Innage and Outage Intervals in
Transmission Systems

Composed of Links

By S. 0. RICE
(Manuseript received April 3, 1963)

This note is of the nature of an addendum to a recent paper on salellite
communicalion systems. It is concerned with the distribution and average
durations of innages and outages occurring in transmission systems com-
posed of a number of links. The links of such a composite system may be
either in series, as in a radio relay system, or in parallel, as in a many-
salellite system. Several results regarding composite lransmission systems,
including some due to D. S. Palmer, are reviewed, restaled, and extended.

I. INTRODUCTION

This note is in the nature of an addendum to a recent paper of mine
on satellite communication systems.! It is concerned with the same
general problem, namely the reliability of transmission systems com-
posed of links which fail independently. Various published results are
reviewed and extended. A large part of these results is due to D. S.
Palmer,? whose excellent work was overlooked in my satellite paper. The
approach given here differs somewhat from that used by Palmer.

Incidentally, questions similar to those discussed here have also
appeared in connection with coincidences in counting devices.

The notation to be followed is illustrated in Fig. 1. Suppose thata link
in a transmission system is always either in one or the other of two pos-
sible states, state (a) or state (b). For example, if the link is a satellite,
(a) may be taken as the state of being out of sight and (b) the state of
being visible. Again, if thelink isone of a series of links in tandem making
up a transmission line, we may choose (a) to be the state of working
order and (b) the state of breakdown. In a satellite system the links are
in parallel and in the transmission line they are in series. Fig. 1 applies
to both cases.

The light portions of the top line in Fig. 1 represent the intervals dur-
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Fig. 1 — Combination of % independent alternating sequences to form the
resultant alternating sequence,

ing which Link No. 1 isin state (a), and the heavy portions the intervals
of state (b). Similarly, the second and third lines represent the state
intervals of Links No. 2 and No. 3. This is a k-link system with &k = 3.
The last line represents the system state intervals. In system state (ak)
all % links are in state (a). In state (bk) at least one link is in state (b).
State (ak) corresponds to the “intersection” of type (a) intervals and
state (bk) to the “union” of type (b) intervals.

For the satellite system, states (ak) and (bk) correspond to “out-
age” and ‘“innage,” respectively. For the transmission line they cor-
respond to “working order” and “breakdown.” This reversal of interpre-
tation for links in parallel and for links in series has been mentioned by
Palmer.’

The problem is to find the distributions of the durations f, and ts. of
states (ak) and (bk). The lengths ¢, , ¢, of the intervals shown in Fig. 1
are supposed to be independent random variables with given probability
densities pa(t), ps(t). Usually pa(t), ps(t) will be the same for all &
links, but in the more general case the densities associated with the 7th
link will be denoted by p.” (t), p»'” (t). The links are assumed to operate
independently of each other. It is also assumed that the system has been
operating long enough to reach statistical equilibrium.

Although ¢, and ¢, are independent, . and ¢ need not be. An example
is given just below equation (25) in Section IV.

The results given here do not apply to the case where the pattern of
intervals in two or more links shows periodicities. For example, if all
type (a) intervals of Links No. 1 and No. 2 are of length 1 and all type
(h) intervals are of length 3, then (depending on the relative phase)
there may be no type (ak) intervals and just one infinitely long type
(bk) interval.

The distribution of t.; depends only on p,(¢). It is obtained in Section
II for general p.(t). The expected value &, of {w depends only on the
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expected values I, , & and is given in Section III. At present there seems
to be no practicable method, other than simulation on a high-speed
computer, of obtaining the distribution of & for general pa(t), pu(t).
For exponential p.(t) a method due to Palmer’ and Takdcs (outlined
in Ref. 1) may be used, but even this is difficult unless ps(t) is also
exponential. This method is developed in Section I'V and illustrated in
Section V. Sections VI and VII are concerned with the special case k = 2
but general p,(t), ps(¢). Now the determination of the distribution of
t» depends upon the solution of an integral equation. A vexing problem
which I have been unable to solve is to show that when p.(t) is exponen-
tial the integral equation leads to the same distribution as does setting
k = 2 in the method of Section IV.

I am indebted to John Riordan, David Slepian, and Lajos Takdces for
helpful comments.

II. THE DISTRIBUTION OF

It is convenient to set

F) = [ o) i (1)
At) = f:’ F.(7) dr/, (2)
i = f“mfpu(r) dr = f:FB(T) . (3)

Here F.(t) is the probability that t, > ¢, &, is the expected value of ¢,
and A,(¢) is closely related to C. Palm’s S “next-arrival” distribution.
If «(s) is the Laplace transform of pa.(t), i.e.

als) =f ¢ 'pa(t) dt (4)
0
then
f ¢FL(1) ,u=1;‘is_)
0 s 5)
i)
f e A (L) dt = l[l — l—uﬂ)—]
0 8 Sta
Tor the special case p.(t) = ae ™
Fo(t) = AJ(t) = ¢, &= 1/a
(6)

a(s) = a/(a + s).
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To interpret A.(t), consider I'ig. 2, which shows a line in Fig. 1 cor-
responding to a typical link. Choose a point { = x at random [this means
that when the choice is from the very long interval (0,7') the chance
that x falls between ¢, { + dt is di/T]. Let [ be the distance to the end
of the interval (which may be of either type) in which z falls. Then®**®
A,(7) is the probability that I > 7, given that 2 fell in an (a) interval.

It should be noted that expression (2) for A.(¢) holds even when sue-
cessive I,’s and #y’s are correlated. This point is important in the proof
of (7), since the intervals t.. , t; may be correlated. The only require-
ment is that as 7' — = the distribution of the lengths of the (a) intervals
in (0,7) approaches a definite distribution F,(f) possessing an average
t, which is neither zero nor infinite. For emphasis we sketch a proof of
(2) which is tailored to I'ig. 2, in which, for the moment, ¢, and & may
be correlated. The chance that 7 < I < 7 + dr is the limit as T — «
of the ratio

[number of (a) intervals longer than = in (0,7)](dr)
total length of (a) intervals in (0,77)

In the limit this ratio approaches NF,(7)dr/Ni, , where N is the number
of (@) intervals in (0,7). Cancelling the N’s and integrating = from ¢ to
» then gives (2).

To find the probability F..(¢) that . > (, suppose that all links are in
state (@) at the randomly chosen time x. Since the links are independent,
the chance that none has changed to state (b) by time @ + ¢ is [4.(1)]".
Hence the function A..(¢) corresponding to the complete system is
[Aa(8)]". This Au(t) is related to Fu(t) by an equation obtained from
(2) by replacing the subseripts “a” by “ak.” Differentiation gives

Fuk(t)

- d k
— Tt 7 [Aa(t)] 1)

Il

(iuk/zn ) Il"[fl a (C)]k_llf‘a (t)

where ., denotes the expected length of intervals of type (ak).
Setting { = 01in (7) and using Fo:(0) = A.(0) = F.(0) = 1 leads to

lar = to/k. (8)

Fig. 2 — A,(1) is the chanece that [ > .
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When the individual links have probability densities pa'" (1), (1),
i=1,2 ---, k the chance that the length of a type (ak) interval
exceeds { is

k
Fu®) = ~Tu 1T 4. 0 (9)
{iZ1
which implies
k
(ta) ™" = Z:; &)™ (10)

just as (7) implies (8). The A.’s and &.’s are related by equations cor-
responding to (1), (2) and (3). These results are due to Palmer,” who
obtains (7) by a different argument.

III. THE EXPECTED LENGTH OF INTERVALS OF VARIOUS TYPES, INCLUD-
ING TYPE (bk)

The expected value & of the length of the type (bk) intervals is
related to . by the equation

T — (L _ 1) Tk (11)
pak

where p [not to be confused with the probability density Par(t)] is the
chance that the random point = will fall in an interval of type (ak).
This follows almost immediately from

E[,i;/"‘z,.j.~ = pbk/l)uk ] (12)
Pak + Pore = 1. (13)

A careful diseussion of the probability p. has been given by Weiss.”

A relation similar to (11) also holds for &, t. , and the probability p.
that the random point x will fall in a type (a) interval. Solving for pa
gives

Pa = Iu“'_f-‘.i + Eb)_l (14)

and when this is combined with pa = p.', which follows from the in-
dependence of the links, (11) becomes

e = (pa* 7 AN 1.
o= (pa = — Dl = 1+ i —1 e (15)

Palmer’s generalization of (15) can be written as
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[(IT ».")7" = 1l
pa({) _ Eﬂ(:‘)(za(i) _|_ Z,,“’)_l

where Iy is given by (10).

Einhorn” has given the instances & = 2 of (10) and (16). He also
gives a generalization in which all £ links are alike and attention is fixed
on the average length #:. " of the periods during which r or more of the
links are in state (a).* He takes both p.(¢) and p,(¢) to be exponential,
but his expression for .’ appears to hold for general distributions.
Thus, let state j be the state of the system in which exactly j of the &
links are in state (a), and let

Pajk = (g) pa' g (17)

be the fraction of time the system spends in state j. Here (?) is a bi-

Eb.l‘:

(16)

nomial coefficient, p, = 1 — p., and p, is given by (14). Then Ein-
horn’s results may be stated as

k
Zur.i" = Zru' Z puj.k/pur.h (18)
3
= (Y awar /- (1) wrar
Eﬂrhl = lar ri:'pn;f./park (Ig)

3=0

where I, = I,/r and 1., ;" is the average length of the intervals dming
which j < r. Setting » = & in (18) and (19) gives (8) and (15), 1
spectively.

To establish (18) note that, in the very long interval (0,7'), the

k
amount of time the system spends in states for which j = ris T D _paj -

The number of periods in (0,7') during which j = r is equal (to within
one) to the number of periods during which j < r, and both are equal
to the number of times the system jumps from state r to state r — 1.
As shown in the next paragraph, the number of these jumps is Tpar 4/ ar ,
and (18) follows by division.

D1v1do the links into two groups, Group I consisting of the first »

* A similar problem has been considered in unpublished work by my eolleague
H. Coo, in which account is also taken of repairs at periodic intervals.
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links and Group TI of the last & — » links. The fraction of time all k — »
links in IT are in state (b) is p,° ". The number of times all links in I are
in state (a) is p. T/l . This is also the number of times Group I jumps
from state r to state r — 1. Since the two groups operate independently
and no periodicities exist, we assume that p' " gives the fraction of
these jumps occurring while all links in IT are in state (b). Thus [p.,'T/
lolps" " is the number of jumps the complete system makes from state
r to state r — 1 when a specified set of & — r links (namely the last

k — r) remain in state (b). Since the set may be chosen in (]_ i 1_)

ways, the complete number of jumps is T'pa, i/l , as stated.
Incidentally, it may be shown that

Fusalt) = —loja 3 40457 (20)

(Taja) ' = JE) " 4+ (B — ) (@)

give the distribution and average length of the state j intervals.

1V. THE DISTRIBUTION OF [g:

In the first part of this section several auxiliary distributions are dis-
cussed. They correspond to arbitrary p.(t), ps(t) and are more general
than needed here, where ultimately p.({) is required to be exponential.
However, they are used in Section VI.

Consider the probability Qu..(¢) that @ + ¢ falls in a type (@) interval,
given that the random point x falls in a type (a) interval. We have

Qu®) = 4 = [ Putt =) T anar ()

in which A44(¢) is the chance that the original (a) interval lasts beyond
2 + tand [—dA.(7)/dr) dr the chance that it endsinx + =, v + = + dr.
The end of the original (a) interval marks the beginning of a type (b)
interval, and Py (t') is the probability that a type (a) interval exists at
time ¢/, given that a type (b) interval began at time 0.

Let the Laplace transforms of p.(t), pu(t) be a(s), 8(s). Then the
transforms of F.(t), A.(t) are given by (5). Weiss,” and Brooks and
Diamantides,® have shown that the transform of Pu.(?) is

s = al9)]B(s)/[1 — a(s)B(s)].

This result is also developed in my paper’ in ignorance of the earlier work
of Weiss. Since the integral in (21) represents a convolution, its trans-
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form is the product of the transforms of dA4.(¢)/dt and Pu.(t). When the
transform of (..(¢) is computed from (21), it is found to be

fo " Qualt) dt

11— ()l — B(s)]
8 %41 — a(s)B(8)]

This result is given by Palmer’ and, independently, by Brooks and Di-
amantides.® It is also given, together with a number of related results,
by Cox (Ref. 5, Ch. 7).

The argument in the two preceding paragraphs is concerned with type
(a) intervals. It applies equally well to intervals of type (ak) when the
(ak) and (bk) intervals are independent. When the links are alike, in place
of Qua(t) we have [Qu.(¢)]* for the chance that a type (ak) interval exists
at time & + ¢, given that one exists at the randomly chosen time . In
place of the probability densities p.(t), ps(¢) and their transforms «(s),
B(s) we have par(t), pu () and their transforms o (s), Br(s). Equation
(22) goes into an expression for the Laplace transform of [Qa.( 0]

I [1 — ax(s))l — Buls)] _ fw —st k
s T A = RG] o ¢ QuOFdl(23)

Since ax(s) may be computed from (7) and Q..(¢) from (22), Bi(s)
is the only unknown in (23). In principle, if not in practice, (23) may be
solved for 8,(s) and then pu () obtained by inversion.

It should be remembered that (23) is based on the assumption that the
(ak) and (bk) intervals are independent. They are independent when
Pa(t) is exponential, since then p.:(¢) is also exponential, and a knowledge
of the lengths of the (ak) intervals tells us nothing about the (bk) in-
tervals and vice versa.

Thus when p.(t) = ae ™, so that ax(s) = kalka + s] ", (23) reduces
to

da(s)
(22)

1
s + ka — kaBi(s)
where Qu,(t) has the transform [s + a — aB(s)]”". More generally, when
2.2(t) = a; exp (—ait) and p,'”(¢) is arbitrary the equation for 8i(a)
becomes

f[. " 1w (DT de (24)

lak I k . )
sf,,;g + 1 — .Bk(S) - j; e iI;‘I;Qau (l‘:) dt (20)
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where by, = [ Y a:] " and Q.. (1) has the transform [s + a; — a8 (s)]™".
This is essentially the result obtained by Palmer” and Takdcs. (Takées’
version is given in my paper.')

The only case in which the (ak) and (bk) intervals are obviously in-
dependent seems to be that for exponential p.(¢). On the other hand, the
following example shows that successive (ak) and (bk) intervals may be
correlated even though the (a) and (b) intervals for the individual links
are not. Let #{, and ¢ be uniformly distributed between 1.00, 1.01
and 2.00, 2.01 respectively. Let & = 2. Then, given an (ak) interval of
length t,» = 0.5, we can infer that the length of the following (bk) in-
terval lies between 2.5 and 2.52.

Hence, so far as the discussion given in this section goes, (23) is no
more general than (24). The question now arises as to the form taken by
po:(t) when pu(f) and py(f) are arbitrary. Some information on this is
given in Section VI for the case kb = 2.

V. DISCUSSION AND EXAMPLES

When % tends to infinity, with pa(t), ps(t) fixed but arbitrary, tu
tends to zero and &, to infinity. When ¢ becomes small, (2) shows that
Aq(t) tends to 1 — /I, and its kth power to exp (—tk/t.). It follows
that when ¢ is small and % is large, the chance that the length of an (ak)
interval exceeds ¢ is

Fo(t) ~ exp (—1/Ta). (26)

It may be conjectured that when & — o the chance Fy(t) that
tue > ¢t also tends to an exponential

Fu(t) — exp (—t/tw). (27)

Here ¢ is supposed to be many times larger than #, and 7, . Indeed, con-
sider a (bk) interval to be in progress and k to be large. Over all of the
interval, except for a negligibly small fraction near the beginning, the
process will be uncorrelated with the initial conditions, and the chance
that the interval will end in (¢, ¢ 4 dt) is independent of ¢. This leads to
the exponential form (27). When #,/1, < 1, k may have to be extremely
large before (27) begins to hold. This is because the argument pictures a
great deal of overlap of (b) type intervals.
Next we turn to the case where the & links are different and

p () = age ™, ' = be ", 1=1,2 -,k

3 (0 —1 7 (D —1
fq = a; , ib = b,‘ .

(28)
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This is one of the few cases in which the work may be carried forward
to even a moderate degree. From Seection II

FO) = 47(t) = ¢

L [Xal”

Fu(t) = exp [—t/tu] = exp [—1D ai
pal(t) =[O al exp [—1D ai.

These expressions for Fu(t) and pa(t) also hold when p,'”(t) is arbi-
trary. From Section 11T

- 1 -
tbk = (_‘ - ]) [ 3
Pak

k
Par = I—Il pu“)y pa(l) = bi(ai + bc’)_l-

tuk

(29)

(30)

The first step in using (25) is to compute Q..'”(f) by inverting its
Laplace transform. The result is given in the last line of Table I in Sec-
tion VI and leads to

k . k ) laitbt
-I=I1 Qu'" (1) = I=]1: l:b‘_—'—b%_] = E e,e (31)

where in the general case the sum on j contains 2 terms. The right-hand
member of (25) becomes Z e;(s + d;)7, and it follows that the La-
place transform of Fy(t) is equal to

1 — Bu(s) [ 5

8 s 2ei(s +d)” e (32)

The transform of Fy.(t) is thus a rational function of s. Its poles are
at the zeros of D ¢;(s + d;)”", and these zeros lie on the negative real
axis between the points s = —d;, the rightmost of which is s = 0. The
nth moment, 7", of tw is n!(—1)""" times the coefficient of "' in the
power series expansion of (32). Hence for n > 0

. ) d n—1 _.__1____
t = Nlai Ii(_a‘_s) {SZCj(S —+ dj)—l - 1}].=0' (33)

When the links are alike, some of the d;’s are equal, and

—a;e _ | b +ae"("+b“:|k < (k) Ay
2 e —[—z;ia— 2 &+ a)F" '

n=0
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In this case, the results are those used in Ref. 1, namely
Fu(t) = ¢ ™, lu = 1/ka
(1 4 p)"" 5= exp [(a + b)zul)

Fu(t) = T 2 2] (o) (34)
e = [(1 + p)" — U/ka, p=a/b
where fi'(2) = dfi(2)/dz, and zo, 2, * - , 22— are the zeros of
_ k i pn
(2 = 2 (n)z St (35)

These zeros lie between the poles at 0, —1, —2, --- | —k. The first few
terms in the power series for () are given by (14) of Ref. 1. In present
notation

Full) = 1 — f;_‘l 4 k= 1;: + blbe*

(36)

— (k= 1)%a" + 4(k —l)nb—l—b]:?!

The nth moment, » > 0, is

In particular

akb n/ n

ﬁ:Mi(A)p_ﬂ (38)

a result given by Palmer® fora = b = 1.
When k = 2 and the links are alike, (32) gives

1 — Bals) _ s+a+2b
() &+ (3bF a)s T 20 (39)

Results of the sort given here have occurred in the reliability studies
of R. 8. Dick® and others.

VI. THE DISTRIBUTION OF l FOR k = 2

Here we consider the determination of pe(t) for the case of k =
links when p.(¢) and p,(t) are arbitrary. The following probabilities,
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which are related to those mentioned in the first part of Section IV, will
be needed:

P(t) = chance that an (&) interval exists at time ¢, given that an
(a) interval starts at time 0;
@(t) = chance that an (a) interval exists at time = + {, given that
the random z of Fig. 2 falls in an (a) interval. Q(t) is equal
to the Q..(t) of Section IV;
R(t) dt = chance that an (a) interval ends in ¢, { + df, given that an
(@) interval starts at time 0; and
S(t) dt = chance that an (a) interval ends in « + ¢, v + ¢t + dt,
given that the random z falls in an (a) interval.

Some information regarding these probabilities is summarized in Ta-
ble I. Here a(s) and B(s), the Laplace transforms of p,(¢) and py(¢), are
written for brevity as « and 8. The entries may be obtained by the
methods indicated in Section IV. Closely related results have been given
in unpublished work by my colleague H. . Rowe.

An expression for the distribution of the length of a (62) interval which
consists of, say, three (b) intervals can be obtained by examining Fig. 3.
The probability that the (62) interval shown in Fig. 3 has a length be-
tween ¢ and ¢ 4+ di can be obtained by integrating

po(t — x2) dg R(xe — x3) dug-pu(as) di
S(t — x1) duy-po(; — ) dug-Play)

over the permissible values of the 2’s, namely0 = vy £ 53 £ . Sy £ 1.

Starting with the probability ps(¢)Q(¢) dt that a (b2) interval consists
of one (b) interval and is of length ¢, ¢ 4+ di, one can write a series for
pez2(t) di. The first term is pa(¢)Q(t) dt, and the later terms are multiple
integrals of the type obtained by integrating (40). An examination of
the series shows that

(40)

¢
pel) = QW) + [ St — w)altm) (41)
where ¢(t,x) satisfies the relation

g(ta) = j;ﬂ drope(t — x2)
" (42)
‘I:Pb(xl)P(ﬂ&) + _/; das R(xy — -'l':s)q(ivl,-'lla)]-

The series for pys(f) obtained by repeated substitution of (42) in (41)
is sometimes useful for small values of ¢.
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e —— t———— . >
. pb(t—:cz)g i(ff-z-xa) | Pp(%3)

L |(—————13 —_———
——————————— Tyg———————————>

S(t-xy), Pp (%1-T4) | P(T4)
| PRy

LIKE RANDOM POINT | B
FOR LINK NO. 2 1 >

Fig. 3 — Sketeh illustrating quantities in expression (40).

Equation (42) is of the form
q(tx) = g(te) + f K(t — z,x — y)qay) dy, (43)
Q0

where g and K are known funetions, and is an integral equation to deter-
mine ¢(¢,z) in the region 0 = x = {. In this region the values of ¢(t,2)
along the line * = x; are expressed in terms of its values on the line
i = 21.

It appears difficult to solve (42) for general p.(t) and p,(t). Two
special cases are discussed in Section VII.

It should be possible to verify that when p.(¢) = a exp (—at), (41)
and (42) lead to the same result as does (24) with & = 2. However, I
have been unable to do this for general p,(¢). The problem may be stated
as follows: show that the 8:(s) defined by setting & = 2 and Q..(¢) = P(t)
in (24) is the Laplace transform of

t
pa(t) = p()P(2) + aj; Pt — x)q(tx) doy (44)
where P(t) has the transform [s + a — aB8(s)]" and ¢(¢,z:) satisfies

)
g(ta) = f daapy(t — x2)
0

.[p,,(wl)p(mz) +a j; dasP (s — xs)q(-rl,a's)]

When the two links have different statistics, the distribution of the
lengths of (b2) intervals which begin with a (b) interval of Link No. 1,
say, may be expressed as an integral similar to (41). However, there are
now two integral equations similar to (42) which must be solved simul-
taneously.
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VII. SPECIAL CASES FOR Pes(t)

Here two special cases are given in which the integral equation (42)
may be solved. The second case has been used to study the problem
mentioned in connection with (44).

(1) Exponential py(t) and general p.(t). When py(t) = b exp (—bt),
(42) shows that ¢(¢,x,) is of the form f(x,) exp (—bt) where

s = b [ e [P + [ R = mifte) dn]. - (45)
This goes into
F(s) = %} [bgr(s) + ¢r(s)F(s)] (46)

where F(s), ¢p(s), and ¢x(s) are the Laplace transforms of f(t), P(t),
and R(t). Similarly, the transform of (41) is

Ba(s) = bgo(s + b) + @s(s + b)F(s + b). (47)
From (46), (47), and Table I
Ay — b1 — a(s)] )
Fs) = s[s + b — Zba(s)]’ 48}
Buls) = b sb[l — a(s + b)] (49)

s+ b (54 b)fs + 20 — 2bal(s + b))

Inversion of B(s) and [I — Bu(s)]s™ now gives pue(t) and Fia(2).
When the two links have different exponential p,(¢)’s and general
pa(t)’s, the two simultaneous integral equations mentioned at the end
of Section VI may be solved by a somewhat similar procedure.
(77) pa(t) exponential and py(t) the sum of two exponentials. For
palt) = ae ™, pull) = ce M e ", et oeb =1 (50)
(42) shows that ¢(f,x) is of the form

e () e ().

Instead of f;(x),j = 1, 2, it is more convenient to deal with
0(@) = P&) +a [ Pl = fi) dy

having the Laplace transform (7;(s). When Laplace transforms are in-
troduced, (42) goes into two simultaneous equations for (s + by),
(is(s + ba). Solving these leads to
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Ba(s) = exGi(s + b1) + c:Ge(s + by)
— B + el + 2(16162(-3‘ + b + bz)—l
BlBg - 026102(3 + bl + b2)—2 ’
_ 1 g _ 1 (51)
Bi= iy iy Y T i
_ €1 Ca2
B(s) T s+ b S+ b

The equation for 8.(s) obtained from (24) in this case is

[s 4+ 2a — 2a3.(s)]™" = fm e'P(t) dt

1
= ‘,—f er(s — 8" )ep(s’) ds’
Zme YL

(52)
_ ¢p(s)blb2+ er(s — 81) (81 4 b1) (81 + be)
8182 Sl(sl - 82)
+ fPP(S - -5‘2)(32 + bl)(ﬂz + bz)
So(S2 — 81)

where the path of integration L runs from —i% to +iw so that the
singularities of @p(s — s") lie on its right and those of ¢(s") on its left.
The integral has been evaluated by writing ¢»(s) as

(s + b1)(s + ba)

s(s — s1)(s — 8)’
(3—6‘1) (8 — &) = -5‘2‘*“ (a+bl+b2)3+blb2+a(b1+b2_cl_c2)

closing L by an infinite semicircle on the left and evaluating the residues
at the poles 8" = 0, s, 2.

The task of verifying that (51) and (52) give the same value of 8(s)
appears to be a lengthy one and has not been carried out. Several numeri-
cal checks have been made and show no discrepancy.

501-(-9) =
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