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This 1s the first of two papers on the ALPAK system for nonnumerical
algebra on a digital computer. This paper vs concerned with polynomials in
several vartables and truncated power series with polynomial coefficients.
The second paper will discuss rational functions of several variables,
truncated power series with rational-function coefficients, and systems of
linear equations with rational-function coefficients. The ALPAK system
has been programmed within the BE-SYS-4 monitor system on the IBM
7090 compuler, but the language and concepts are machine independent.

The available polynomial arithmetic operations are add, subtract, multiply,
divide (if divisible), substilute, differentiate, zero test, nonzero lest, and
equality test. The speed of the system is indicated by the rule of thumb
that one man-hour equals one 7090-second. The available space in core 1s
usually sufficient for approximately 8000 polynomial terms.

Section I of this paper consisis of a nontechnical description of the sys-
tem and a brief glimpse into the future. Section II discusses several specific
problems to which the ALPAK system has been applied. These two parts do
not presuppose any knowledge of computers or compuler programming.
Section III describes the use and the vmplementation of the algebraic
operations relating to polynomials in several variables and truncaled power
sertes with polynomial coefficients. The reader of Section III is assumed to
be acquainted with the elements of FAP (FORTRAN Assembly Program)
programming, including the use of macros, as described in a series of IBM
publications, the latest of which vs IBM 7090-7094 Programming Systems
MAP (Macro Assembly Program) Language (Form Number C28-6311).
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1. NONTECHNICAL DESCRIPTION

1.1 Introduction

Many theoreticians devote a substantial portion of their time to the
routine manipulation of algebraic expressions. It has long been recog-
nized that digital computers are capable in principle of easing this bur-
den. The ALPAK system, which is described herein and in a subsequent
paper and has been programmed for the IBM 7090 computer, represents
a significant start toward the practical implementation of that capabil-
ity. It performs a limited set of operations — add, subtract, multiply,
divide, substitute, differentiate, zero test, nonzero test, and equality
test — on a limited class of expressions: rational functions of several
variables and truncated power series with rational-function coefficients.
It can also solve (by Gaussian elimination) systems of linear equations
with rational-function coefficients. This paper is concerned with poly-
nomials in several variables and truncated power series with polynomial
coefficients. The generalizations indicated above will be discussed in a
separate paper by B. A. Tague, J. P. Hyde, and the present author.

The ALPAK system is not a “sophomore imitator” or ‘“elementary
mathematics system.” There are many elementary mathematical opera-
tions (e.g., the proving of trigonometric identities) which are beyond its
present capabilities. However, when faced with problems within its
range of capability, its speed (one man-hour ~ one 7090-second) and
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power (the available space in core is usually sufficient for approximately
8000 polynomial terms) are impressive.

Neither is the ALPAK system a “symbol manipulation system,” be-
cause it views a polynomial as an array of coefficients and exponents
rather than as a string of numbers, variable names, operation symbols,
parentheses, and the like. This is the key to speed and power. Poly-
nomials are stored in a nearly optimal manner, and polynomial opera-
tions are reduced to their essentials.

We have been speaking of polynomials and rational functions without
being specific about the possible coefficient rings. The coefficients may
be integers or they may be elements of any other integral domain for
which arithmetic and input-output facilities are available. All operations
on coefficients are performed by a small set of macros (user-defined in-
structions which expand into one or more machine instructions). These
are currently defined for integers, but the user may redefine them to suit
his own needs. (Of course this requires reassembly of the ALPAK sub-
routines.) The use of floating-point coefficients is not in keeping with the
spirit of symbolic computing and should be avoided if possible. The
oceurrence of roundoff error causes zero to be nonunique and gives rise
to a host of difficult problems which the author has not attempted to
solve, It is usually feasible and desirable to replace the nonrational num-
bers which oceur in an expression by literal symbols. These can be treated
by the ALPAK system as variables. The result will then involve no
roundoft error, and the dependence on these symbols will be explicitly
displayed.

To maximize speed and minimize space, the coefficients and exponents
of a polynomial are stored in a contiguous block, and the exponents are
packed as specified in a user-provided format statement. The names of
the variables are kept in the format statement and are referred to as in-
frequently as possible. Storage allocation is automatic and dynamic, so
that the programmer can refer to a polynomial by name without worry-
ing about its size, structure, or location.

In Sections 1.2 and 1.3 we shall discuss the canonical form for poly-
nomials and the implementation of the various polynomial-arithmetic
operations. Section 1.4 contains a very brief preview of the rational-
function operations and an even briefer mention of some of our hopes
for the future.

1.2 Choosing a Canonical Form

In the ALPAK system every polynomial in storage is always kept in a
unique canonical form, which we shall describe. Every subroutine, ex-
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cept the input and output subroutines, assumes that its inputs are in
canonical form and produces its outputs (if any) in eanonical form. On
input a polynomial is put into canonical form, and on output it is left in
whatever form it is found. Barring trouble, this will always be eanonical
form.

It is important to recognize that the “best canonical form” for a given
class of expressions need not be an approximation to what human beings
would call the “‘simplest form.”” In fact, the two concepts are in some re-
spects opposite. The simplest form may be defined roughly as “that
form which requires the smallest number of symbols.” On the other
hand, an approximate definition of the best form is “that form into which
the general expression of the class can most easily be put.” This latter
definition clearly favors canonical forms in which expressions are ex-
panded over those in which they are collapsed, because the collapsing of
expressions tends to be difficult, while their expansion tends to be easy.
For example, in the case of polynomials in several variables we must
choose between an “expanded form’ in which each polynomial is repre-
sented as an ordered sum of terms and a ‘“factored form’ in which each
polynomial is represented as an ordered product of irreducible factors.
In general, the factored form is more compact, but we must reject it
because the factoring algorithmf ean be extremely time consuming,
while the expansion of a factored polynomial into a sum of terms is
always simple and fast.

Now a polynomial in n variables can be viewed as a finite n-dimen-
sional array of coefficients. If a majority of them are zero, it is advan-
tageous to represent the polynomial as a list of the nonzero ones together
with their coordinate labels (i.e., their exponents). Otherwise, it is
preferable to use the entire array. In many practical cases the number
of variables and the maximum exponent sizes are all of the order of 10,
so an array size as large as 10'® would not be unusual. However, it is
difficult to imagine a praetical ease involving more than a few hundred
(or conceivably a few thousand) nonzero terms. For generality we are
therefore obliged to represent each polynomial as an ordered list of its
nonzero terms. It is eonvenient to order the terms according to the mag-
nitude of the first exponent, and to order those terms having the same
first exponent according to the magnitude of the second, ete. The order
of the variables is the order in which they appear in the format state-
ment.

1 See exercise 15 on page 82 of Ref. 1.
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1.3 Polynomial Arithmelic

In this section we shall discuss the implementation of the various poly-
nomial-arithmetic operations. Let us begin with a simple illustration of
their use. Suppose polynomials A, B, €, and D are in storage, and C is
thought to be a divisor of A*B. (The asterisk denotes multiplication.)
To compute and print

_ AxB

r C

+D (1)

we writef

POLMPY TFAB

POLDIV  F,F,C,NODIV @)
POLADD  F,F,D “
POLPRT F

The first line replaces I’ by A*B. The second replaces ¥ by F/C; that
is, by

AxB

G (3)

This illustrates the fact that an output may overwrite an input. The
third line replaces F by F 4+ D; that is, by

AxB
C

+D (4)

which is the desired result. Finally, the fourth line causes this result to
be printed on the output tape. If the division in the second line is un-
sueeessful, i.e., if €' is not a divisor of A*B, control will be transferred to
the location called NODIV.

A polynomial is represented on data cards as a sequence of coefficients
and exponents, each coefficient being followed by its exponents. It is
terminated by the appearance of a zero where a coefficient would other
wise be expected. I'or example the polynomial

3x + 2xyz — Hyzt ()
might appear as

+ Note the similarity to the arithmetic orders of a three-address computer.
The prefix “POL’” stands for “‘polynomial.”
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3 200
2 1,11

—5 01,2 (6)
0

We have chosen this type of representation primarily because of its
appeal to the computer. However, for large polynomials it is also an un-
expectedly appealing form for people. On several oceasions we have
observed geometrical patterns in the computer output which would
not be apparent in a conventional human transcription.

The addition of two polynomials in canonical form is analogous to the
ordered merging of two ordered subdecks of a deck of playing cards,
except that the addition subroutine must also be on the lookout for
combinations and cancellations.

The multiplication of a polynomial by a nonzero monomial does not
disturb canonical form. When two polynomials are to be multiplied, the
longer one is multiplied by each term of the shorter one, and each of
these products is added to the sum of all the preceding ones.

The polynomial division subroutine is successful only when the divi-
dend is exactly divisible by the divisor. However, it is programmed so
that it can be used as a test for divisibility if that is desired. The divisor
and dividend are treated as polynomials in one variable with coefficients
in the ring of polynomials in all the remaining variables. Divisions in this
ring can be handled by the division subroutine itself,t and the main task
is carried out by the familiar process of “long division.”

The polynomial substitution subroutine works in the most straight-
forward possible way — substituting into one term at a time and pre-
serving only the latest partial result. This procedure may involve sub-
stantial duplication of effort, but it uses a minimum of working space
and a minimum of program, and in most practical cases the running time
is reasonable.

The polynomial differentiation subroutine differentiates term by term
with respeet to a specified variable. It is perhaps worth remarking that
this process does not upset the canonical ordering.

A truncated power series with polynomial coeflicients can be treated
as a polynomial, except that it is necessary to keep track of the order
_mrout.ine which calls itself is called “recursive.”’” At the innermost level
it must, of course, operate by an independent mechanism. Collisions between the
different levels are prevented by saving necessary information in a push-down
list. It is perhaps worth remarking that every inductive algorithm can be pro-

grammed as a recursive subroutine. In the case of polynomial division the induc-
tion is on the number of variables, and the innermost level is simply coefficient

division.
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and to prevent the appearance of meaningless higher-order terms. The
ALPAK system contains only two orders (“truncate” and ‘“‘multiply
and truncate’’) for dealing with truncated power series. These are suffi-
cient for many applications, but much remains to be done.

1.4 Rational Functions and the Future

Every rational function can be represented as the quotient of two
polynomials. The extension from polynomial operations to rational-
function operations would be trivial except for the problem of removing
all common factors from the numerator and denominator of each
rational function. This has been accomplished by means of a generalized
version of Fueclid’s greatest-common-divisor algorithm. However, we
must caution the reader that Euclid’s algorithm is extremely explosive,
and the computer will not be able to handle rational functions with
numerators and denominators of high degree in many variables until
more sophisticated techniques are developed.

Aside from the difficulties mentioned above, the handling of truncated
power series with rational-function coeflicients and the solution by
Gaussian elimination of systems of linear equations with rational-funec-
tion coefficients are straightforward.

One of the primary problems encountered in the development of the
ALPAK system is the problem of automatic dynamie storage allocation.
Usually the inputs to a subroutine are polynomials of arbitrary size, and
in general the required working space could not be predicted even if the
sizes of the inputs were known. Therefore it is imperative to be able to
obtain blocks of space as needed and to return idle space to the system.
Our storage allocator provides these services in a manner suitable to our
current needs, but it is not general or elegant. A general purpose storage
alloeation system including tracing and other service routines has been
developed by Miss D. C. Leagus and the author, and will be deseribed
in a forthcoming paper. With this as a foundation, we hope to write a
faster and more powerful version of the present ALPAK system, and
perhaps to extend it into other areas of mathematics.

I1. APPLICATIONS

2.1 Intreduction

This section is devoted to a few general remarks about the usefulness
of symbolic computing. The skeptic will protest that any symbolic
calculation too long to be done with pencil and paper is not really worth
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doing. This sentiment might be expressed in the form of the question,
“Who wants to look at a polynomial ten pages long?” The objection is
not without merit, but it is worth recalling that similar objections were
once raised in connection with numerical caleulations. Furthermore it is
unmistakably clear that mathematical analyses arising in many different
contexts involve substantial amounts of routine algebra which could be
done faster and more reliably by a computer. What, then, are the types
of problems to which symbolic computing facilities are likely to be
applicable?

It often happens that a “straightforward caleulation’” whose end re-
sult is concise and understandable involves many tedious manipulations
of lengthy expressions at intermediate stages. Sometimes the end result
can also be reached by a shorter route, but the result itself (and the
knowledge that it is indeed concise and understandable) may play a
decisive role in the discovery of that route.

If the desired output of a calculation is numerical or graphical, it may
nevertheless be advantageous (or even essential) to begin the calculation
symbolically and allow a numerical program to take over only during
the final stages. The problem of error analysis will not arise until these
final stages are reached.

A third type of application arises when a simple calculation must be
repeated many times with only minor variations, e.g., for all possible
values of some set of indices.

Other types of applications may possibly occur to the reader. In the
next five sections we shall discuss specific problems to which the ALPAK
system has been applied.

2.2 On the Zeros of Gaussian Noise

Our first significant test problem arose in a study by D. Slepian® of
the distribution of zeros of Gaussian noise. It was desired to find the
leading term in the power series expansion of the determinant

plut — vt)  p(vi) p(t —wvt)  —p'(ul) p'(t — vt)

p(ut) 1 p(t) 0 o'(t)
p(t — ut)  p(t) 1 —p'(1) 0 (7)
—p'(ut) 0 —p'(f) 1 —p" (1)
p'(t — ut) p'(t) 0 —p" (1) 1
where

o) =1- 1 + + + +‘“+ +ft+---. 8)



ALPAK SYSTEM 2089

The algebra is difficult not only because of the order of the determinant,
but also because the leading term corresponds to an unexpectedly high
power of t. In the general case, a # 0, the leading term is

37
a_gt_ (1 — w)* (3w — v — 2w). (9)

When a = 0 but ¢ # 0, it is
2(1 — b)c't” NoBiond 2
(1 — w20 (2u — v — 4w — 2)

(51) (10)

— 5w (20 — w — 4) + 54 (2u — 3)].

Finally, when a = 0 and ¢ = 0, it is

t16
144(4!)2
These results were obtained by a program written in the ALPAK
language by Mrs. W. L. Mammel. Although approximately 2000 poly-
nomial terms were in storage at the flooderest of the computation, the
computing time for all three cases was only 92 seconds.

(B 4 YW+ d" + F+ 2bd — b)uH (1 — w)*(1 — ) (11)

2.3 A Queueing System with Priorilies

Another interesting problem arose in a study by J. P. Runyon® of a
queueing system in which a group of servers handles traffic from two
sources, one of which is preferred over the other. It is desired to solve
the functional difference equation

(@ —2)(8 — a)" 'g.(2)

_ (12)
= (2(,8 - -T‘)"gﬂ—l(a) - 51.(3 - a)ngn—l(-r‘) n==1

where go(z) = 1, and 0 < « < 8. It follows by induction that for
n = 1, g.(x) is a polynomial of degree (n — 1) in z, whose coefficients
are polynomials in « and 8. The value of g,(«) is of particular interest.
By the time this author was ready to attack the problem, Runyon had
conjectured and J. A. Morrison' had proved that

n—1 n—r _r
n—1\n\8 «a
u = —. 1:
ww =& ("5 (13)
Nevertheless, a short program was written to compute as many as pos-

sible of the polynomials g,(x) and the corresponding g.(a). The program
stopped after 871 seconds because of a coefficient overflow{ during the

t The largest allowed coeflicient is 235 — 1.
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caleulation of gis(x). The polynomial gis(x) has 197 terms and a maxi-
mum coefficient of several billion. If the program had been available
sooner, it would have spared Runyon the necessity of calculating the
first five of the ¢,(x) by hand.

2.4 A Single-Server Queue with Feedback

Another problem from queueing theory arose in a study by L. Tak4es’
of a single-server queueing system with ‘“feedback.” The input is a
Poisson process of density A, the service times are determined by a
distribution function with moments ai, and after being served a cus-
tomer rejoins the queue with probability p or departs with probability
g=1—7p.

It is shown by Takdcs that the rth moment of the total time spent in
the system is

B, = (—1)Pn (14)

w=[G) @) ool 19

The funection ®(s,t) is implicitly defined by the equation
®(st) = (¢ — Na) W(s,t) + p¥(s + M)B(s,0(st)) (16)

where

wheret
w0 (__1)rar r
¥(s) = i=0 7! :
w(st) = 1 — (1 = pOwls + M) (17)
Wi(st) = ¢(s + M) + S(s + MAa(st)) T (w(st))
with
Y (18)
T(w) = Mo(l — w)

1—w—(1— pa)y(Auw)’
This last pair of equations can be rewritten in the more useful form
t For convenience we have assumed that all of the serviee moments a: are finite.

However, for the caleulation of 8, it is elearly sufficient to require only the finite-
ness of ays1 .
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r+1
S(zy) = Z Q-ﬁ Cr(zy)

1!
(r+1) (19)
T(w) = A1 — w)
= M1 = pw)e(Aw)
where
r+1 r
Colay) =5 Y =3 by
r—y k=0
. (20)
(z) = 1 — y(x) _ (—1) i’
er z S+
It is now clear that
\[‘(0) =ay =1
S(0,0) = —a
7(0) = —> (21)
q — 7\&1
_ q
w(0,0) 7= o
so from (14)—(16)
Bo = Poo = #(0,0) = 1 (22)

as is required by the definition of the zeroth moment.

Now suppose all of the quantities ®;; for 7 + j < r, where r is some
positive integer, have been calculated and are expressed as rational func-
tions of A and p (or g) and the service moments e; . Then by differentia-
tion of (16) we can obtain a system of r + 1 linear equations in the
r + 1 unknowns, ®;; with ¢ + 7 = r. These equations will also contain
the quantities ®;; with 7 + 7 < r, which can be replaced by their known
values. The solutions of this linear system will again be rational fune-
tions of A and p (or ¢) and the service moments a; . Theoretically, this
procedure permits the calculation of arbitrarily many of the moments,
but in practice the calculations are extremely lengthy.

The first moment can be calculated by hand, with the result

_ 1 - ?\al Xctz
h=e (CI - )\011) + 2(g — ) ’ (23)

The second moment was caleulated with the aid of an IBM 7090 com-
puter and the ALPAK system. The intermediate expressions are ex-
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tremely lengthy, but the final result is the relatively compact expression

(2gF — @) (¢ — 2¢)

bt = S0 = )& — ¢Ohen T 2) F aul (24)

where
F . 6?\&13 _ 60{12 + ﬁ)\a;ag + 3(!2 + )\oc;

3 2 2 2 2 (25)
G = 12)(11' - 12(!1 - Gi\alaz + 2R—t110!3 - :‘}R s .
TFor a more detailed discussion of this caleulation, see the appendix in
Ref. 5.

2.6 The Triskelion Diagram

The problem to be considered in this section arose in a study by D. B.
Fairlie and the author’® of the analyticity properties of the Feynman
amplitudes corresponding to several simple vertex diagrams in quantum
field theory. One of these is the triskelion diagram, which is shown in
Fig. 1. Here the p’s and ¢’s are vectors in space-time, and

2

B = Pi
a; = ¢ (26)
bi = (pi — Qi)2

for i = 1, 2, 3. The corresponding Feynman amplitude is the boundary
value of an analytic function H(a,b,z) of these nine variables, analytic

Fig. 1 — The triskelion diagram.



ALPAK SYSTEM 2093

everywhere except on certain manifolds which can be obtained from
lower-order “contracted” diagrams, and on the manifold

W(ab,z) = 4D*(4D + A*) + 4AB*(9D + 24%) — 27B' =0 (27)

where
A=8z+a+b) — Az 4+ Na) + A(b)]
B = —1det (za,b)
3 (28)
D = _% Z {zlzfajbk + ﬂkbj) + ijk(ﬂiB;' + biAL)

1=1
+ zi2abbr + abeBe + ab;B; + 2bia;a 4+ byaeAr + biaAjly.
Here (2,7,k) is a eyelic permutation of (1,2,3) and
Ai=a; —a; — a
Bi=b;—b; — b (29)
Aa) = 2 + 2 4 18 — 2@ — 205 — 2703 .

It is shown in Ref. 8 that ¥ is a homogeneous twelfth-degree polynomial
in its nine arguments, and is irreducible over the rationals. Furthermore,
it is invariant under permutations of the indices, 1,2,3, permutation of
the vectors, a,b,z, and transposition of the matrix of these vectors.

It is natural to ask whether the substitution of (28) and (29) into
(27) yields a compact expression or an unwieldy monstrosity. A short
program was written to perform the substitutions, but it stopped at an
early stage because of insufficient space. However, the polynomial
W(ay,as,as; byba,bs; 0,0,23) was easily computed (in 50 seconds)
and was found to have 2642 terms. Since ¥(a,b,z) contains all of these
terms and many more, we can safely assume that (27) is the most useful
way of writing it.

2.6 Wave Propagation in Crystals

The problem to be considered in this section arose in a study by R. N.
Thurston® of wave propagation in crystals under pressure. It is of par-
ticular interest to investigate the effect of pressure on propagation
velocity. For given temperature 7', pressure p (hydrostatic or uniaxial),
and propagation direction N (a unit vector), there are in general three
modes of propagation, corresponding to three displacement directions
which are mutually perpendicular if p = 0. In simple cases one of these
modes is longitudinal and the other two are transverse. For a given mode,
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let V(p,T) be the propagation velocity and let py be the crystal density
at p = 0. Then define

S = po% [V (0.7) s (30)

It can be shown that
S = U,U, Dy (31)

(summation convention understood), where U is a unit vector in the
direction of particle displacement in the given mode, and where

qu = NijF.;[ﬁqu;‘ka:T + 25qacp:‘lks + 2NaNle:’uzks + Cpiqka! ] (32)

The (s are elastic constants at zero pressure. The six-index C array has
3% entries of which at most 56 are distinct, while each four-index C' array
has 3* entries of which at most 21 are distinct. F,, is a symmetric matrix
whose entries are rational funetions of these elastic constants (and of the
direction of pressure in the uniaxial case). Our task is to perform the
indicated summations in special cases to get explicit expressions for §'.

The complete analysis for the case of cubic crystals is given in Ref. 9.
A program has been written by J. P. Hyde (using the ALPAK system)
to evaluate S’ and serve as a check for this analysis. In the cubic case,
the six-index €' array has only six distinct nonzero elements, which are
abbreviated as Ch, Clm, Cra ) Cues , Chaa, and Cs . The four-index c’
array has only three distinet nonzero elements, abbreviated as Cy", ",
and Cy, and the four-index C'° array has only three distinet nonzero
elements, abbreviated as Cy,°, C1.°, and Cy . Note that Cy appears in
both arrays. The results for the case of hydrostatic pressure and wave
propagation along (1,1,0) are as follows: For longitudinal displacement
along (1,1,0)

8 = 200" + 2C1° + 4Cu + 30 + 2C12 + Craa + 2C1e6 + 3Ciaa . (33)
For transverse displacement along (1,—1,0)
S = 20,° — 20" + 0w — 3Chss. (34)
And for transverse displacement along (0,0,1)
S = 4Cy + Cra + 2016 - (35)

The computing time to obtain these results was approximately 20 sec-
onds.

A modified version of this program would make possible the cor-
responding calculations for erystals of lower symmetry, including quartz.
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11I. USERS’ MANUAL

3.1 Introduction

This section consists of a brief outline of Section III and a discussion
of several basic concepts. The polynomial input-output and arithmetic
operations are discussed in Sections 3.2 and 3.3, respectively. Section 3.4
consists of a brief introduction to the theory of truncated power series
and a description of the orders for dealing with them. In Section 3.5 the
rules for writing main programs (including those governing the use of
POLBEG and VARTYDP) are described, and two sample programs are
presented. Loading instruetions for assembly and/or run are given in
Section 3.6. Finally, the dumping facilities and diagnostics are deseribed
in Seetion 3.7, and hints for debugging are given in Section 3.8.

3.1.1 A Polynomial in Core

A nonconstant polynomialf in core consists of a pointer, a heading, a
data block, and a format statement (see Fig. 2). The pointer is a single
word containing the heading address. The heading is a three-word block
containing the data address, the format address, and the number of
terms. The data bloek contains the terms, stored consecutively in a
manner determined by the format statement. The format statement con-
tains the names of the variables and the maximum exponent size in bits
associated with each. The name of a polynomial is ordinarily used for
the symbolic address of its pointer, and the name of a format statement
for its symbolic address.

3.1.2 Formal Compatibility

A format statement is usually shared by many polynomials. In fact
two polynomials cannot be added, subtracted, multiplied, or divided
unless they share the same format statement.

3.1.3 More Than One Poinler to @ Heading

If two or more polynomials are equal, their pointers may point to a
common heading. This is especially convenient when arrays of poly-
nomials with many equal elements must be dealt with, but the user must
keep in mind that if one of the polynomials is changed the others will be
changed in the same way.

t A constant polynomial has only a pointer and a heading. Its value is kept in
the heading (see Section 3.2.7), and no format is needed.



2096 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963

PROGRAM DATA
STORAGE BUFFER
P
DATA
BLOCK
F
FORMAT
STATEMENT HEADING

Fig. 2 — A polynomial P with format F.

3.1.4 Storage Allocation

Space for headings and data blocks is provided by the storage allo-
cator. Headings are never moved, but the storage allocator is free to
move data blocks as necessary.

Space for pointers and format statements must be provided by the
user. Each pointer must be a full word, but only its address field is used.
This must initially contain zero and will be filled in by the system. The
prefix, tag, and decrement fields will be cleared. When a polynomial is
read or computed its pointer is tested. If the address field of the pointer
contains zero, a heading is created and the pointer is filled in with the
heading address. Otherwise it is assumed that the pointer contains the
address of a heading which can be overwritten. The data block (if any)
previously attached to that heading is left “headless” and thereby
becomes “garbage.”

3.1.6 Macros and Subroutines

The polynomial portion of the ALPAK system consists of a maero
deck and two subroutine packages, ALPAKI and ALPAK2. ALPAKI
consists of input, output, and service subroutines, while ALPAK2 con-
tains the operating subroutines. Together the two packages occupy less
than 5000, words of memory. Most of the macros expand into ealling
sequences for subroutines of the same name. For example the macro

POLADD R,P,Q (36)

which is represented by the equation

R=P+Q (37)



ALPAK SYSTEM 2097

(“replace R by P + @), expands to

TSX POLADD 4

PZE R

PZE P (38)
PZE Q

Here P, Q, and R are the symbolic addresses of pointers. When POLADD
is executed, the P and @ pointers must contain the addresses of poly-
nomial headings. The address field of the E pointer may contain the
address of a heading to be overwritten or it may contain zero. In the
latter case, a new heading will be created by the storage allocator and
the R pointer will be filled in with its address. In either case, a data
block for the sum of the polynomials P and @ will be obtained from the
storage allocator and attached to the R heading, and the sum will be
computed therein.

3.1.6 Indexing

This method of communication gives us a natural way of handling
indexed arrays of polynomials. For example the set of polynomials

Ri= P+ Qi t=1,+-,mn (39)
can be computed by writing
POLADD (R,DH(P,1)(Q,1) (40)

inside a suitable loop (see Section 3.5), where index register 1 corre-
sponds to the index, 7. The expansion of this macro is simply

TSX POLADD 4

PZE R

PZE P1 (41)
PZE Q1

Clearly, index register 4 cannot be used for this type of indexing, be-
cause it has been reserved for the subroutine linkage.

3.2 Input-Output

3.2.1 Summary ( See Descriptions Section 3.2.2)
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POLRDF F read format (a)
F POLCVF (X,15,Y,21,Z,36) convert format  (b)
POLRDD P,F read data (e)
POLCVD P,F,H convert data (d)
POLCLR P clear (e)
POLSTZ r store zero (f)
POLSTI P store identity (g) (42)
POLSTC P,C store constant (h)
POLSTV PXI' store variable (1)
POLPRT P,CC,(NAME) print §))
POLPCH P,(NAME) punch (k)
POLPRP P,CC,(NAME) print and punch (1)
POLRDP P,F,CC,(NAME) read and print  (m)

POLCVP P,F,H,CC,(NAME) convert and print (n)

C = constant (symbolic address of constant)
CC = control character for printer
F = format (symbolic address of/for format statement)
H = Hollerith data (symbolic address of data)
NAME = alternative name for polynomial (not exceeding 21 charac-

ters)

P = polynomial (symbolic address of pointer)

X = variable (specified in the manner indicated by the last pre-
vious VARTYP declaration — see Section 3.5.2).

3.2.2 Deseriptions (See Also Sections 3.2.3-3.2.8)
(a) POLRDF r

Read a polynomial format statement from cards into a block starting
at location . The length of this block must be at least (2 + 2v + e)
words where v is the number of variables and e is the number of ex-
ponent words per term.

(by F POLCVF (X,15,Y,21,Z,36)
Assemble the parenthesized polynomial format statement and assign

the symbol T to its first location. (I is a location-field argument of the
macro. )

(c) POLRDD PF
Read the polynomial P from cards according to the format F and put

P into canonical form. Here, P is the address of a ‘“pointer” for the
polynomial, and F is the address of a format statement.
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d) POLCYD PFH

Same as POLRDD except that the data is to be found in core in a block
of not more than 12 words of binary-coded information (BCI) starting
at location H.

(e) POLCLR P

Clear the polynomial P.

63) POLSTZ P

Set P equal to zero.

®) POLSTI P

Set P equal to one.

(h) POLSTC P,C

Set P equal to the constant C.

(i) POLSTV PX T

Set P equal to the variable X using the format I.
) POLPRT P,CC,(NAME)

Print the polynomial P using CC for the control character for the first
line of print and NAME (not more than 21 characters of BCI) for the
name. If NAME is not provided P will be used for the name, and if CC
is not provided a minus (triple space) will be used for the control char-
acter.

(k) POLPCH P,(NAME)

Punch the polynomial P on cards using NAME (not more than 21
characters of BCI) for the name. If NAME is not provided, P will be
used for the name.

) POLPRP P,CC,(NAME)
Same as POLPRT followed by POLPCH.

(m) POLRDP P,F,CC,(NAME)
Same as POLRDD followed by POLPRT.

(n) POLCVP P,F H,CC,(NAME)
Same as POLCVD followed by POLPRT.
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3.2.3 Polynomial on Cards

A polynomial is represented on data cards as a sequence of coefficients
and exponents separated by blanks and/or commas, each coefficient
being followed by its exponents. It is terminated by the appearance of
a zero where a coefficient would otherwise be expected. It is customary
to use one card for each term and one as an end card. For example, the
polynomial

32 + 2zyz — 5y2° (43)
is usually represented as
3 200
o (1)
0
or
3 200
0

However, it is equally correct to put more than one term on a card

3,2,0,0 2,1,1,1

—5012 0 (46)
or to use more than one card for a term
3 2
0,0
2 1
1,1 (47)
—5 0
1,2
0

If two commas are adjacent or separated only by blanks, a zero is under-
stood. Similarly if the first (last) character on a card is a comma, a
preceding (succeeding) zero is understood. Thus (43) can be represented
as
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3 2,
2 1,11 (48)
-5 0,12,
or
3,2,,2,1,1,1,—5,,1,2, (49)

If identifying comments are desired, they may be printed on the last
card, after the blank or comma which terminates the conversion of the
final zero, and/or in columns 73-80 of any card.

The data is read from cards, converted, packed into the data buffer,
and put into canonical form by the subroutine POLRDD (read data).
The manner of packing is determined by a format statement which must
be read first. If the polynomial has k variables, the first number in the
data sequence is interpreted as a coefficient and the next & numbers are
interpreted as exponents. This process is repeated until a zero appears in
the position of a coefficient. The reading is then terminated, and the
subroutine POLCFM (canonical form) is called to put the polynomial
into eanonical form.

3.2.4 Format Slatements

Before discussing the operation of POLCIFM it will be necessary to
consider in detail the format statements and the representation of
polynomials in core. A format statement on card(s) is an alternating
sequence of variable names and field widths, starting in column 1 and
separated by commas. Fach field width must be a positive integer not
greater than 36. It is the maximum exponent size in bits of the corre-
sponding variable. Each variable name must be a string of not more than
six characters (usually a I'"AP symbol) containing neither blanks nor
commas. It is legal to skip to the next card after any comma, and this
makes it possible to use as many continuation cards as necessary. The
format statement is terminated by a blank immediately following a
field width. Each field width specifies the number of bits to be reserved
in each term for the exponent of the corresponding variable, and thereby
determines the maximum allowable exponent for that variable. As an
example, the format statement

X,15,Y,21,Z,36 (50)

specifies three variables, X, Y and Z, with field widths of 15, 21 and 36
respectively. This means that the maximum exponent sizes are 2" — 1,
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2*! — 1 and 2% — 1 respectively. The sum of the field widths must be an
integral multiple of 36, and each smaller multiple (if any) must be in-
cluded among the partial sums. The card(s) is (are) read by the sub-
routine POLRDI" (read format), which stores the format statement in
a block provided by the user. POLRDF also counts v, the number of
variables, computes e, the number of exponent words per term (the sum
of the field widths divided by 36), and constructs a mask for use in
exponent addition (see Section 3.3). The mask is a block of ¢ words
partitioned into v bit fields as indicated by the format statement with a
one at the right end of each bit field. These items are stored as part of
the format statement, whose length is 2 4+ 2v 4 e words. For example
the internal format statement (in octal) corresponding to (50) is

000000000002 2 exponent words per term
000000000003 3 variables

676060606060 X

000000000017 15

706060606060 Y (51)
000000000025 21

716060606060 Z

000000000044 36

000010000001

000000000001 MABK

3.2.5 Polynomial in Core

A polynomial term is stored in two or more consecutive locations in a
manner determined by the format statement. The coefficient is placed
in the first word and the exponents are packed into the remaining words,
allowing the specified number of bits for each. For example, the term

52y’s (52)
in the format (50) has the octal representation

000000000005 5
000020000007 2,7 (53)
000000000003 3

A nonconstant polynomial in core consists of a pointer, a heading, a data
block, and a format statement as explained in Section 3.1 (see Iig. 2).
The data block contains the terms as in (53) stored consecutively.
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3.2.6 Canonical Form

We are now prepared to discuss the canonical form subroutine,
POLCFM. Its task is to put any given polynomial, stored in the manner
described above, into canonical form. More precisely, it must order the
terms according to their exponent sets, combining terms with equal
exponent sets and discarding any resulting zeros. The terms are to be
arranged in increasing order of the first exponent, and terms having the
same first exponent are to be arranged in increasing order of the second,
ete. If there is only one exponent word per term, this means that the
terms can be ordered according to the magnitude of that word treated
as an unsigned 36-bit integer. Otherwise they must be ordered according
to the magnitude of the first exponent word and subordered according
to the magnitude of the second, ete. No working space is required. The
ordering is done first, with the aid of the system sort, FAPSTL, and the
combinations and cancellations, if any, are then performed. Finally if
the result is a constant, it is stored according to the “heading eonven-
tion” which we shall now deseribe.

3.2.7 Heading Convention

As we mentioned in Section 3.1, each nonconstant polynomial has a
fixed heading of three words containing the data address, the format
address, and the number of terms, respectively. Since constant poly-
nomials can usually profit from speecial treatment and in any case the
zero polynomial requires it, we have devised a special representation for
constants. The first word of the heading contains the eode number 5,
which eannot possibly be a legal data address, and the second contains
the value of the constant. Such a heading has no associated data block,
and its third word is never consulted. The code number zero signifies an
idle heading, and the numbers one to four are reserved for rational funec-
tions.

The macro POLCLR (clear) stores zero in the first word of the head-
ing, thereby marking it as idle and destroying the attached data block
(if any). The macros POLSTZ (store zero), POLSTI (store identity),
and POLSTC (store constant) store 5 in the first word of the heading
and the specified constant in the second word.

3.2.8 Output

There is one output subroutine with three entry points — POLPRT
(print), POLPCH (punch), and POLPRP (print and punch). Each
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term of a polynomial is printed (punched) on a single line (card), ex-
cept that continuation lines (cards) will be used if necessary. All the
coefficients are right adjusted to column 22, so that they form a column
in the output. The exponents form one or more additional columns
headed by the corresponding variable names. In each line the coefficient
is separated from the first exponent by two blanks, and the exponents are
separated from each other by single blanks. Therefore the exponent col-
umns are not always straight. In printed output the first line contains the
name of the polynomial (or any comment not more than 21 characters
long) starting in column 2, and the names of the variables (separated by
single blanks) starting in column 25. In punched output the first card
contains the name or comment, the next card(s) is (are) a complete
format statement, the ensuing cards contain the data, and finally an end
card including the name is appended.

As an example, suppose the polynomial (43) is in core (in canonical
form), and its name (i.e., the symbolic address of its pointer) is P. If
P is then printed, the output will be

P X Y Z
-5 0 1 2
21 1 1 (54)
3 2 0 0
If it is punched, the output will be
P
X,12,Y,12,%,12
-5 0 1 2
5111 (55)
32 00

0 END P

where each line represents one card. The second card is a valid format
statement, and the last one is a valid END card. A polynomial in many
variables may require more than one line (card) for the list of variables
(format statement) and/or more than one line (card) per term.

3.3 Polynomial Arithmetic
3.3.1 Summary ( See Descriptions Below)
(7) Basic Operations

POLADD R,P,Q R
POLSUB R.P.Q R

o
v
| +

Q add (a)
Q subtract (b)
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POLMPY R,P,Q R = P*Q multiply . (c)

POLDIV R,P,QNODIV R = P/Q divide (if divisible) (d)

POLSST G,F(LISTP) G = F(LISTV = substitute (e)

(LISTV) LISTP)

POLDIF Q,P,X Q = aP/aX differentiate (f)

POLZET P skipiff P =10 zero test ()

POLNZT P skipiff P # 0 nonzero test (h)

POLEQT P,Q skipiff P = @ equality test (i)

POLDUP Q,P Q=P duplicate i)

POLCHS P P=—-P change sign (k)

(1) Alternatives for Added Convenience and/or Efficiency

POLSMP Q,C,P Q = C*P sealar multiply (0]

POLSMO C,P P =C*P scalar multiply and (m)
overwrite

POLOMP Q,M,P Q = M?P one-term multiply (n)

POLOMO M,P P = M*P one-term multiply and (o)
overwrite

POLSAD 8,C,P Q=C+P scalar add (p)

POLSAO P P=C+P scalar add and over- (q)
write

POLADO P,Q P=P4Q add and overwrite (r)

POLDFO P)X P = aP/aX differentiate and over- (s)
write

(1iz) Explanation of Symbols

F,G,P,Q,R = polynomials (symbolie addresses of pointers)
C = scalar (symbolic address of scalar)-
M = monomial (symbolic address of pointer)’
X = variable (specified in the manner indicated by the last
previous VARTYP declaration — see Section 3.5.2)
LISTP = list of polynomials
LISTV = list of variables.

3.3.2 Descriptions
(a) POLADD R,P,Q

P and @ are assumed to be in canonical form. The addition is analogous
to the ordered merging of two ordered subdecks of a deck of playing
cards, except that POLADD must also perform combinations and
cancellations. Suppose P has n terms and  has m terms. Then a block
long enough for n + m terms is reserved for R if space permits. Other-
wise all the remaining space is reserved for R, and the subroutine pro-
ceeds in the hope that combinations and/or cancellations will compen-
sate for the deficiency. If space runs out, the job will be dumped. The
first (next) term of R is found by comparing the exponent sets of the
first (next) term of P and the first (next) term of Q. If these differ, the
first (next) term of R is the first (next) term of P or of @, depending on
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which comes earlier in the canonical ordering. If they are the same, the
first (next) term of R is the sum of the first (next) terms of P and @,
unless the sum is zero. In that case the first (next) terms of P and @
eancel, making no contribution to k.

(b) POLSUB  R,PQ

This uses POLCHS (twice) and POLADD. If P and () have the same
heading, it uses POLSTZ instead.

(c) POLMPY R,PQ

POLMPY multiplies the longer of the polynomials P and @ by each
term of the shorter using POLOMP and accumulates these products
using POLADD or POLAOE. The latter is a slightly modified version of
POLADO, not normally available to the outside world. Its mnemonie is
“Add, Overwrite the first argument, and Erase the second.”

Suppose P has m terms and @ has n terms with m =< n. Let P; be the
ith term of P, let T'; = P.Q be the 7th partial product, and let S; = Z} T;

=
be the 7th partial sum.

If there is enough space for (nm -+ n) terms, then the ‘leapfrog
method,” a fast method involving no data moving (see Fig. 3), is em-
ployed. Imagine the space partitioned into m + 1 blocks, each n terms
long. The first partial product, T, is placed in the mth block and the
second, Ty, in the (m + 1)st block. POLADD is then directed to add
these, starting the sum S at the beginning of the (m — 1)st block. This
partial sum overwrites a portion (perhaps all) of the mth block as ex-
plained in the discussion of POLADO. The next partial product 7% is
then placed in the (m + 1)st block, and the next partial sum Sj is
started at the beginning of the (m — 2)nd block, overwriting a portion
(perhaps all) of S: . This process is repeated, each partial sum overwrit-
ing a portion (perhaps all) of the preceding one, until the final result
S,. appears starting at the beginning of the first block.

If there is not enough space for this procedure, then the slower
“compact method” (see Fig. 4) is used, requiring only enough space for
the final result (or the longest partial sum) and n additional terms. The
latest partial sum always starts at the top of the available space. The
next partial produet is placed immediately below it, and both are then
moved down leaving a gap n terms long above the partial sum. The
partial product is then added to the partial sum by POLAOE to produce
a new partial sum, starting at the top of the available space and over-
writing a portion (perhaps all) of the previous partial sum. This process
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[
OTHER OTHER OTHER OTHER
DATA DATA DATA DATA
S; =
SPACE FOR S: H;%r
m BLOCKS L+17 L2
OF N TERMS s
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Si+Ti 4
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L . v 1
OF N TERMS L+ L+ L+2 L+2

Fig. 3 — Successive steps in multiplication by the ‘“leapfrog method.”

is repeated until the final result is achieved or the available space
exhausted.

(d) POLDIV R,P,Q,NODIV

The dividend P and the divisor @ are treated as polynomials in one vari-
able (the first variable that at least one of them depends on) with coef-
ficients in the ring of polynomials in all the remaining variables (if any).
Divisions in this ring ean be handled by ecalling POLDIV itself,t and
the main task is carried out by the familiar process of “long division.”
The fourth argument, NODIV, is an address to which control will be
transferred if @ does not divide P. If the fourth argument is omitted,
the macro will supply ENDJOB in its place.

(e) POLSST G,F(LISTP)(LISTV)

t A subroutine which calls itself is called recursive. At the innermost level it
must, of course, operate by an independent mechanism. Collisions between the
different levels are prevented by saving necessary information in a push-down
list. It is perhaps worth noting that every inductive algorithm can be programmed
as a recursive subroutine. In the case of polynomial division the induction is on
the number of variables, and the innermost level is simply coefficient division.
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OTHER OTHER OTHER OTHER
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Ti+a

Ti 4

Fig. 4 — Successive steps in multipliéation by the ‘“‘compaet method.”

Here LISTP is a list of polynomials in a common formatf which must
include all the variables of F not being replaced, and LISTV is a list of
the variables of F which are to be replaced by the polynomials in LISTP.
For example if /' depends on X1, -+, X10 and we wish to replace X3
and X4 by P and @ respectively, we write

POLSST G, F(P,Q)(X3,X4)

The variables in LISTV must be specified in the manner indicated by
the last previous VARTYP declaration. If LISTV is not provided, it is
understood to be the list of all the variables in the format of F.

POLSST works in the most straightforward possible way — substitut-
ing into one term at a time and preserving only the latest partial result.
This procedure may involve substantial duplication of effort, but it uses
a minimum of working space and a minimum of program, and in most
practical cases the running time is reasonable.

(f) POLDIF  QPX

P is duplicated using POLDUP, and the copy is then differentiated with
respect to X using POLDFO.

() POLZET P

t If all the polynomials in LISTP are constants (which have a universal format
— sgee Section 3.2.7), then the format of F is used.
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The next instruction is skipped if and only if P = 0.

(h) POLNZT P
The next instruction is skipped if and only if P = 0.
i) POLEQT PQ

The polynomials P and @ are considered to be equal if and only if they
have the same format address, the same number of terms, and identical
data blocks.

) POLDUP Q,p

(Q is replaced by a copy of P.

(k) POLCHS P

The signs of all the coefficients of P are reversed.
{)) POLSMP Q,CPp

P is duplicated using POLDUP, and the copy is then multiplied by C
using POLSMO.

(m) POLSMO C,p
Each coefficient of the polynomial P is multiplied by the scalar C.
(n) POLOMP Q,M,P

P is duplicated using POLDUP, and the copy is then multiplied by M
using POLOMO.

(0) POLOMO M/P

Each term of the polynomial P is replaced by its product with the
monomial /. To multiply two monomials, it is necessary to multiply
their coefficients and add their exponents. In the case of integer coeffi-
cients, the coefficient multiplication macro

CcMP Z,X)Y
expands to

LDQ X

MPY Y

TZE *+2

REMI1

STQ A
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where REM1 is the REMARK macro (see Section 3.7) for coefficient
overflow. The exponent addition macro

EAD 7,X,Y

adds the exponents one word at a time even though several exponents
may be packed into each word. To check for overflow, EAD uses the ap-
propriate word from the mask in the format statement. Suppose all the
exponents are packed into a single word. Then the mask is a word con-
taining a one in the low-bit position of each exponent block and zeros
elsewhere. Now EAD expands to

CAL X
ACL Y
SLW Z

ERA X
ERA Y
ANA MASK
TZE *42
REM2

where REM2 is the REMARK macro (see Section 3.7) for exponent
overflow. The first three lines compute the sum correctly, provided no
overflows occur. After line 5 the low-bit positions in the AC should be
zero, since ERA is the same as addition without carry. After line 6 the
entire AC should therefore be zero. If it is not, control will pass to REM2
and the AC will contain a one-bit immediately to the leftf of each ex-
ponent block which has overflowed.

(p) POLSAD Q,C,P

P is duplicated using POLDUP, and C is then added to the copy using
POLSAOQO.

(@) POLSAO C,p
The scalar (' is added (or appended) to the polynomial P.
(r) POLADO PQ

Sinee P is to be replaced by the sum P + @, it is not necessary to have
space for both P and the sum. Instead it is possible to open a gap the
size of Q above P, and then to use that gap together with the block oc-
cupied by P as a block for the sum. It is easy to see that no term of P can
be overwritten by a term of the sum before making its contribution.

+ Here we think of the AC as a circular register. An overflow in the leftmost
exponent block will leave a one-bit at the right end of the AC.
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(s) POLDFO PX

Kach coefficient of P is multiplied by the corresponding exponent of X.
If the exponent is zero the term is deleted. Otherwise the exponent is
reduced by one.

3.4 Truncated Power Series

Let x represent the k-tuple of variables (z;, -+, ax). A formal power
sertes tn x is an expression of the form

o0

A@) = 2 peqn’ - wt (56)
iy, ig=0
where the a’s are elements of any integral domain. The sum 7 = %, +
- -+ 1 of the exponents in any individual term will be called the
order of the term. Letting a;(z) be the (finite) polynomial consisting of
all the terms of order 7, we have

Alz) = Z=3 Ai(x)

. : (57)
A.(x) = Z a;,.. .,‘k.’h” st
i igz0
iy tig=i

A truncated power series of order p is a formal power series from which
all terms of order higher than p have been dropped. We shall restrict
our attention to the case in which the a’s are polynomials in a set of
variables ¥, -+, ¥ (I 2 0) not including any of the x’s. The sum of
two truncated power series

D

Az) = 2 Aia);  Ay(x) #0

1=p

) (58)
B(z) = 2 Bj(x); By(z) =0
=1
is their polynomial sum truncated to order
min (p,q) (59)

while their product is their polynomial product truncated to order
min (p + ¢, ¢ + p'). (60)

The ALPAK system contains two macros for dealing with truncated
power series. These are POLTRC (truncate) and POLMPT (multiply
and truncate). Addition can be handled with POLTRC and POLADD.,
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Fach truncated power series must be stored as a polynomial in a format
whose first & variables are the a’s and whose remaining variables, if
any, are the y’s. The command

POLTRC P,ORD,K (61)

causes P to be truncated to order ORD. That is, all terms of order
greater than ORD are deleted. The command

POLMPT R,ORDR,P,ORDP,Q,O0RDQ,KK (62)
is represented by the equation
R = PxQ (63)

where P and @ are truncated power series. K is the address of the num
ber of power series variables [i.e., the ’s of (5fi) and (57)], ORDP and
ORDQ arc the addresses of the orders of P and € respectively, and
ORDR is an address for the order of R, which is to be computed by the
rule (60).

If it is desired to multiply a truncated power series by a polynomial,
the latter should be thought of as a truncated power series of order in-
finity. It is required that all finite orders be less than 2* and any num-
ber greater than or equal to 2% is treated as infinity. Thus if P is a
truncated power series of order 4 in 3 variables and we wish to multiply
it by the polynomial §, we write

POLMPT R,ORDR,P,=4,Q,=—1,=3 (64)
where the order —1 of @ will be interpretedt as 2" 4+ 1, which is equi-
valent to infinity.

3.5 The Main Program

3.5.1 POLBEG

Every main program starts with the macro POLBEG (begin). At
assembly time, this reserves a block of storage for the “data buffer”
and at exeeution time it initializes the storage allocator. The command

POLBEG N (65)

+ In the IBM 7090 computer some operations interpret a word as a signed 35-
bit integer and others interpret it as an unsigned 36-bit integer. If a negative in-
teger is examined by one of the latter, the sign bit is assumed to represent a con-
tribution of 235 to the magnitude of the number.
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(where N is an integer — not the address of an integer) reserves an
N-word block in the “remote program,” while the command

POLBEG N,COMMON (66)

reserves an N-word block in “common storage.” If COMMON is used,
the space occupied by the loader at loading time can be a part of the
data buffer at execution time. Therefore the size of the data buffer can
be somewhat larger. However, no other program using COMMON can
be loaded at the same time without ecareful use of ORIGIN cards.

3.5.2 VARTYP

Every program which uses POLSTV, POLSST, POLDIF, or POLDFO
must contain at least one VARTYP declaration. The eommand

VARTYP T (67)

indicates that all subsequent references to variables (prior to the next
VARTYP declaration if any) are of type T, which may be any of the
following

NAM (name)

NUM (nmumber) ©8)
NAM=* (address of name)

NUM* (address of number)

The variables in a format statement are numbered according to the
order of their appearance.

For example, if we wish to differentiate the polynomial P with respect
to the variable X, we use NAM and write

POLDIF QPrX (69)

To differentiate P with respect to the third variable we use NUM and
write

POLDIF Q,P,3 (70)

To differentiate P with respeet to the variable whose name is at loca-
tion LX, we use NAM=« and write

POLDIF Q,P,LX (71)

Finally, to differentiate P with respect to the variable whose number is
at location K, we use NUM=* and write

POLDIF Q,PK (72)
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Typically, NAM is used in main programs and NUMzx in subroutines,
since the main programmer usually knows the names of the variables
while the subroutine programmer usually knows nothing about the

format.

3.5.3 Sample Programs

The following program computes B = P + 9Q/aY.

POLBEG 10000
VARTYP NAM
FMT POLCVF (X,12,Y,12,7,12)
POLRDP P,FMT
POLRDP QFMT
POLDIF DQDY,Q,Y
POLADD R,P,DQDY (73)
POLPRT R,—,(R = P + DQ/DY)
TRA ENDJOB
P PZE
Q PZE
R PZE
END
A slightly more complicated example illustrates the use of indexing. To
compute
R;=P,+ Q:; ?;=1:"',10 (74)
we write
POLBEG 10000,COMMON
POLDRF FMT
AXT 10,1
RD1 POLRDP (P,1),FMT
TIX RD1,1,1
AXT 10,1
RD2 POLRDP (Q,1),FMT
TIX RD2,1,1
AXT 10,1
ADD POLADD (R,1),(P,1),(Q,1)
TIX ADD,1,1
AXT 10,1 (75)
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PRT POLPRT (R,1),—,(R(I)=PM)+Q(I))

TIX PRT,1,1
TRA ENDJOB
FMT  BSS 20
P BES 10
Q BES 10
R BES 10
END

The storage section of a main program must contain a block for each
format statement read by POLRDI and a pointer (whose address field
initially contains zero) for each polynomial. For further discussion of
these rules see Section 3.2.

3.6 Loading Instructions

The polynomial portion of the ALPAK system consists of a macro
deck and two subroutine packages, ALPAK] and ALPAK2. Most of
the macros expand into calling sequences for subroutines of the same
name, but a few call one or more differently named subroutines and a
few others call no subroutines at all. The macro deck is available as a
symbolic deck or as a CRUNCH deck with no END card crunched in.
ALPAKI1 and ALPAK?2 are available as binary decks and also as sym-
bolic decks or CRUNCH decks. In their present form these decks can
only be used within the BE-SYS-4 monitor system on an IBM 7090
computer.

The following example illustrates the arrangement of decks and con-
trol cards for a typical ALPAK assembly:

JOB

FAP

UNLIST

MACROS (CRUNCH deck with no end card crunched in) (76)
LIST

MAIN PROGRAM (Symbolic deck with END card)

The UNLIST and LIST cards are normally included in order to sup-
press the printing of eleven pages of macro definitions. This is a FAP
assembly and may be embellished in any way that conforms to the rules
of FAP.

The next example shows a typical arrangement of decks and control
cards for assembly and run:
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JOB

FAP

UNLIST

MACROS (CRUNCH deck with no END card erunched in)

LIST

MAIN PROGRAM (Symbolic deck with END card)

LOAD BATCH i)

ALPAK1 (Binary deck, preceded by LOAD card and followed
by binary transfer card)

ALPAK?2 (Binary deck, preceded by LOAD card and followed by
binary transfer card)

TRA

DATA

Our final example illustrates a run with a previously assembled main

program:

JOB

MAIN PROGRAM (Binary deck preceded by LOAD card and
followed by binary transfer card) (78)

ALPAK] (Binary deck preceded by LOAD card and followed by
binary transfer card)

ALPAK?2 (Binary deck preceded by LOAD card and followed by
binary transfer card)

TRA

DATA

3.7 Diagnostics

The ALPAK diagnostic mechanism recognizes the following ten types
of failure:

1. COEFFICIENT OVERFLOW. No coefficient or sealar can have
magnitude greater than 2% — 1.

2. EXPONENT OVERFLOW. No exponent can be greater than
2% — 1, where B is the corresponding field width (in bits).

3. INSUFFICIENT SPACE. The reporting subroutine was un-
able to obtain needed space from the storage allocator.

4. ILLEGAL SUBROUTINE ARGUMENT. One of the inputs to
the reporting subroutine failed some simple test.

5. INCOMPATIBLE FORMATS. See Format Compatibility in Sec-
tion 3.1.2.

6. INTERNAL INCONSISTENCY. There may be a bug in the
reporting subroutine.
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7. POLBEG NOT CALLED. Every main program must begin with
the macro POLBEG (see Section 3.5.1).

8. ILLEGAL FORMAT CARD. See Format Statements in Section
3.24,

9. END OF FILE. All the data cards have been read.

10. INPUT READING ERROR. An unrecoverable parity check

failure has occurred on input.

Whenever a failure is detected, control is transferred to the REMARK
subroutine, which performs the following functions: First it takes a
hollerith snapshot of two locations containing the words “REMARK
SNAP” in BCD. The purpose of this is to provide a console dump at the
time of the failure. It then prints the location of the failure, the type of
failure, and the subroutine nesting list. Finally it transfers control to
the DUMP section (if any) of the first subroutine on the nesting list,
whose function is to print the inputs and perhaps a partial result.

As an example, suppose the multiplication

POLMPY C,AB (79)
fails because of insufficient space. This might result in the output

LOCATION 1703
POLDUP REPORTS
INSUFFICIENT SPACE

SUBROUTINE NESTING LIST
NAMES AND CALLING LOCATIONS

POLMPY 00174, POLOMP 03412, POLDUP 03152
FINAL DUMPS FROM POLMPY

R = P«Q. PS = PARTIAL SUM.

P XYZ
1010
1 100
Q XY Z
1002
1020
1 200
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PS

ottt
N}CON
S SN

%
1
3
1
and the snapshot

2175 SNAP H,2410,2411
AC..MQ..8I...EK..SW..SL..OVF..TM...
IR1...IR2..IR4...

2140 “REMARK"” “SNAP.”

which will be the last snap prior to post mortems. The output indicates
that POLMPY (multiply) was called from location 174 in the main
program, POLOMP (one-term multiply) was called from location 3412
in POLMPY, POLDUP (duplicate) was called from location 3152 in
POLOMP, and the space shortage was discovered at location 1703 in
POLDUP. Furthermore, POLMPY was attempting to compute
R = PxQ where

P=X+4+Y

80
Q=X"+YV+7 =

and had obtained the partial result
PS =XV + VY47V =V(X+YV'+17) (81)

which is the product of @ and the first term in the canonical ordering of
P. Note that P, Q and R in the output are dummy names, which in
this case correspond to A, B and C in the user’s program [see (79}].

The subroutine nesting list is maintained automatically by the EN-
TER and EXIT macros, which are used in all but the lowest level sub-
routines. If a failure is detected in one of these unentered subroutines,
its name will appear along with the location of the failure but not on the
nesting list.

3.8 Debugging

The normal method of debugging an ALPAI program is to run it and
see what happens. Most programming errors and all overflows will be
located and identified by the diagnostic mechanism, which is deseribed
in the preceding section. If difficulties persist, POLPRT (print) orders
can be inserted (by reassembly) into the main program, or even into
one or more of the ALPAK subroutines. Each POLPRT order is essen-
tially a symbolic snapshot. If an error is detected by POLPRT, a suitable
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remark (see below) is printed but the flow of control is not affected (un-
less it depends on the AC, the MQ, or XR4). The following remarks arc
available:

1. EMPTY POINTER. The pointer contains =+0.

2. NO DATA. The number of terms is +0.

3. GARBAGE. Either the heading is idle (see Section 3.2.7), the
data address is outside the data buffer, the number of terms is <
—0, or the number of exponent words per term is 0.

4. ILLEGAL FORMAT. Since POLRDF and POLCVF do not ac-
cept illegal format statements, this remark implies that the format
address is wrong or the format statement has been overwritten.

5. DATA OVERFLOW. The data block begins in the data buffer but
ends beyond it.

If all else fails, ordinary snaps and/or post mortems can be taken in

the usual manner. However, a snap of the data buffer is unusually dif-
ficult to comprehend and should be taken only in desperation.
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