Discrete Smoothing Filters for
Correlated Noise

By J. D. MUSA
(Manuseript received April 18, 1963)

This paper discusses discrele, linear, time-invariant, nomrecursive,
Jinite memory, polynomial smoothing filters for noise that is correlated from
sample to sample. The wide-sense Markov process is used as a model for
the notse. Analysis and synthesis of the aforementioned filters are discussed
in detail and several plots are furnished. A simple method for generating
discrete, wide-sense Markov noise for simulation is noted. A noise model
composed of a linear combination of wide-sense Markov processes is de-
veloped and applied for the case in which the previous model is not suffi-
ctently accurale.

I. INTRODUCTION

A discrete polynomial smoother may be defined in the following
terms. Consider the random process B(nT'), where n is an integer and
T is the period of the samples at which the process will be of interest.*
The process will be thought of as comprising a desired component
R(nT), and a noise component £(nT). It will be assumed that B(nT)
can be satisfactorily approximated by an rth degree polynomial in T,
R(nT). Further, assume that R(nT) is a random process that is wide-
sense stationary with respect to the sampling instants nT. The fore-
going situation would occur, for example, in the tracking of a moving
object whose true position could be represented as an rth degree poly-
nomial in time, and whose measured position included a random error.
We will assume that

E[R(nT)] =0 (1)

and denote var [R(nT)] = var [R(nT)] by o, where E is the expected
value operator of probability theory and “var’’ indicates “variance of”’.

* Symbols used throughout the paper have been collected and defined in a
glossary (Section IX) for ready reference.
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Let ®,(iT) represent the autocorrelation* function of R(nT), where ©
is an integer. A discrete polynomial smoother of the pth order and rth
degree is a filter which operates on R(nT) in such a fashion that the
output C(nT') and the input R(nT') are related by

E{C(nT)} = RP(nT + T) (2)

for all n.t Note that the parenthetical superseript (p) denotes “pth
derivative of the estimate with respect to nT.” The quantity I' repre-
sents prediction time; if I' is negative, the operation performed is an
interpolation.

We will consider linear, time-invariant smoothers which are nonre-
cursive and have a finite memory. These conditions may be expressed in
terms of the input-output relationship

N-1

C(nT) = Z; W(@ET)R[(n — )T, (3)
where the function W (i7T') is the weighting function or impulse response.
Note that W (iT) is defined only at a finite number of points (N points),
that it is independent of the input (hence the smoother is linear), and
that it is snvariant with the time n7. No previous values of the output
appear in (3); hence the smoother is nonrecursive. The latter restriction
can often be circumvented, because it is frequently possible to approxi-
mate a recursive filter by a nonrecursive one.'

The quantity var [C(nT)] = gc is of interest in two respects. First,
we may wish to know its value, or better yet, the variance ratio

wo= (4)

TR

which is a figure of merit of the smoother. Note that u* is not a function
of time, since R(nT) was assumed to be wide-sense stationary, and it
follows that C(nT) is also wide-sense stationary by the time-invariance
of the smoother. Second, we may wish to find the optimum smoother
of a class specified by p, r, I', N and T} i.e., we may want to determine

* Tn this paper, the term “autocovariance function” will be used to refer to
E[Z !ZI-H'].

where Z, represents a zero-mean, wide-sense stationary random process Z evalu-
ated at time f. “‘Autocorrelation function” will be used to refer to the normalized
autocovariance function obtained by dividing the autocovariance function by its
value at 7 = 0.

t The Oth, 1st, and 2nd order smoothers are often referred to as position, ve-
locity, and acceleration smoothers.
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the weighting function W(iT) which yields the minimum value of
oc (or 4*) under the preceding conditions.

If B(nT) has an autocorrelation function of arbitrary form, it may
be shown, using (1), (3), and (4), that

W= 2 2 W, @l (i — )T, (5)

where W, = W(iT) and W; = W(jT'). In general, this is a compli-
cated expression. In previous treatments®?*5 of discrete polynomial
smoothers, simplification of (5) has been achieved by assuming that
the power density spectrum of the noise component of the input is
white, so that

L (=)
Ppl(z — T = (6)
" 0 (i 7).
This yields the simple form
N N—1
W= 2 W (7)
=0

However, the assumption that the noise is uncorrelated from sample
to sample is not justified for many physical systems because the noise is
restricted in its rate of change. This is particularly true for mechanical
and electromechanical systems. It will be shown that correlated noise
may be represented by the wide-sense Markov process as a first-order
approximation, or by a linear combination of such processes as a better
approximation, with appreciable simplification of (5) still being obtained.
By “represent” we refer to the approximation of one autocorrelation
function or power density spectrum by another. In discussing smoothers,
our primary interest is in the behavior of the generalized second moment
of random processes, and further delineation of the character of these
processes is not necessary.

II. WIDE-SENSE MARKOV NOISE MODEL

A rigorous definition for the wide-sense Markov process may be found
in Doob.% It will be sufficient for our purposes to characterize the wide-
sense Markov process in an alternative fashion, which Doob” has shown
to be equivalent to the original definition. A wide-sense stationary, con-
tinuous random process will be called wide-sense Markov if it has the
autocorrelation function
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®(r) = exp(— Q7), r=0. (8)

The quantity @ will be called the ‘“noise bandwidth.” By using the even-
ness property for autocorrelation functions of real, wide-sense stationary
random processes, (8) may be written as

®(r) = exp(— Q| 7]). (9)

If a wide-sense Markov random process is real and Gaussian and has
zero mean, then it is also strict-sense Markov. The strict-sense Markov
process is defined as a random process for which

PrY(t,) £ N Y(t), -+, Y(taa)] = Pr(Y(t,) = M| YV(ta)] (10)

with probability 1 for each A, all 4 < --- < ., and all n. We may
say in an intuitive manner that a strict-sense Markov process is a proc-
ess with a structure such that any value of the process is directly related
only to the immediately preceding value.

One might consider higher-order Markov processes (‘related” to
several preceding values) as a better approximation for correlated noise,
but it appears that using a linear combination of the simple wide-sense
Markov processes gives a more manageable expression for p

For a diserete wide-sense Markov process with equally-spaced samples,
we may write the autocorrelation function as

®(r) = exp(—Q| 7 |)Cbr(r), (11)

where Cby is the comb function defined by

Chy(7) = i} 5(r — iT). (12)
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Fig. 1 — Baseband component of normalized power density spectrum for dis-
crete wide-sense Markov process.
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Fig. 2 — Control system used in evaluation of wide-sense Markov noise model.

The normalizedt power density spectrum, obtained by Fourier trans-
formation of (11), is

20
@nf) + @7

where * indicates convolution. The baseband component of this nor-
malized power density spectrum is illustrated in Fig. 1. Note that the
half-power point oceurs at f = @/2r.

Use of the wide-sense Markov noise model reduces (5) to

S(f) = wa(f) (13)

N—-1N-1
Z E WW; a7, (14)
where
a = exp(—QT) (15)

and is called the “intersample correlation.” For some weighting func-
tions, (14) ean be simplified much further by evaluating the sums, using
the finite difference calculus.

As one illustration of the improvement in accuracy obtained by repre-
senting correlated noise as wide-sense Markov rather than white, con-
sider the control system of Fig. 2. White noise is filtered by the continu-
ous system such that the normalized power density spectrum at the
input to the sampler becomes

S(w)

_ GGl 0

where

o = %r f_m | G(je) [P dew = 479, (17)

t Normalized in the sense that this is the Fourier transform of the autocorrela-
tion funetion. The power density spectrum is usually defined as the Fourier trans-
form of the autocovariance function. The normalized power density spectrum is
equal to the power density speetrum divided by the variance,
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Fig. 3 — Normalized power density spectra.

Hence

12.6(o" + 4)

w' + 293w 4 241.5° (18)

S(w) =

We can fit models to the true noise process as if all processes were con-
tinuous, and following this, introduce the sampling operation. The
output-input noise variance ratio u° of the digital system has been
computed for the case of a first-order cascaded simple averages smoothert
with the following weighting coefficients:

0.028257 (0<i<ll)
Wi=¢ 0 (12 <4 < 23) (19)
—0.028257 (24 =i < 35).

The true noise process has u® = 0.0376. Use of the wide-sense Markov
model yields u* = 0.0339, while use of the white noise model yields
2

p = 0.0192.

t See Section V for the definition of this smoother.
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Fig. 4 — Autocorrelation functions.

The normalized power density spectra and autocorrelation functions
of the true noise proeess and the wide-sense Markov model are illustrated
in Figs. 3 and 4. The parameter @ has been picked equal to the half-
power point of the power density spectrum of the true noise process,
9.68.

1II. MOMENTS OF THE WEIGHTING FUNCTION

The moments of the weighting function of a smoother are important
characteristics, since the requirement (2) which specifies the desired
output of the smoother is conveniently expressed in terms of them.
The moments will be useful in comparing smoothers for equivalence as
to meeting (2), and in determining the optimum weighting function for
a class of smoothers. The gth moment M, of the weighting function
will be defined as

M, = Nf (GT)TW, . (20)

i=0

To express (2) in terms of moments, we proceed as follows. Substi-
tuting (3) and (1) in (2) we obtain

N—1

Z_:(]W,-R[(n —)T) = R”(aT + T). (21)

Now R(t) will be approximated by R(¢), which may be expressed in the
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Taylor series form

R(t) = g,) R_‘“’%Q (t — nT)% (22)
Substituting (22) in both sides of (21) and rearranging, we obtain

r _1yep@ N—1 r (2)
q;(__l“:_!(”_TQE(T)GW ; (“s;)r . (23)

Considering (23) term by term, and using (20), we obtain

0 (0=g<p
Mq — (—l)pp' (q = P) (24:)
((q_...].-);gzs re’ (p<gs= r).

It should be noted that the weighting function obviously Aas moments
greater than the rth; however, the condition (2) does not fix their values.

IV, OPTIMUM SMOOTHERS

By “optimum smoother’” we mean that smoother of the class specified
by p, r, T', N, and T whose weighting function yields the minimum pos-
sible value of x*. Optimum smoothers are often not implemented because
of the amount of storage and computation required. However, they
provide a standard of comparison for the systems that are implemented.

To find the weighting function of the optimum smoother of a class,
the quantity u* is minimized under the constraints (24), using La-
grange’s method of undetermined multipliers. Blackman® has carried
out the minimization in matrix form for a general input noise process
(any autocorrelation function). The optimum smoother is specified by
the matrix equation

W =P 'AAP'A)'M, (25)

where ~ indicates “matrix transpose.” The variance ratio i’ for the
optimum smoother is given by

= M(AP'A)'M. (26)
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The matrix W is a column matrix representing the weighting function
at the points ¢t = 17, i.e.,

Wo 1
W,
W = .

P (27)
WN_IJ

P is the autocorrelation matrix of the input noise process,

1 (1) @ (2T) s @p[(N — 1)T]
Pr(T) 1 Dy (T) e @p[(N — 2)T]

P = | &p27) @ (T) 1 c dp[(N = 3)T] | (28)
$p[(N — 1)T] ®p[(N — 2)T] ®g[(N — 3)T] --- 1 J

A is the “age’” matrix,

1 0 0 e 0 ]
LT i T
127 (27)* e 2my”
4 = . (29)
137 (37)° cee (3T
L (N =DT [N —=-DT] -+ [(N = 1DT]"
and M is the column matrix of moments,
M,
M,
M= (30)
M,

Unfortunately, (25) and (26) are very difficult to evaluate literally
except in the simplest cases. However, they can be evaluated numerically
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by a digital computer. The inverse of the autocorrelation matrix for
wide-sense Markov noise is readily determined to be, in literal form,

1 —« 0 0 0
—a 1+ «? —a 0
0 —a 1+ a? —a
1 0 0 —a 1+ a?
Pro i . (31)
0
1+ a? —a
_0 0 —a 1 B

The principal operation, aside from the matrix multiplications, is the
inversion of the (r + 1) X (r + 1) matrix AP~ 4.

Blackman® has evaluated (25) and (26), assuming that the noise is
wide-sense Markov, for zero prediction time smoothers with p = 0,
r=0andp = 1,r = 1. For the former,

1 ) =— —
(N— N = Qe (i=0N-1)
W, = § — (32)
N——_—(N_—_2—)a; ('1=1,2,"‘,N—'2)
and
o e @
TFor the latter,
3 (1 + 9l + 9(N — 2)]
T(N=D{1+2(N=D]2+2N -1+ [1 —»]}
(i =0)
6 (N — 1 — 2i)
we={ TE-D{I+aN=DI2+2N-DI+[1—=7]} (34
(t=1,2---,N—2)
_3 (1 4+ )1 + 9(N — 2)]
T(N-D{L+2(N=DI2+2(N—-1]+[1—=}}
(i=N-1)
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and
W= 2 (35)
P(N =DM +2(N-DI2+2(N=-1]+[1 -1}’
where
1l —«a .
T 1+a (36)

These optimum weighting functions and variance ratios have been
plotted in a normalized form in Figs. 5, 6, 7, and 8. The ordinates for
the 1st order, 1st degree smoother are given in terms of the smoothing
interval Ts = (N — 1)T. The curves are plotted for the parameter
B = QTs, which may be thought of as a noise-smoother “bandwidth
ratio.” The asymptotes for the above curves, as N — = (with T
and Q fixed ), are derived in Appendix A.

Let us consider the behavior of these curves from a physical view-
point. For wide-sense Markov noise, the noise autocorrelation function
is positive and monotonically decreasing with time. Hence, if the num-
ber of samples smoothed, N, is increased with the smoothing interval

0.185
J; B=10 J’ B=10
0.180
0.175
0.170 —
Wi 20 20
30 B=o0 30
00 30 0
0.165 : 20 S—
0.160 —
10
m&_gl*—ﬁ————-__ =
[+]
0 1 2 3 4 5 6

L

Fig. 5 — Optimum weighting function: Oth order, Oth degree smoother (I' = 0,
n = 6).
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Fig. 6 — Optimum weighting function: 1st order, 1st degree smoother (I' = 0,
n = 6).

Ts and the noise characteristics remaining fixed, the intersample
correlation will increase. Although each additional sample provided to
the smoother gives additional information, the information added
eventually approaches zero due to the increasing correlation. Now a
smoother can reduce its variance ratio only by obtaining more informa-
tion about the noise or by making better use of the information it
already has. An optimum smoother makes the best use of the informa-
tion available to it. Clonsequently, the variance ratio of an optimum
smoother operating on a signal which includes wide-sense Markov
noise (or any noise whose autocorrelation function is positive and de-
creases monotonically with time) must approach a constant as N in-
creases,

V. CASCADED SIMPLE AVERAGES SMOOTHERS

Cascaded simple averages smoothers are a class of smoothers developed
by R. B. Blackman.! A cascaded simple averages smoother of sth order
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Fig. 7 — Noise variance ratio: optimum Oth order, Oth degree smoother.

approximates an optimum (with respect to white noise) sth order, sth
degree, zero prediction time smoother. It may also be used to approxi-
mate smoothers that have been optimized with respect to wide-sense
Markov noise. The approximation involves using only the values K,
— K, and 0 for the weighting eoefficients, where K is some constant. This
smoothing method reduces the amount of storage and the number of
arithmetic operations required, at the cost of a slight increase in p?
over the optimum method.

The weighting functions of cascaded simple averages smoothers of
Oth, 1st, and 2nd orders are as follows (respectively):

W; = ( 37 )

1
N!
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Fig. 8 — Normalized noise variance ratio: optimum 1st order, 1st degree smoother

W, =

and

_%ﬁ @Ngng—l),
%ﬁf (Oézéig—l)
0 (%5“';%_1)
0 @NéiégN_l)

36(N — 1) (

N3P

(39)



SMOOTHING FILTERS 2135

N,
45(N-1) lo 3;)
N.2 Ts I
|
IN 2
T I's‘ 3N-1
Wi, L— i ]
I
1 1
i |
_45(N-1) | ] '
N2 T, 2
s EN N=]

Fig. 9 — Weighting function for 1st order cascaded simple averages smoother.

where N is a multiple of 3 in (38) and a multiple of 6 in (39). The weight-
ing funetions for 1st and 2nd order smoothers are plotted in Figs. 9
and 10, respectively.

The variance ratios for Oth, 1st, and 2nd order cascaded simple
averages smoothers for a wide-sense Markov noise input are, respec-
tively:

z

—1 N—1

12 ahﬂl (40)
i=0 j=0
- FAR(N — 1) atast ' i ]
e = el P22 sgn Wisgn W;a'™ (41)
and
"36 N _ 1 2712 N—1 N—1 i
W _(NaT—) 2 2 sgn Wisgn Wia™, (42)
| g J i=0 j=0
where

(-1 (W.<0)
sgn W; = 0 (W; = 0) (43)
1 (W, > 0).

Il

By use of the finite difference calculus, (40), (41), and (42) may be
simplified to
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Fig. 10 — Weighting function for 2nd order cascaded simple averages smoother.

2_ 1+a | 2a(a” —1)
FTNO =@ TN o (44)
r_ (4.5)"2 (N — 1)“
kE=2\rs) VN
o . (45)
'J 1 + - _ OI(O{N _ zah’v!d _ aN.'-i + 2)}
1BN(1 — o) [N(1 — )] '
and
) 36\ (N — 1Y
g :Q(T) ( N )
(46)

‘ 14+« + Q'{OCN _ zaam‘ﬁ _ a:w!:i + 2‘14‘\',’2 _I_ 3aNn‘='S _ 3)}
3N(1 — a) (N(1 — a)]? ’

respectively.

In Figs. 11, 12, and 13, the variance ratios have been plotted in
normalized form for Oth, 1st, and 2nd order cascaded simple averages
weighting functions, respectively. The ordinates are @ T32u2, and
Ts'y’, respectively. The curves are plotted for the noise-smoother
“bandwidth ratio” B = Q7's.The asymptotes for the above smoothers
as N — o (with T's and @ fixed) are derived in Appendix A. Note that
the expressions simplify appreciably for larger values of B, the expo-
nential terms becoming negligible.

The behavior of these variance ratio curves is somewhat different
from those for the optimum smoother. They do not necessarily decrease
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Tig. 11 — Noise variance ratio: Oth order cascaded simple averages smoother.

monotonically with N, even though they have asymptotes similar to
the optimum curves. This is due to the fact that the smoothers are not
optimum, and therefore the information about the noise is not neces-
sarily utilized in the best manner. Consequently, as N increases, change
in variance ratio may be due to changes in the wtilization of the infor-
mation available as well as changes in the information available, and
the change eannot be readily predicted.

Note that the eurves for all three orders of smoothers (Figs. 11, 12,
and 13) either have a minimum at some finite value of N or approach
a minimum as N — . These minima are more or less broad. In specify-
ing a smoother, it is advantageous to choose the lowest value of N for
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F1a. 12 — Normalized noise variance ratio: 1st order cascaded simple averages
smoother.

which y° is reasonably close to the minimum. Note that the neighborhood
of the minimum variance ratio as a function of N is reached at lower
values of N as B decreases (intersample correlation « increases for
fixed T's). This is reasonable physically, since the value of smoothing
a larger number of samples decreases as these samples become more
highly correlated.

VI. SYNTHESIS OF POLYNOMIAL SMOOTHERS

In general, the polynomial smoothers we have been discussing are
classified by the parameters p, r, I', N, and 7.7 It would be convenient

t The optimum smoother is also classified by the parameter .
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Fig. 13 — Normalized noise variance ratio: 2nd order cascaded simple averages
smoother.

to be able to synthesize the smoother in ferms of sth order, sth degree,
zero prediction time components, where p £ s < r. Note that the com-
ponents are functions of s, N, and T only; hence their characteristics
could be specified fairly simply. I'urther, several smoothers with different
parameters p, r, and T but the same N and T could be synthesized with
common components by weighting these components differently. I'inally,
the above breakdown permits any polynomial smoother of the class
considered in this paper to be constructed from caseaded simple averages
components. The derivation and procedures discussed in this section are
valid for discrete polynomial smoothers in general and are not restricted
to optimum smoothers or to particular input noise power density spec-
tra.

Consider the linear combination of sth order, sth degree, zero predic-
tion time components shown in Fig. 14. Let W,; represent the value of
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Fig. 14 — Synthesis of pth order, rth degree smoother from sth order, sth degree
components.

the weighting function of the sth component at the sample with age
iT. Let M,, be the gth moment of the weighting function of the sth
component. From Iig. 14 it will be seen that the “over-all” weighting
funetion W; of the entire smoother is related to the component weighting
functions by

W,= > KW,. (47)
s=p
Now, using (47) and (20),
N—1 r N—1 r
My =T Y W, =13 K, Y i'W,. = 3 KM, . (48)
=0 §=p i=0 s=p

From (24) we obtain
(=1)%! (s = ¢q)
M, = I (49)
0 (s > q).

Substituting (49) in (48) we get
q—1
M,= > KM, + K,(—1)%! (50)
s=p

If the linear combination of components is to be equivalent to the pth
order, rth degree smoother, then (24) must be satisfied. It follows that
we must have
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1 (s =1p)

= 1—p s s—1
Bom DS k., (p<sso.
(s — p)! sl azp

It should be noted that a linear combination of optimum components
will not necessarily be optimum unless the outputs of the components
at a common time are uncorrelated.

The synthesis procedure proper consists of finding a smoother or set
of component smoothers which produces the desired output (2) with
the least total error ¢ compatible with a simple implementation. In the
case of recursive smoothers, stability must be considered; the latter
topic is adequately covered in standard texts on control theory.” The
total error e is given by

(51)

e = [0’ + &, (52)
where e is the truncation error
er = R? (nT 4+ T) — R (aT + ). (53)
Alternatively, using (21), we may write (53) as
N—1
e = RP (nT + 1) — 2 W.R[(n — ©)T]. (54)
1=0

Synthesis involves the choice of type of filter (optimum, cascaded
simple averages, ete.) and the selection of #, N and T'. For convenience,
the parameters will be selected in the alternate form r, N, and 7, .

The selection of r is based on the requirement that »r = p and the
direction of change in e as r increases. Now o’ increases and e decreases
(in general) with increasing r. The rate of increase of o with r is such
that smoothers with » > 2 are seldom used in practice.

The selection of N and 7T, will be a trial-and-error process based on
achieving a near minimum in e while keeping N as small as possible
(for simpler implementation). In the case of a set of components, each
component may have a different value of 7', provided the values of T
are the same. Figs. 7, 8 11, 12, and 13 will be useful in caleulating oc.
When calculating the over-all output noise of a set of component smooth-
ers, it will be useful to know that the noise outputs of 0th, 1st, and 2nd
order cascaded simple averages smoothers are all mutually uncorre-
lated, though this is not true for all orders."

The problems involved in estimating truncation error have been
discussed by Hamming"” in some detail. We will make the simplifying
assumption that the truncation error er of an rth degree smoother may
be approximated by using (54) with R(t) considered as an (r + 1)th
degree polynomial. Thus R(¢) may be expressed
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r+1 ;g
R(1) = Zw (t — nT)". (55)

=0

Substituting (55) into (54), and using (22) and (26), we obtain

M,
= N R
(r—p+ 1! (=1 (r+ 1)! (56)

Blackman" has calculated the (r 4+ 1)th moments of Oth, 1st, and
2nd order eascaded simple averages smoothers as 37T, , —T,, and 37,
respectively. Hence, the truncation errors for these smoothers may be
caleulated from (56) as 1T.R“™ (nT).

Pr—p+1

= |

VII. GENERATION OF DISCRETE WIDE-SENSE MARKOV NOISE FOR SIMU-
LATION

It is frequently desired to simulate the performance of discrete smooth-
ing filters and perhaps larger discrete systems of which they may be a
part. Standard techniques are available for simulating discrete white
noise by generation of a sequence of uncorrelated pseudo-random num-
bers.11% Tt is relatively easy to generate discrete wide-sense Markov
noise from such a sequence, due to the simple correlation structure of
the wide-sense Markov process. The foregoing is another advantage in
using the wide-sense Markov model to represent correlated noise.

Let {Y,] be the desired discrete wide-sense Markov noise and {X,}
be a sequence of uncorrelated random numbers of zero mean and unit
variance. Then Y, may be generated as

Y, =X, (57)
Y, =aY,4 + VvVl —a2X,, (n > 1), (58)

where o is the variance and a the intersample correlation of the wide-
sense Markov noise.

Since Y, is in effect a linear combination of the X, ,, ¢ =10, ---,
n — 1, it follows that if the X,_; are jointly Gaussian, then the ¥, are
jointly Gaussian.

VIII. DISCRETE SMOOTHING FILTERS BASED ON A MODEL USING A LINEAR
COMBINATION OF WIDE-SENSE MARKOV PROCESSES

In some cases the simple wide-sense Markov noise model may not be
a sufficiently accurate representation of a physical noise process. A
better model may be obtained by approximating the known or assumed
noise process by a linear combination of wide-sense Markov noise proc-
esses. We may approximate the autocorrelation funetion by wide-sense
Markov autocorrelation functions, or, equivalently, we may approxi-
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mate the normalized power density spectrum by wide-sense Markov
normalized power density spectra. For the purpose of making the pre-
ceding approximations, we can work with the process as though it were
continuous, later introducing the sampling operation. In a parallel to
the use of Fourier series to analyze the behavior of a complicated wave-
form in a linear system, the wide-sense Markov autocorrelation func-
tions may be used to analyze the behavior of a complicated correlated
random noise process in a linear discrete system, by applying the prin-
ciple of superposition. It is possible to synthesize discrete smoothers
using this more complex model.

Further, discrete random noise of arbitrary power density spectrum
may be generated in an approximate manner for simulation purposes by
a suitable linear combination of wide-sense Markov noise components. In
the preceding applications, the use of the wide-sense Markov noise com-
ponents is simpler and more efficient than use of the actual noise process.

There are two types of approximations that can be made. One is a
cut-and-try type of approximation in which one tries various linear
combinations of wide-sense Markov noise components with the band-
widths of the components not necessarily being integral multiples of
some fundamental bandwidth. The other approach is to use a linear com-
bination of orthonormal funetions of wide-sense Markov components. In
the latter approach, the bandwidths of the components are integral
multiples of a fundamental component. In either case, we may write

z

@(1—) = E“IVCXD(—QU]TI) (’59)
or
: 29,
S) = R dgry g

Note that the sum of the coefficients A, must be equal to 1. In the ortho-
normal approximation,

(60)

Q, = vQ (61)

and the A, will have a definite form. This is shown in the following sec-
tion.

8.1 Orthonormal Approximation

Laning and Battin' and Lee" have developed orthonormal approxi-
mations for an arbitrary autocorrelation function and an arbitrary
normalized power density spectrum. These approximations are in terms
of components which will be recognized as wide-sense Markov auto-
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TABLE I — VALUES oF COEFFICIENTS Ciy

k I [ | Cr2 | Cia | Cki | Cis
1 1

2 2 -3

3 3 —12 10

4 4 —30 60 — 36

5 5 —60 210 —280 126

correlation functions and normalized power spectra, respectively. We
shall develop the approximation in somewhat different form.
The set of functions

By(7) = ;ch ViQexp (—v@|r|) (62)

can be made orthonormal on the interval —e < 7 < o by proper
choice of the coefficients ¢, . These coefficients are listed in Table 1
for values of k up to 5.

These functions may be used to form an orthogonal expansion of any
piecewise continuous even function (and hence any piecewise continuous
autocorrelation function) on the interval — o < 7 < «. We may write

®(r) = kZ_l_la@k(r), (63)
where
a = [: B()de(r) dr. (64)

If we take z terms of the series expansion and denote the corresponding
partial sum &(7), we may group terms to obtain

®(r) &P (r) =§Auexp(—vmri), (65)
where
A, = :Z= ApChy \/R_Q (66)

are given by (note that if z < 5, then

ot

The coefficients A, for z =
a, = 0fork > 2)

A=V [m 4+ 2v2a + 3V3a + 4V4a + 55 al, (67)
Ay = —=3vV0 [V2a + 4V3a; + 10vV4 as + 205 a5],  (68)
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Ay = 10V [V3 ag + 644 as + 2145 ag), (69)
Ay = =35V [V4 as + 8V5 ag), (70)
Ay = 12602 [V/5 as). (71)

Now let Si(w) be the Fourier transform of ®.(7).
Then

Si(w) = Z eV EQ ——e (72)

[CORE 9)2 +
It can be shown, using Parseval’s theorem, that the set of functions
{(1/4/27) Se(w)} is orthonormal on the interval —® < w < «. Hence
we may expand any piecewise continuous even function (and thus any
piecewise continuous normalized power density spectrum) on this
interval. We may write

S(w) = ?;aksk(w), (73)
where
_ %r f_m 8(ew)Si(w) de. (74)

From Parseval’s theorem it will be seen that the a; in (74) are the same
as those in (64). If we take z terms of the series expansion and denote
the corresponding partial sum S(w), we may group terms as before
to obtain

20Q
(12)* + w*’

where the 4, are given by (67) through (71). Note that (65) and (75)
form a Fourier transform pair. Thus, if we have approximated a noise
process in terms of normalized power density spectra or autocorrelation
functions, the alternative approximation can be immediately obtained.
The quantity »Q represents the half-power point for each wide-sense
Markov component.

Simple rules for the selection of 2 for a particular expansion cannot be
established; it is a matter of judgment and perhaps trial and error. The
fact that it is the half-power point of the fundamental component of the
approximation may be of some help. Also, note that as r — «, &(r) —
Ay exp (=9 | 7). We might choose @ that ®(7) and ®(r) approach
zero at the same rate. However, matching autocorrelation functions by
means of their tails is not necessarily a desirable approach.

S(w) ~ 8(w) = Z A, (75)
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8.2 System Analysis and Synthesis

The noise variance ratio of a linear discrete system for which the
input noise autocorrelation function has been approximated by a linear
combination of wide-sense Markov autocorrelation funections may be
obtained by substituting (59) in (5). We have

N—1 N—1 =z
W= _ZUZ;ZIW,-W,-Avexp(—n,,T|z'—j|). (76)
i=0 j=0 v=
Now let
a, = exp (—Q,7). (77)
Then

v=1 i=0 j=0

u= Z A.,[Nz_jl E Wiijau"‘f':l. (78)

The expression in brackets represents the noise variance ratio of the
linear discrete system when the vth wide-sense Markov component of
the noise is the input. Thus, it is clear that the principle of superposi-
tion ean be used to find the total noise variance ratio. Figs. 7, 8, 11, 12,
and 13 may be applied to the wide-sense Markov components individu-
ally.

Use of the linear combination noise model will not be profitable in
determining the optimum smoother of a class. There is a matrix inver-
sion required [refer to (25)] which is more easily performed directly
with the actual autocorrelation matrix. One should keep in mind that
the noise variance ratio of a digital smoother is relatively insensitive to
departures of the weighting function from the optimum. Hence a
smoother optimized for the simple wide-sense Markov model may be
satisfactory.

The synthesis of a polynomial smoother based on the linear combina-
tion noise model follows the method of Section VI, except that calcula-
tion of e is somewhat more difficult, since o.° must be calculated using
(78) and the relevant plots. It should be noted that the estimate of e
may not be sufficiently accurate to justify the use of the linear combina-
tion noise model. One should consider whether or not the simple wide-
sense Markov model might be satisfactory.

8.3 Noise Generation for Simulation

Discrete stationary random noise of arbitrary autocorrelation funec-
tion ®(7) and variance ¢° may be approximately generated as a linear
combination of independent, wide-sense Markov components. Let
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7 represent, the th sample of the approximating linear combination
Zi= > b,Y., (79)
=1

where Y,; is the 7th sample of the vth wide-sense Markov component.
This vth component is generated (refer to Section VII) as

Yu=Xa, (80)
Yn:' = ava.ifl -+ \/1 - a,QX,,', (‘1 > 1) (81)

Care must be taken that the normalized uncorrelated random numbers
X.: are generated in z similar but mutually uncorrelated sequences
(X0}, (X, ..., [X.} to ensure that the sequences { Vi, {Yad, ...,
{ Y.} are mutually uncorrelated. Note that each Y,; will have zero mean
and unit variance.

To evaluate the coefficients b,, approximate the autocorrelation
funection of the arbitrary random noise process by a linear combination
of wide-sense Markov components. Thus, from (59) and (77) we obtain

2
‘P(Ii—jli")%‘b(li—le)=;Auau"—”. (82)
Now since the Z process is stationary
Z bvz cov (Ym' ’ I’,,j)

cov (Zi,Zj) _ =1
var (Z;) a*

®(|i—j|T) =
(83)
i bl !

_ =1

o

We have set var (Z;) = o since the arbitrary process and its approxi-
mation must be matched in variance. Now, equating terms of (82) and

(83), we obtain
b, = oV A,. (84)
Thus,

Zi= a3 AL V. (85)
v=1

IX. GLOSSARY OF SYMBOLS

A, = Coeflicient in approximation of power density spectrum or
autocorrelation function by linear combination of wide-sense
Markov components
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B = QT4 = noise-smoother bandwidth ratio for fundamental wide-
sense Markov component

¢ = output signal of smoother

E = expected value operator = f dF

f = dF = probability density function

M = matrix of moments of weighting coeflicients

N—1
M, = 2. iT"W,; = gth moment of weighting function

=0

n = present sample
= number of samples operated on by nonrecursive discrete
smoother

P = order of smoother
P = autocorrelation matrix
r = degree of smoother
R = total input signal to smoother
R,._; = total input signal evaluated at t = (m — 2)T
R = desired component of input signal to smoother
R™ = pth derivative of desired component of input signal
R = polynomial approximation to desired component of input signal
E = noise component of input signal
S(w) = power density spectrum (normalized sense,

%r Slw) dw = 1) ; Fourier transform of (7).
t,r = time variables (seconds)
T = sampling interval (seconds)
Ts = smoothing interval (seconds)

W, = weighting function of digital filter evaluated at { = 2T
X(t) = white noise process

Y (i) wide-sense Markov noise process

Z(t) = general noise process

Z(t) = approximation to general noise process

I

a = exp(—QT) = intersample correlation for fundamental wide-
sense Markov component
a, = exp(—Q,T) = intersample correlation for wsth wide-sense

Markov component
I' = prediction time
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€ = total output error of smoother
€r = truncation error
m = o¢/or = output-input standard deviation ratio
¢’ = noise variance
c¢ = output noise variance
a2 . . .
or = 1nput noise variance
®(7) = autocorrelation function
w = angular frequency variable (radians/sec)
Q = bandwidth of fundamental wide-sense Markov power density

spectrum (radians/sec)
2, = bandwidth of »th wide-sense Markov power density spectrum
component (radians/sec)
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APPENDIX

Asymptotic Behavior of Smoothers

We will consider the behavior of u* as N — « with @ and 7' fixed.
We shall first find the limits of two expressions which will be needed in
finding the limits of the larger noise variance ratio expressions:

lim """ = lim exp [—QT(aN + b)] = lim exp[—W]

Noven N N—w N — 1
B(aN + b (86)
= 11:—{2 exp [—%] = exp (—aB),
lm N (1 — a) = lim == exp[;/ljvf(N —1)]
. s (87)

_ i VB exp [-B/(N —1)] _

B.
N—»x (N - ].)l



2150 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1963

A1 Optimum Smoother—Oth Order, Oth Degree
We have, using (33)

. . 1+« . 1+« 2
limy =lim———— = = .
lim 4 = lim ey~ G T T Bz O
A2 Optimum Smoother—1st Order, 1st Degree
We have, using (35) and (36):
. . 12(1 + )IN(1 — @) — 1 + &]
1 =1
lim T = i T 2allN( — a) + L + 3a] + 4a (59)
_ 24B B 24B
T (B+2)(B+4) +4 B +6B+12°
A.3 Zeroth Order Cascaded Simple Averages Smoother
Using (44) we have
. 0 . l1+a 2a(aN— 1)}
fim i = Tim {N(l — o T INAd = a)F
2 2 2 (90)
=% —I-EE{exp (—B) —1] = ﬁ[exp (-B) + B —1].
A4 First Order Cascaded Stmple Averages Smoother
We have, using (45),
lim T3¢ = lim 2(45)° (N — 1)‘
N—»w0 N—+o N
{ 1+ a _ a(aN _ 2a2N1‘3 _ + 2)}
3N(L — a) [N(1 — a)]
( (91)

4—2%5 {—exp (—B) + 2exp (—2B/3)
+ exp (—B/3) +~§B - 2}.

A.5 Second Order Cascaded Stmple Averages Smoother
Using (46) we have
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4
CoAE Lo 2(N—1) 1+«
v Tow = m 260\~ ) \ava — o
+ a(aN _ 2a§NI6 _ aﬂNlE + 2(21”2 + 3aN,'3 _ 3)}
[N(1 = o))
(92)
2592 [
=5 lexp (—B) — 2exp (—5B/6) — exp (—2B/3)
+ 2exp (—B/2) + 3exp —B/3) + %B - ?}
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