°0402
37 3707 54 4255 73 03
38 3711 57 4951 (9 03
39 3715 61 4247 65 04
05
.999 9940 0.785 3719 66 0.785 4243 61
a1 3723 71 4239 56 -070405
52 3727 77 4235 50 3‘@
43 3731 83 4231 44 0
44 : 3735 89 4297 37 g;
.000 0945 | 0.785 3730 07 0.785 4223 30
46 ’ 3744 05 4219 22 -0%0408
47 , 3748 13 4215 14 08
48 ; 3752 22 4211 05 09
49 : 3756 32 1206 95 }8
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Tasres 11T anp IV — Continued

f/foor fo/f

Table LLI { < fo B in

Radians

Table IV f > fo B in

Radians

15t Difference

—_

.099 9950

51
52
53
54

.999 9955

999 9960

61
62
63
64

999 9965
66

67
68
69

.999 9970

.999 9975
76

77
78
79

.999 9980

.999 9995

96
97

999 99980

985
990
995

.000 00000

0.785 3760 42
3764 53
3768 65
3772 77
3776 90

0.785 3781 03
3785 18
3789 33
3793 48
3797 65

0.785 3801 82
3806 00
3810 19
3814 39
3818 60

0.785 3822 81
3827 04
3831 27
3835 51
3839 70

0.785 3844 03
3848 30
3852 59
3856 88
3861 19

(.785 3865 51
3869 85
3874 19
3878 55
3882 93

0.785 3887 32
3891 72
3896 14
3900 58
3905 04

0.785 3909 52
3914 02
3018 54
3923 09
3927 67

0.785 3932 27
3936 90
3041 57
3046 28
3051 04

0.785 3955 85
3960 72
3965 G8

0.785 3970 74
3973 32
3975 96
3978 68

0.785 3981 63

0.785 4202 85
4198 74
4194 62
4190 50
4186 37

0.785 4182 24
4178 09
4173 94
4169 78
4165 62

0.785 4161 45
4157 26
4153 08
4148 88
4144 67

0.785 4140 46
4136 23
4132 00
4127 76
4123 50

0.785 4119 24
4114 97
4110 68
4106 39
4102 08

(.785 4097 76
4093 42
4089 08
4084 72
4080 34

0.785 4075 95
4071 b5
4067 12
4062 68
4058 23

0.785 4053 75
4049 25
4044 72
4040 18
4035 60

0.785 4031 00
4026 37
4021 69
4016 98
4012 23

0.785 4007 42
4002 55
3997 59

0.785 3992 53
3989 94
3987 30
3984 58

0.785 3981 63

.050411
12
12
13
14

.0%0427
28
20
31
32

050433
35
36
37
39

080441

42
44
44

.050463
67
71
76
81

.0%0487
96
0506

.0%0259
64
72
95

(792



TaBLE V — & 1N Rapians ror LINE SEGMENT,
A, oF 1 NEPER; fi. = 10° cps

Afie af=12 Af =4 Af=6 Af =10 Af =20 Af =40
0 4,936 4.716 4.587 4.424 4.204 3.983
1 4.716 4.674 4.569 4.418 4.202 3.083
2 4.412 4.496 4.510 4.398 4.197 3.981
3 4.275 4.296 4.366 4.363 4.189 3.979
4 4.180 4.192 4.214 4.307 4.177 3.977
5 4.108 4.115 4.128 4.204 4.162 3.973
6 4.050 4.054 4.062 4.097 4.142 3.968
7 4.000 4.003 4.007 4.032 4.116 3.963
8 3.957 3.960 3.964 3.980 4.086 3.957
9 3.920 3.022 3.925 3.937 4.046 3.950

10 3. 886 3.888 3.890 3.900 3.983 3.941

11 3.8566 3.857 3.859 3.867 3.919 3.9032

12 3.828 3.829 3.831 3.837 3.876 3.922

13 3.802 3.803 3.805 3.810 3.841 3.910

14 3.778 3.779 3.781 3.785 3.811 3.807

15 3.756 3.757 3.758 3.762 3.784 3.882

16 3.736 3.736 3.738 3.741 3.760 3. 866

17 3.716 3.717 3.718 3.721 3.737 3.847

18 3.698 3.699 3.700 3.703 3.716 3.826

19 3.682 3.682 3.682 3.685 3.697 3.800

20 3.665 3.666 3.666 3.668 3.679 3.762

21 3.6560 3.650 3.650 3.652 3.662 3.726

22 3.634 3.635 3.635 3.637 3.646 3.698

23 3.620 3.620 3.621 3.623 3.631 3.676

24 3.6006 3.607 3.607 3.609 3.616 3.6506

25 3.504 3.504 3.5904 3.596 3.603 3.638

20 3.582 3.582 3.582 3.583 3.590 3.621

27 3.570 3.570 3.570 3.571 3.577 3.605

28 3.558 3.558 3.558 3.559 3.565 3.590

20 3.546 3.547 3.547 3.548 3.553 3.576

30 3.536 3.536 3.536 3.537 3.542 3.563

31 3.525 3.526 3.526 3.527 3.531 3.561

32 3.516 3.515 3.516 3.516 3.520 3.530

33 o 3.506 3.506 3.506 3.507 3.510 3.528

34 3406 3.496 3.496 3.497 3.501 3.517

|

35 | 3487 3.487 3.487 3.488 3.491 3.5006

36 3.478 3.478 3.478 3.479 3.482 3.496

37 3.469 3.469 3.469 3.470 3.473 3.486

38 3.460 3.460 3.461 3.461 3.4064 3.477

39 3.452 3.452 3.452 3.453 3.456 3.467

40 3.444 3.444 3. 444 3.445 3.448 3.459

41 3.4306 3.436 3.436 3.437 3.440 3.450

42 3.429 3.429 3.429 3.429 3.432 3.442

43 3.421 3.422 3.421 3.422 3.424 3.433

+1 3.414 3.414 3.414 3414 3.417 3.426

45 3.407 3.407 3407 3.407 3.400 3.418

40 3.400 3.400 3.400 3.400 3.402 3.410

47 3.393 3.393 3.393 3.304 3.305 3.403

48 3.386 3.386 3.3806 3.387 3.389 3.396

49 3.380 3.380 3.380 3.380 3.382 3.389




TaBLE V — Continued

Afie Af =20 Af =40 Afia Af =20 Af =40
50 3.374 3.382 90 3.186 3.189
51 3.367 3.375 91 3.183 3.185
52 3.361 3.369 92 3.179 3.181
53 3.355 3.362 93 3.176 3.178
54 3.349 3.356 94 3.172 3.174
55 3.343 3.350 95 3.169 3.171
56 3.337 3.344 96 3.166 3.168
57 3.332 3.338 97 3.162 3.164
58 3.326 3.332 98 3.159 3.161
59 3.321 3.327 99 3.156 3.158
60 3.315 3.321 100 3.152 3.155
61 3.310 3.316 101 3.149 3.151
62 3.305 3.310 102 3.146 3.148
63 3.300 3.305 103 3.143 3.145
G4 3.205 3.300 104 3.140 3.142
65 3.290 3.295 105 3.137 3.139
66 3.285 3.290 106 3.134 3.136
67 3.280 3.285 107 3.131 3.133
68 3.275 3.280 108 3.128 3.130
69 3.271 3.275 109 3.125 3.127
70 3.266 3.270 110 3.122 3.124
71 3.262 3.266 111 3.119 3.121
72 3.257 3.261 112 3.116 3.118
73 3.2563 3.257 113 3.114 3.115
74 3.248 3.252 114 3.111 3.112
75 3.244 3.248 115 3.108 3.110
76 3.240 3.243 116 3.105 3.107
77 3.236 3.239 117 3.103 3.104
78 3.232 3.235 118 3.100 3.101
79 3.228 3.231 119 3.007 3.099
80 3.224 3.227 120 3.004 3.096
81 3.220 3.223 121 3.002 3.003
82 3.216 3.219 122 3.089 3.001
8. 3.212 3.215 123 3.087 3.088
84 3.208 3.211 124 3.084 3.085
85 3.204 3.207 125 3.081 3.083
86 3.201 3.203 126 3.079 3.080
87 3.197 3.200 127 3.076 3.078
88 3.193 3.196 128 3.074 3.075
89 3.190 3.102 129 3.071 3.073
Af Af = 40 Afiz fA =40 Afiz Af = 40 Afiz Af =40
130 | 3.060 140 | 3.045 150 | 3.023 160 | 3.003
131 3.066 141 3.043 151 3.021 161 3.001
132 3.064 142 3.041 152 3.019 162 2.999
133 3.062 143 3.039 153 3.017 16: 2.997
134 3.059 144 3.036 154 3.015 164 2.995
135 3.057 145 3.034 155 3.013 1656 2.993
136 3.055 146 3.032 156 3.011 166 2.991
137 3.0562 147 3.030 157 3.009 167 2.989
138 3.050 148 3.028 158 3.007 168 2.087
139 3.048 149 3.026 159 3.005 169 2.985
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TaBLE V — Continued

Afia Af = 40 Afe Af =40 Afa Af <40 Afa Af £ 40
170 | 2.984 220 | 2.901 270 | 2.836 500 | 2.640
171 | 2.982 221 | 2.900 271 | 2.835 510 | 2.634
172 | 2.080 222 | 2.899 272 | 2.834 520 | 2.628
173 | 2.978 223 | 2.897 273 | 2.833 530 | 2.622
174 | 2.976 224 | 2.896 274 | 2.832 540 | 2.616
175 | 2.974 225 | 2.804 275 | 2.831 550 | 2.610
176 | 2.972 226 | 2.803 276 | 2.829 560 | 2.604
177 | 2.971 227 | 2.801 277 | 2.828 570 | 2.508
178 | 2.960 228 | 2.890 278 | 2.827 580 | 2.503
179 | 2.967 220 | 2.889 279 | 2.826 500 | 2.587
180 | 2.965 230 | 2.887 280 | 2.825 600 | 2.582
181 | 2.964 231 | 2.886 281 | 2.824 610 | 2.577
182 | 2.962 232 | 2.885 282 | 2.822 620 | 2.572
183 | 2.960 233 | 2.883 283 | 2.821 630 | 2.567
184 | 2.958 234 | 2.882 284 | 2.820 640 | 2.562
185 | 2.057 235 | 2.880 285 | 2.819 650 | 2.557
186 | 2.955 236 | 2.879 286 | 2.818 660 | 2.552
187 | 2.953 237 | 2.878 287 | 2.817 670 | 2.547
188 | 2.951 238 | 2.876 288 | 2.816 680 | 2.542
189 | 2.950 239 | 2.875 280 | 2.815 690 | 2.538
190 | 2.948 240 | 2.874 200 | 2.813 700 | 2.533
191 | 2.946 241 | 2.872 21 | 2.812 710 | 2.528
192 | 2.945 242 | 2.871 202 | 2.811 720 | 2.524
193 | 2.943 243 | 2.870 293 | 2.810 730 | 2.520
194 | 2.941 244 | 2.868 204 | 2.809 740 | 2.516
195 | 2.940 245 | 2.867 205 | 2.808 750 | 2.511
196 2.938 246 2.866 207 2.807 760 2.507
197 | 2.937 247 | 2.865 207 | 2.806 770 | 2.503
198 | 2.935 248 | 2.863 208 | 2.805 780 | 2.499
199 | 2.933 249 | 2.862 209 | 2.804 790 | 2.494
200 | 2.932 250 | 2.861 300 | 2.803 800 | 2.490
201 | 2.930 251 | 2.850 310 | 2.792 810 | 2.487
202 | 2.029 252 | 2.858 320 | 2.782 820 | 2.483
203 | 2.027 253 | 2.857 330 | 2.772 830 | 2.479
204 | 2.025 254 | 2.856 310 | 2.763 840 | 2.475
205 | 2.924 255 | 2.854 350 | 2.754 850 | 2.471
206 | 2.922 256 | 2.853 360 | 2.745 8G0 | 2.467
207 | 2.921 257 | 2.852 370 | 2.736 870 | 2.464
208 | 2.919 258 | 2.851 380 | 2.727 880 | 2.460
209 | 2.918 259 | 2.849 300 | 2.719 800 | 2.457
210 | 2.916 260 | 2.848 400 | 2.711 900 | 2.453
211 | 2.915 261 | 2.847 410 | 2.703 010 | 2.449
212 | 2.013 262 | 2.846 420 | 2.696 920 | 2.446
213 | 2.012 263 | 2.845 130 | 2.688 030 | 2.443
214 | 2.910 264 | 2.843 140 | 2.681 040 | 2.439
215 | 2.009 265 | 2.842 450 | 2.674 050 | 2.436
216 | 2.907 266 | 2.841 160 | 2.667 060 | 2.432
217 | 2.906 267 | 2.840 70 | 2.660 970 | 2.429
218 | 2.904 268 | 2.839 480 | 2.653 080 | 2.426
219 | 2.903 269 | 2.837 400 | 2.647 990 | 2.423
1000 | 2.419
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TABLE VI —W¥sgp4n — 41y IN RADIANS PER NEPER

500 " — 500 " — 500 n—
s b GEh ¥ ) ¥

0 —.00128 100 — 00159 200 —.00212

2 —.00128 102 .00160 202 —.00214

1 —.00129 104 — 00161 204 — 00216

6 —.00129 106 — 00162 206 — 00218

8 —.00130 108 —.00163 208 —.00219
10 —.00130 110 — 00164 210 —.00220
12 — 00131 112 — 00164 212 — 00222
14 —.00131 114 — 00165 214 —.00224
16 —.00132 116 — 00166 216 —.00225
18 —.00132 118 — 00167 218 —.00227
20 —.00133 120 — 00168 220 —.00229
22 —.00133 122 — 00169 222 — .00230
24 —.00134 124 —.00170 224 —.00232
26 —.00135 126 —.00171 226 —.00234
28 —.00135 128 — 00171 298 —.00235
30 —.00136 130 .00172 230 — .00237
32 —.00136 132 — 00173 232 —.00239
34 —.00137 134 — 00174 234 .00240
36 —.00137 136 —.00175 236 — 00242
38 —.00138 138 — 00176 238 — 00244
40 —.00138 140 —.00177 240 — 00246
42 — 00139 142 —.00178 242 —.00248
44 — 00139 144 —.00179 244 — 00250
46 — 00140 146 — .00180 246 — 00252
48 — 00141 148 — 00181 248 —.00254
50 —.00142 150 — 00182 250 — 00256
52 —.00143 152 —.00183 252 — 00258
54 —.00143 154 — 00184 251 — 00260
56 —.00144 156 — .00185 256 — 00262
58 —.00144 158 — . 00186 258 — 00264
60 — 00145 160 — 00187 260 — 00266
62 — 00146 162 — 00188 262 —.00269
it — 00146 164 .00189 264 —.00271
66 — 00147 166 — 00190 260 —.00273
68 — 00148 168 — 00192 268 —.00275
70 — 00149 170 — 00193 270 — 00277
72 — 00150 172 — 00195 272 — 00280
74 — 00150 174 — 00196 274 — 00283
76 — 00151 176 — 00107 276 — 00286
78 — 00151 178 — 00198 278 00288
80 — 00152 180 — 00200 280 —.00201
82 —.00153 182 — 00201 282 — 00294
84 — 00154 184 — 00202 284 — 00297
806 — 00154 186 — 00203 286 — 00300
88 — 00155 188 — 00205 288 —.00302
90 — 00156 190 — 00206 290 — 00305
02 — 00156 192 — 00207 292 — .00308
94 — 00157 194 — 00208 204 —.00311
96 —.00158 1965 — 00209 296 — 00314
98 —.00159 198 — 00210 208 — 00317
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TasLE VI — Continued

500 + 1 — 500 4+ n — 500 + n —

‘e ¥ A v Ak v
300 —.00320 400 — 00644 500 +.52454
302 —.00323 402 — 00657 502 +.23165
304 — 00327 404 — 00671 504 -+ .13096
306 — 00330 406 — 00685 506 +.09219
308 — 00334 408 — .00700 508 +.07134
310 —.00337 410 —.00717 510 +.05189
312 — .00341 412 —.00732 512 +.04016
314 — 00344 414 —.00748 514 +.04256
316 — 00348 416 — 00767 516 +.03753
318 — 00352 418 —.00785 518 +.03356
320 — 00356 420 — .00805 520 +.03036
322 — 00360 422 — .00827 522 +.02770
324 — .00365 424 — .00848 524 +.02549
326 — .00368 426 — .00872 526 +.02350
328 —.00372 428 — .00895 528 +.02197
330 — 00376 430 — .00923 530 +.02054
332 — 00381 432 — .00950 532 +.01930
334 — 00386 434 —.00079 534 +.01819
336 —.00391 436 —.01010 536 +.01721
338 — 00396 438 —.01043 538 +.01632
340 — 00401 440 — 01079 540 +.01553
342 — 00406 442 — 01116 542 +.01480
344 — 00411 444 — 01158 544 +.01415
346 — 00416 446 —.01201 546 +.01354
348 — 00422 448 — 01248 548 +.01299
350 — 00428 450 —.01200 550 +.01248
352 — 00433 452 — 01354 552 +.01201
354 — . 00439 454 — 01415 554 +.01158
356 — .00445 456 — 01480 556 +.01116
358 — 00452 458 — 01553 558 +.01079
360 — 00458 460 — 01632 560 +.01043
362 — . 00464 462 — 01721 562 +.01010
364 — 00471 164 — 01819 564 +.00979
366 — 00478 466 — .01930 566 +.00950
368 — 00486 168 — 02054 568 +.00923
370 — 00494 470 — 02197 570 +.00895
372 — 00502 472 — 02350 572 +.00872
374 — .00510 474 — 02549 574 +.00848
376 — 00518 476 — 02770 576 +.00827
378 — 00527 478 — .03036 578 +.00805
380 — 00536 480 — .03356 580 +.00785
382 — .00546 482 — 03753 582 +.00767
384 — 00555 484 — 04256 584 +.00748
386 — . 00564 486 — 04916 586 +.00732
388 — .00573 488 —.05819 588 +.00717
390 — 00583 490 — 07134 590 +.00700
392 — .00595 492 — 09219 592 +.00685
394 — 00607 404 — 13096 504 +.00671
396 — 00619 406 — 23165 596 +.00657
398 — .00632 498 — 52454 598 +.00644
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TasLe VI — Continued

500 4+ n —

500 + n — 500 + n —

GED v e v 41 ¥
600 -+ .00632 700 +.00317 800 +.00210
602 -+ .00619 702 +.00314 802 +.00209
604 -+ .00607 704 +.00311 804 +.00208
606 +.00595 706 +.00308 806 +.00207
608 +.00583 708 +.00305 808 +.00206
610 +.00573 710 +.00302 810 +.00205
612 +.00564 712 +.00300 812 +.00203
614 +.00555 714 +.00297 814 +.00202
616 + .00546 716 +.00294 816 +.00201
618 -+ .00536 718 +.00291 818 +.00200
620 +.00527 720 +.00288 820 +.00198
622 +.00518 722 +.00286 822 +.00197
624 +.00510 724 +.00283 824 +.00196
626 -+ .00502 726 +.00280 826 +.00195
628 +.00494 728 +.00277 828 +.00193
630 + .00486 730 +.00275 830 +.00192
632 +.00478 732 +.00273 832 +.00190
634 +.00471 734 +.00271 834 +.00189
636 +.00464 736 —+ .00269 836 +.00188
638 +.00458 738 +.00266 838 -+ .00187
640 +.00452 740 +.00264 840 +.00186
642 +.00445 742 + .00262 842 +.00185
G644 +.00439 744 -+ .00260 844 +.00184
646 +.00433 746 -+ .00258 846 +.00183
648 +.00428 748 -+ .002506 848 +.00182
650 +.00422 750 —+.00254 850 +.00181
652 +.00416 752 +.00252 852 +.00180
654 +.00411 754 =+ .00250 854 +.00179
656 + . 004006 756 +.00248 856 +.00178
658 4+ .00401 758 +.00246 858 +.00177
660 4+ .00396 700 +.00244 860 -+ .00176
662 +.00391 762 +.00242 862 +.00175
664 -+ .00386 764 +.00240 864 +.00174
666 +.00381 766 +.00239 8606 +.00173
668 +.00376 768 +.00237 868 +.00172
670 +.00372 770 +.00235 870 +.00171
672 +.00368 772 +.00234 872 +.00171
674 +.00365 774 +.00232 874 +.00170
676 -+ .00360 776 +.00230 876 +.00169
678 -+ .003506 778 +.00229 878 +.00168
680 +.00352 780 +.00227 880 +.00167
(682 +.00348 782 +.00225 882 +.00166
(684 +.00344 784 +.00224 884 +.00165
686 +.00341 786 +.00222 886 + .00164
688 -+ .00337 788 +.00220 888 +.00164
690 +.00334 790 +.00219 890 +.00163
692 +.00330 792 +.00218 892 +.00162
(394 +.00327 794 +.00216 804 +.00161
696 +.00323 796 +.00214 896 +.00160
698 +.00320 798 +.00212 898 +.00159
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PHASE COMPUTATION AT OPTICAL FREQUENCIES 679

TABLE VI — Continued

S00 4 n — ﬁ()(l n - 500 4+ n —
Y ¥ i } v G v
900 +.00159 940 l +.00144 980 +.00132
902 +.00158 042 | 4.00144 982 +.00132
904 +.00157 044 ‘ +.00143 984 +.00131
906 -+ .00156 946 +.0014¢ 986 +.00131
908 +.00156 948 | +.00142 988 +.00130
910 +.00155 950 ‘ +.00141 990 -+ .00130
912 +.00154 952 | 4.00140 992 —+.00129
914 +.00154 954 +.00139 994 +.00129
916 +.00153 956 +.00139 996 +.00128
918 +.00152 958 +.00138 998 +.00128
920 -+.00151 960 +.00138 1000 +.00127
022 +.00151 962 +.00137
024 +.00150 9G4 +.00137
926 +.00150 966 +.00136
928 +.00149 968 +.00136
930 +.00148 970 +.00135
932 +.00147 972 +.00135
934 +.001406 974 +.00134
936 —+.00146 976 +.00133
938 +.00145 978 +.00133
TABLE VII — LINE SEGMENT PHASE SuMMATION —
TruxcaATED (GAUSSIAN SECTION
| Line ‘ | Line ! _Line_ ‘ ‘ Line__
i 1,"? 3 ‘ B J”h,«= 9 | e I,ll:‘:i! 7l By _ﬁ:; T7 Bge raf{i‘?ns
‘ Afia ‘ Al Afia Afin
0 3 | 4.3606 9 3.925 71 | 3.262 | 77 | 3.236 | 0.1901
2 1 4.569 7 4.007 69 3.271 75 3.244 | 0.2185
4 ‘ 1 | 4.560 5 | 4.128 | 67 | 3.280 ‘ 73 | 3.253 | 0.2204
6 3| 4.366 3 | 4.366 | 65 |3.200 71 |3.2620.2311
8 5 | 4.128 1 4,569 63 3.300 I 69 3.271 | 0.2254
10 7 4.007 1 4.569 61 3.310 | 67 3.280 | 0.2105
12 9 3.925 3 4.366 50 3.321 65 | 3.290 | 0.1781
14 11 3.859 5 4.128 57 3.332 63 3.300 | 0.1433
16 13 3.805 7 4.007 55 3.343 61 3.310 | 0.1229
18 15 3.758 | 9 3.925 53 3.3565 59 3.321 | 0.1067
20 17 3.718 11 3.859 51 3.367 57 3.332 | 0.0931
22 19 3.682 13 3.805 49 3.380 55 3.343 | 0.0810
24 21 3.650 15 | 3.7568 47 3.393 53 3.365 | 0.0700
26 | 23 3.621 17 | 3.718 45 3.407 51 3.367 | 0.0599
28 25 | 3.504 | 19 |[3.682 | 43 |[3.421 49 | 3.380 | 0.0504
30 27 3.570 21 3.650 41 3.4306 47 3.393 | 0.0414
32 20 | 3.547 23 [ 3.621 | 39 | 3.452 | 45 | 3.407 | 0.0328
34 31 3.526 25 3.594 37 3.4069 43 3.421 | 0.0244
36 33 3.506 27 3.570 35 3.487 | 41 3.436 | 0.0162
38 35 3.487 29 3.547 33 3.5006 39 3.452 | 0.0081
40 37 3.469 31 3.526 31 3.526 37 3.469 | 0.0000







