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on Burst-Noise Channels
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The error structure on communicalion channels used for data transmission
may be so complex as lo preclude the feasibility of accurately predicting the
performance of given codes when employed on these channels. Use of an
approximale error rale as an estimale of performance allows the complex
statistics of errors lo be reduced to a manageable table of paramelers and
used in an economical evaluation of large collections of error detecting codes.
Ezxemplary evaluations of error detecting codes on the switched lelephone
network are included in this paper.

On channels which may be represented by Gilbert’s model of a bursi-
noise channel, the probabililies of error or of relransmission may be calcu-
lated without approximations for both error correcting and error detecting
codes.

I. INTRODUCTION

The structure in bursts of noise on real communication channels is
usually very difficult to deseribe. As a consequence, no general procedure
exists for predicting the performance of error detecting or error correcting
codes, and no basie set of parameters exists for deseribing the channel.
Gilbert! has shown that a simple Markov model with three parameters
provides a close approximation to certain telephone cireuits used for
the transmission of binary data. When such an approximation is pos-
sible, the error rates for codes may be easily caleulated from these
channel parameters and properties of the code. (See Section V.)

To provide a means for estimating error rates for binary block codes
in more general circumstances, a table of probabilities P(m,n) may be
employed. P(m,n) is the probability that m bit errors occur in a trans-
mitted block of n bits. It was speculated and later corroborated (as we
will show) that equivalent error detecting codes would have rather com-
parable error rates when employed on the same channel. (Two codes are
equivalent if one may be obtained from the other by a permutation of
bit positions.) Thus the average error rate for all codes equivalent to a
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given code may be used as an estimate of the true error rate. This average
probability of an undetected error in a single transmission of a word
is given by

- w(m)

P, = —_
m=1 [N
)

where code word usage is assumed uniform, w(m) is the average number
of code words at distance m from a typical code word, and » is the block
length of the code.

No definitive statement regarding the accuracy of this estimate can
be made at this point. A limited investigation, however, suggests that it
will ordinarily be a reasonable estimate.

As an example of the use of this method, a collection of 29 interesting
error detecting codes is evaluated, using the recorded error data of the
field testing program conducted by the data transmission evaluation task
force of the Bell System.2 The Bose-Chaudhuri (31, 21) code is included
in this collection and is analyzed in considerable detail to illustrate the
full potentials and limitations inherent in the method.

In the interest of simplicity, the discussion to follow will be limited to
binary block codes with particular interest in error detection. The meth-
ods employed, however, are not limited to these particular applications,
and are open to obvious generalizations.

P(m,n)

1I. PRELIMINARY DEFINITIONS AND OBSERVATIONS

A binary block code C, hereinafter referred to as a “code,” is a collec-
tion of binary words of 0's and 1’s of length n. N will be used to denote
the total number of words in C. The distance 6(z,y) between two binary
words z and ¥ of length n is the number of bit positions in which = and
y differ. The weight | z | of = is the distance §(6,v) between x and the
all-zero word 8. The number of ordered pairs of code words z, y such
that 8(z,y) = m is denoted by W(m), and w(m) = W(m)/N.

The communication channel is deseribed by a collection of conditional
probabilities of the form P(xz — y), which give the probability that the
word y will be received when z is transmitted. A channel is called metric
whenever P(x — y) is a function only of é(z,y): ie., Pz — y) =
F(m,n), where m = 8(z,y) and n is the block length. A channel is called
symmetric whenever P(x — y) is a function only of 2 = y — z (mod 2).

It should be noted that a metric channel is symmetric and that a
symmetric memoryless channel is metric. The Gilbert burst-noise
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channel’ is an example of a symmetric channel which, because of its
memory (i.e., interdependence of error probabilities of neighboring bits),
is not metrie.

When a code is used for error detection, it will be assumed that error
correction is accomplished by retransmissions of any received words
which are detected to be in error. The specific manner in which the re-
ceiver signals to the transmitter for a retransmission will not be con-
sidered. It will be assumed, however, that this backward signaling is
error-free, that each retransmission consists of a single word, and that
repeated retransmissions of a word are possible. Since very little infor-
mation is required for the backward signaling for retransmissions, it is
not too unrealistic to assume that it is error-free. Most retransmission
systems will, however, probably involve delays in retransmissions, and
the retransmitted data may consist of a block of several words. Because
of the burst nature of noise on many channels, the effect of these re-
transmission delays is improvement of the channel, and we can then
expect codes to perform better than our model indicates.

Thus, for an error detecting code, an (undetected) error occurs if a
received word is a code word different from the transmitted word. If z
is the transmitted word, then the probabilities of an undetected error, of a
word retransmission, and of acceptance of a correct word are, respec-
tively

SuoecP(x —y) PPz —y) and Pz —z).

Now, if we assume that the words of the code are used with equal fre-
quencies, then the averages of the above probabilities are, respectively

Pu = %Eztn Zy(#r)cc P(.’L"_* y) (1)
Pr = % Z:EU Ewc P(x - y) (2)

and
Py = % Y aee Plz — ). (3)

These probabilities are of some interest in themselves, but for sym-
metric communication channels the probability Pz that a word is re-
ceived in error after possible retransmissions is given by

Pg= . (4)
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This result follows from the definitional equation
Py = Prob (undetected error | received word is accepted)

the definition of conditional probability, and the observations that an
undetected error implies acceptance of the received word and that the
probability of a received word being accepted is 1 — P,.

Suppose the channel is metrie, so that P(x — y) = F(m,n) where
m = 8(z,y) and n is the length of z and y. Then, from (1), (3) and (2)

T

P, = Ew(m)F(m:n), (5)
m=1
PU = F(O,?’l),
and
P, = 1— (Py+ Pu). (6)

Tt is evident from (5) that on a metric channel equivalent codes
have identical values of P, , since w is invariant under a permutation
of the bit positions in a code.

III. Pu ON SYMMETRIC CHANNELS

Let P, denote the average value of P, over all bit-position permuta-
tions of the code. If P(m,n) is the total probability of m errors in a block
of length n, i.e.

P(mn) = 2 P (0 —y) (7)
then

(8)

This result may be seen as follows: consider a particular code C' and
channel X. Corresponding to each permutation = of the n bit positions
is a permutation of € which we will call #C'. Now, using (1)

1 1
= n! z' N Z“TC' Zv(#r)erc Pz —y)
| (9)

L 1
= N Eﬂc‘ ZU(#:)!:C oy E,— P(rz — my).

Tor a symmetric channel there is a function f such that P(z — y) =
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f(2) where z = y — a (mod 2). Then, if z contains m ones
1 1
— 2r Plrz = my) = = 3 f(72).

Now any n-place binary sequence having exactly m ones is left invariant
by m!(n-m)! permutations of its digits. The sum just written is there-
fore equal to

m!(n — m)! 3 flu) = P(m, n)

(n)

where the sum is over all distinet n-place binary sequences u having
exactly m ones. Equation (8) follows by inserting this result in (9).

Now that P, has been obtained, it is an easy matter to obtain I_’,,
the average probability of a retransmission for all permutations of the
code. Since Py = P(0,n) and Py + P, + P, = 1, it follows that

P, =1— P, — P(0n).

Our P, estimate is exactly equal to P, whenever the code in question
is invariant under all permutations of bit positions. Thus, accurate re-
sults are obtained on symmetric channels for single parity check codes,
constant weight codes, ete.

It is of interest to note that in the case of group codes of given block
length and redundaney, w(m) has an unevenly weighted average value
which may be used to estimate P, in terms of the code’s minimum dis-
tance D. Consider group codes of block length n and dimension k. For
such group codes there are 2 ways of assigning the k information posi-
tions to the check positions of the ¢ = n — k check bits, but for such
assignments the resulting codes are not necessarily distinet. Of these,
however, it is known (Ref. 3, p. 54) that in 2*7"° cases a given binary
word z will belong to the resulting code, provided the information por-
tion of z does not contain only 0’s. Now, there are [(z) - (;;)]
binary words of weight m having nonzero information parts whenever

n
0 < m = e, and there are m such words whenever ¢ < m £ n. Asa

consequence, the “average” number w(m) of code words of weight m is
1 &

wim) = Ly _(c gth—De when0 < m = ¢
2ke | \m m -

and
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wim) = zifw (:J 2% whene < m = n

wherein the average is over the multiplicity of group codes of the speci-
fied block length and dimension which result from these assignments of
information bit positions to check bit positions.

Let
= _ n
C(m) = w(m)/(m)
then
()
_ , m
Clm) = 27°<1 — 7\ when0 <m = ¢
()
and

C(m) =2°° whene < m = n.

This result may be of use as follows. Suppose we have knowledge only
of the minimum distance D of a given group code that we wish to evalu-
ate on some channel. Let us make the bold assumption that the big
difference between the given code and the “average” of all codes is the
fact that the given code contains no words of weight 1, ---, D — 1.
Then (8) yields

P, =~ Zi: C(m)P(myn). (10)

When the dimension of a code is large, it may be unfeasible to ascer-
tain w(m) because of the immense amount of computation required.
It is in such cases that (10) may prove to be a useful approximation.

1v. P, ON ASYMMETRIC CHANNELS

We propose the following reasonably general model of an asymmetric
channel. Two channel states are hypothecated: a “good” state in which
no errors oceur, and a “bad” state in which 0 — 1 errors oceur with proba-
bility po and 1 — 0 errors occur with probability p, . The manner in
which good and bad states occur will not be specified beyond knowledge
of the total probability S(s,n) of being in the bad state for some s bits
of the n bits of a block. Particular arrangements of these s bad bits
need not be equiprobable.
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Let o =1 — poand ¢ = 1 — p;, and make the following definitions
when x and y are binary words of length n:

A(x,y) = the number of bit positions where 2 is 0 and y is 1,
A'(z,y) = the number of bit positions where both x and y are 0,
B(x,y) = the number of bit positions where 2 is 1 and y is 0,

B'(x,y) = the number of bit positions where both x and y are 1.

Let the state sequence of the channel be described by a binary word »,
in which each digit is ¢ or B according as the state of the channel at
that digit’s position is good or bad. Now define

A*(xy,v) = the number of bit positions in which x and y are 0 and
v is B, and
- B*(x,y,») = the number of bit positions in which = and y are 1 and

vis B.
The error probabilities for this channel, conditional on the state sequence
v, may now be given as follows:

0 if at some bit position » is G and
Pla—ylv) = x and y are different (11)
Poq® pritqy®” otherwise (12)

where the values of the previously defined functions are
a=A(zy) o= A'(zy)
B = B(z,y) b = B'(zy)
and
a* = A*(zyp),
b* = B*(zyp).
Define
Plz—y|0) = & 5 Plaz —my | 0) (13)
wherein 7 is the arbitrary permutation of bit positions that we have
used before. Notice that by (11), (12) and (13)
Plx—y|v) = Plx—y|m) (14)

and therefore that P(x — y|v») depends only on how many B’s are
in » and not on their positions in ». Suppose v contains s B’s. We can
now say, using (13) and writing P,(x — y) for P(z — y | »), that

P(z—y) = %E, Plx—y|m) (15)
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and from (11) we know P(x — y|mv) = 0 whenever = has s in
positions where x and y differ.

We will use (12) in evaluating (15) by first finding the number of
permutations « for which P(xz — y | mv) has a fixed value. Suppose a*
and b* are such numbers that a* + b* = s — (e + b), with 0 = a* =

! 7
@ and 0 < b* £ V. Then there are (a’ i a*) = (Z*) arrange-
ments of @’ — a* (’s among the a’ bit positions where x and y are 0,

! ’
and there are (}, E b*) = (g*) arrangements of &' — &* G’s among the

! ’
b’ bit positions where @ and y are 1. Hence there are a total of (Z*) (g*)
arrangements of the n — s ’s among the a’ + b" bit positions where
« and y are the same. For each such arrangement there are sl(n — s)!
permutations x under which the arrangement is invariant. Consequently,
the total number of permutations = for which P(x — y|m) =

, .. "\ [V .
Plge® pitq® is given by sl(n — s)! (a ) (b*) . Hence, they contribute

a*
7 !
(&)G:)
n
s
to the sum in (15). We conclude then that

B min(a’, t) a* 1 — a*
Pz —y) = A W
( J) u*=m:u§, t—b7) (ﬂ)

8

a*

POGQn P1b§hb-

popge’ it (16)

where t = s — (a + D).
If we set r = ||, then P,(x — y) may be expressed in terms of b,
a, r and s as

H(b,a,r,s)
a b min(n—(a+r), s—{(a+b)
_(»Y (mY 4
(ql) (Q1) o a*=max(§—(a—}—r))
(n —(a+ r)) r—b
(9) « s — (a+b+a*)
Uil n
S

which is just another form of (16). This asymmetric channel may now
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be compactly deseribed by a function J which gives the probability,
averaged over all permutations o of the bit positions, of making b 1 — 0
errors and a 0 — 1 errors in a transmitted word of weight »

n

J(bar) = > H(banrs)S(sn).

s=a+b

For a code C, let us define 7¢(b,a,r) to be 1/N times the number of
ordered code-word pairs (x,y) for which A(x,y) = a, B(x,y) = b, and

|a| =r. Th_en finally the asymmetric analogue of (8) for the average
probability P, of an undetected error may be written as
P, = > I:(b,a,r) J(b,a,r). (17)

(b, a, ri:b<r<na<n—r

V. ERROR PROBABILITIES ON GILBERT BURST-NOISE CHANNELS

Gilbert’s model! of a burst-noise channel is a binary symmetrie chan-
nel (with memory) determined by an elementary Markov chain. As in
the preceding model for an asymmetric channel, a good (@) and bad (B)
state are assumed of the channel. No errors oceur in the @ state, but in
the B state, the probability of a bit error is (1 — h). With the trans-
mission of each bit, the channel has opportunity to change states. The
transitions @ — B and B — (7 have probabilities P and p, respectively,
while the transitions ¢ —  and B — B have probabilities @ = 1 — P
and ¢ = 1 — p. When @ and ¢ are large, the states ¢ and B tend to
persist, simulating features of a burst-noise channel. Gilbert (Ref. 1,
p. 1262) has shown how this model approximates the burst noise on two
of the calls from the field testing program of the data transmission evalu-
ation task foree of the Bell System.

Using conditional probabilities determined by the parameters P,p,h,
it is a simple matter to calculate the probability that a transmitted word
x be received as y on a Gilbert channel. This probability depends on the
modulo 2 difference z = y — x of y and .

Suppose a is the number of 0’s in z which precede the first 1 in z,
¢ is the number of 0’s following the last 1, and b; (i = 1,--+, | 2| —1)
are the number of 0’s between consecutive 1’s in 2. Then, if z #

Pl —y) = P& = wia) {TTE (b Jue) (18)
where w, » and w are functions such that w(k) = P(0°1), »(k) =
PO 1), and w(k) = PO 1) (k = 0,1, ---). Here 0* denotes &
consecutive zeros. Also, if z = 8 then

n—1

Plx—ax) = P(6) =1 — 2 w(). (19)

=0
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Using generating functions, Gilbert has shown that », v and w satisfy
the following recurrence equations
u(0) = 1, u(l) = p + hg;
w(k) = (Q+ hg)u(k — 1) —h(Q —plu(k —2), k=2,3,--- (20)
v(k) = u(k) — u(k + 1), F=0,1,---
w(k) = pa(1 — h)u(k).

Equation (18) results from the obvious composition of the conditional
probabilities in the » and u terms. Equation (19) results from the fact
that the event not 0" is the union of the events 1, 01, 0°1, ---, 0"7'1.
Since these events are disjoint,

P(0") =1 — P(not0") =1 — i): P(0°1).

In the interest of completeness, we shall sketch a proof that u, » and
w satisfy the recurrence equation (20).
To see that

o — 1) = u(k — 1) — u(k), k=12 -

note that the event 107" is the union of 1071 and 10* and that the
latter two events are disjoint. Henece

Prob (07| 1) = Prob (0*'1|1) + Prob (0| 1)
and therefore
ulk — 1) = ok — 1) + u(k).

We define #(0) = 1. That u(1) = p + ¢h is obvious. To establish that
u(k + 1) = (@ + hq)u(k) — h(Q — plu(k — 1), k=1,2,---
we shall need to introduce

ue(k) = Prob (0°7'G|1)  and  wa(k) = Prob (0°704|1)
wherein 05 denotes a zero in the bad state. Clearly
u(k) = ug(k) + us(k)

and

k
ug(k) = = hv(k —1).

Now, considering transitions, we see that
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u(k + 1)

(@ + Ph)ug(k) + (p + qh)us(k)

(@ + Ph){u(k) — ua(k)} + (p + qh)us(k)
(Q + Ph)u(k) — (@ + Ph — p — qh)us(k)
(@ + Ph)u(k) — (@ — p)(1 — h)us(k)

(@ + Ph)u(k) — (Q — p)h{u(k — 1) — u(k)}.

Finally, it is evident that if 2’ is obtained from z by inverting the order
of the bits, then P(z’) = P(z). This results from the fact that the for-
ward and backward state transition probabilities are identical. As a
consequence,

It

w(k) = Prob (0*1) = Prob (10%)
= pu(1 — k) Prob (0°| 1) = ps(1l — R)u(k)

and the proof is complete.

The performance of error detecting codes on Gilbert channels can
now be calculated using (18)-(20) in (1)—(4). For an error correcting
group code using coset decoding, the probability of incorrect decoding
is given by

Po=1-3 Pla))
i=1

where the «; are the coset leaders for the code. These coset leaders
would presumably be chosen so as to minimize P. and therefore may
not necessarily be the minimal weight elements of cosets.

It is interesting to note that if a Gilbert channel with parameters
(P,p,h) is sampled at every kth bit, then the string of bits obtained
has the same strueture as the bits on a Gilbert channel with parameters
(P',p',h) where

oY i k

and

p = PLJFP{I - (Q - »".

The proof of this assertation is given in Ref. 5, p. 383. This result is
useful for analysis when time division multiplex encoding is employed.
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vi. P(m,n) FOR GENERALIZED GILBERT CHANNELS

The probabilities P(m,n) for a Gilbert burst-noise channel are readily
computed by recursive methods. However, it is just as easy to obtain
P(m,n) for a slightly more general symmetric channel. In the Gilbert
model, an error bit can occur only when the channel is in the bad state.
In the model proposed here, an error bit ean occur in either the good or
the bad state but with different probabilities. Transitions between the
good and bad states are the same as in the Gilbert model.

Let k denote the probability of correct reception of a bit when the
channel is in the good state, andlet i’ = 1 — hand &' = 1 — k.

Let G(mm) = Prob (m errors in a block of length n | the channel
is in the good state at the first bit) and B(m,n) = Prob (m errors
in a block of length n | the channel is in the bad state at the first bit).
Then

P(mm) =

P+ P+ B(mmn)

and G(m,n) and B{m,n) may be found recursively from
G(mmn) = G(mmn — 1)Qk + B(mn — 1)Pk + G(m — 1,n — 1)QF
+ B(m — 1,n — 1)PFK/,
B(mm) = B(mmn — 1)gh + G(mn — 1)ph + B(m — I;n — 1)gh’
+ G(m — 1,n — 1)ph/,
G0,1) =&k B(0,1) = h,
G(1,1) =k and B(1,1) =}
We must also assign the values G(m,n) = B(m,n) = 0 when m < 0
orm > n.
VII. THE BOSE-CHAUDHURI (31, 21) CODE ON THE TELEPHONE NETWORK

As an illustration of the use of the P, estimate for P, , the performance
of a Bose-Chaudhuri (31, 21) code (Ref. 3, p. 166) on the switched
telephone network is analyzed. As a source of error stafistics for the
channels of the telephone network, the records of the field testing
program described by Alexander, Gryb and Nast® are employed. These
give in sequence the numbers of correct bits and error bits for 1010
calls of 10 and 30 minutes’ duration over a variety of facilities in the
switched telephone network. A detailed summary of the number of
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TaBLeE I — NuMmBER oF CALLs

1200 bps
Type of Call ‘;’gon!:ﬂls
30 min. ‘ 10 min.
Long haul 181 34 229
Short haul 102 20 151
Exchange 108 28 157

calls of each type made at 600-bps and 1200-bps transmission rates
with the FM digital subset appears in Table 1.*

For each call in this program, the probability P(m,31) that m bit-
errors oceur in a block of length 31 for m = 0, 1, --- | 31 has been
determined. In doing this, each call is divided into consecutive blocks
31 bits long starting at the ¢th bit in the call (¢ = 1, ---, 31) and
the number N;(m) of blocks containing m bit-errors is noted. This
corresponds to viewing each call as, in some sense, 31 different calls,
depending on the phase with which we enter the call (i.e., which of the
first 31 bits we take as first in governing the subdivision). We thus
obtain, for each ¢ = 1, --- | 31, a probability P;(m,31) = N;(m)/N
that a block in the subdivision contains m bit-errors. (N is the total
number of blocks in the subdivision.) We now average over the possible
entry phases and take the probability P(m,31) that m errors occur in
a block of length 31 to be (1/31) D>_.2% Py(m,31).

Examination of the P(m,31) values obtained reveals some interesting
facts. For example, on some calls the probability of having numerous
errors in a block greatly exceeds the probability of having only a few
errors. For many calls, however, P(m,31) is maximum at m = 1, de-
creases with increasing m, and is often zero for m greater than 2 or 3.
On still others, P(m,31) is maximum at m = 1, decreases for the next
few values of m, and then increases to some smaller relative maximum
around m = 15 to 17 before its final descent to zero. To illustrate this
variability among calls, we present in Table II the P(m,31) values for
four calls. In Table II, the P, entry under the call’s number is the
over-all bit-error rate for the call.

Properties of the burst nature of errors on calls like No. 1167 are
responsible for P(m,31) having its maximum value midway in the
range m = 1, ---, 31. On such calls there are long bursts of errors.
When the burst length is shorter, P(m,31) may more closely resemble
that for call No. 1641. These effects can be noted also in Table III,

* Consult Refs. 2 and 6 for a deseription of call types and for further details
regarding the field testing program.
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TasLE II —SampLE P(m,31) VALUES

Call Type.......... LH/600/10 SH/1200/30 EX/600/10 LH/1200/30
Call No............ 1167 1641 2058 2250
Po. ... 2250 X 107 270 X 1074 0.22 X 104 0.03 X 107
m =10 0.99587 0.99276 0.99972 0.99995

1 0.14 X 10 63.20 X 10 1.83 X 10 0.18 X 10~

2 0.22 8.32 0.08 0.16

3 0.14 0.69 0.06 0.12

4 0.20 0.06 0.08 0.0

5 0.14 0.05 0.11

6 0.25 0.02 0.64

7 0.14 0.0 0.0

8 0.14

9 0.50

10 0.92

11 1.00

12 0.75

13 1.20

14 3.18

15 4.29

16 4.46

17 4.88

18 3.84

19 4,12

20 3.51

21 2.54

22 2.17

23 1.78

24 0.78

=25 0.0

which gives the average P(m,n) values for all calls of the field test
program.

The quantities w(m) = 0, 1, -- - , 31 for the Bose-Chaudhuri (31, 21)
code are presented in the Table IV. Since each check bit of this code
applies to an odd number of information bits, w(m) is symmetric: i.e.,
w(m) = w(31 — m), and therefore w(m) is tabulated only for m = 0,
<o, 15,

Using the above w(m) values and the P(m,31) tables in (8) gives a
P, estimate for the undetected error rate on each call.

The smoothed cumulative distributions of the percentage of calls
over particular facilities having an estimated undetected error rate not
exceeding specified values are shown in Figs. 1 and 2 for the two trans-
mission rates used. We have excluded the 10-minute calls at 1200 bps
from this summary of the data because of the small size of the sample.

The approximate retransmission probabilities were generally less than
0.1 per cent. On some 7 per cent of the calls, the rate was between 0.1
and 1 per cent. On only three calls did it exceed one per cent.

It is impossible to obtain exaet values of P, for this code on the tele-
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TasLE IV—w(m) ror THE Bose-Cuaupnurt (31, 21) Cobe
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Tig. 1 — Percentage of 10-minute calls at 600 bps with undetected error prob-
abilities not exceeding P, .

phone network, since it was not measured during the actual field test
program. The records of that program do not allow accurate calculation
of it for a variety of reasons.” We can, however, think of the recorded
bit-error data from the field test program as representing the additive
noise of a class of hypothetical channels, and then ask the question,
“How well does P, estimate P, for these hypothetical channels?”” To
do this, a computer program was written to reconstruct the sequences
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Fig. 2 — Percentage of 30-minute calls at 1200 bps with undetected error prob-
abilities not exceeding P, .

of 1’s and 0’s from the sequential numbers of correct bits and error
bits of the task foree records. The resulting sequences are then divided
into bloeks of length 31, and each block is tested to determine if it is
the zero word, a code word, or a noncode word. Again each call is treated
as 31 calls, according to which of the first 31 bits is chosen first in de-
termining the subdivision into blocks, and the average undetected and
detected error rates are calculated.

Of the 1010 test ealls in the program, only 10 contained undetected
errors. The total number of word-errors was 37 out of a total of 1.06 X
10° words. This corresponds to an over-all undetected word-error rate
of 3.5 X 107"

To compare the estimates of P, with the values of P, obtained from
the simulation, we note first that P, = 0 for 1000 calls, whereas P,
on these calls varied over a considerable range. On the 10 calls with
undetected word-errors the ratios of P,/P, ranged from 0.83 to 24.8,
with an average value of 7.4. On 7 out of the 10 calls, P./P., was less
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than 10. The average value of P, over all calls was 2.8 X 10~%, which
is indeed a good approximation to the over-all error rate noted above for
the simulation.

The foregoing example suggests that order-of-magnitude accuracy
may be obtained using the P, estimate for P, in ordinary circumstances.
To investigate the question of accuracy further, 35 different codes with
block lengths less than 25 bits were analyzed on a variety of Gilbert
channels. The exact P, values and P, estimates were compared and found
generally to agree within an order of magnitude except in some extreme
cases. In these extreme cases, both P, and P, are practically zero, yet
their ratio is large.

Tt should be noted that, whereas no definitive statement about the
accuracy of P, is presently possible, there are practical advantages
associated with its use. First, the analysis of the code and channel are
separated so that, once the channel has been analyzed for a given block
length, many codes of that block length may be evaluated and compared.
Secondly, the amount of computation required is significantly less than
that required using various simulation techniques. There is one notable
limitation imposed on its use. When the code is very large, the amount
of computation required to obtain w(m) may be prohibitive. In such
cases the approximation offered by (10) may be useful.

VIII. A SAMPLE SURVEY OF CODES ekl

~u

To further illustrate the sort of code evaluation programs that the
P. estimate may be employed in, a collection of 29 codes of various
block lengths and redundancy were evaluated using the P(m,n) data
from the field tests as summarized in Table ITI. The codes are all eyclic
codes with exception of the constant-weight 4-out-of-8 code, and they
have, for their given block length and redundancy, the largest minimum
distance attainable with cyelic codes. They are designated in Table V
by the number pair (n,k), where n is block-length and % is the dimension
of the code. In most cases, when there are two codes with the same
(n,k) but with different w(m) values, both codes are included in the
evaluation. The difference between the evaluation of these codes and
the previous evaluation of the Bose-Chaudhuri (31, 21) code is that
here the average undetected error-rate over all calls is calculated instead
of an individual rate for each call. The distribution of call types in the
field test program is not ideal for taking such an average as a figure of
merit, yet the average does provide a convenient single number for
each code, and, moreover, a considerable delineation of requirements
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Fig. 3 — Probability of retransmission P, versus block length n.

would be necessary to devise an improved set of weighting factors. There
is the further consideration that, when ranked according to error rates,
the relative positions of codes would remain almost unchanged by such
a refinement,

The probability P, of retransmission is given as a function of code
block length in Fig. 3. The slight differences in P, between different
codes of the same block length are too small to be noted at three-decimal
accuracy. Also plotted in Iig. 3 are the retransmission rates for a
memoryless binary symmetric channel having the same average prob-
ability P, = 3.2 X 107" of a bit being in error. This second curve is
above the first, since errors are more broadly scattered on the memoryless
channel and consequently cause more retransmissions.

IX. CONCLUSIONS

In the search for suitable codes for a given data transmission service,
the problem of predicting or evaluating performance is encountered.
Several mathematical models of communication channels exist for which
the calculation of error rates may be easily performed using parameters
associated with the channel. Of such models, we note particularly that
Gilbert’s burst-noise channel is to be included, and we have outlined the
appropriate methods for these caleulations. Not all channels, however,
admit to a representation by such reasonable models. At this point,
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models could be abandoned completely and recourse could be taken to
actual field testing of a complete system or to the simulation of a com-
plete system using data obtained in field testing. Short of such complete
abandonment of models is the method of approximation of code perform-
ance factors which has been presented here. Useful mostly for error
detecting codes, the method separates the analysis of performance into
two parts. The channel is characterized by the probabilities of various
numbers of bit errors occurring in a block of given length. A code is
characterized by the average number of code words at specified distances
from other code words. A simple combination of these two types of
quantities gives a useful and economieal indication of code performance
applicable to general binary block codes and to asymmetric channels
with memory. The numbers resulting from such analysis are probably
more valuable for a relative indication of performance than they are
for an absolute indieation. In this connection, it is well to note that when
error rates are very low, small differences are operationally of little
significance.

As an exemplary application of this method, a collection of 29 codes
was evaluated for use on the switched telephone network as error-de-
tecting codes, in conjunction with retransmission as a means of error-
correction. The codes in this collection present a wide range in reliability
and indieate that it would not be difficult to select appropriate codes for
specific data transmission services by suitably enlarging the class of
codes examined.
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