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General equations are derived for the spectral density and autocorrelation
functions of a wave train consisting of sine-wave segments with constant
amplitude. The frequency of a segment may be either fy or f2 . At regularly
spaced intervals the frequency is swilched or not switched according lo a ran-
dom choice. This type of wave occurs when a random series of marks and
spaces is sent by frequency-shift keying. The resulls fall into two main
classes — namely, that of discontinuous phase at the transitions, which 18
the typical situation in swilching between two independent osctllators; and
that of continuous phase at the transitions, which is more usually applicable
when the frequency of a single oscillator is changed. Individual treatment 18
given of the various special cases which arise when integral relationships
between the marking, spacing, signaling, and shift frequencies exist. No
restriction is made on the relative magnitudes of the different frequencies
involved.

I. INTRODUCTION

The spectral density function, or power spectrum, of a random se-
quence of signals defines the distribution of average signal power versus
frequency. This information is useful in system design beeause it indi-
cates the frequency band of most importance, the amount of average
total power in any frequency interval, and the interference which may
result in other systems. It does not tell us how much distortion the sig-
nals suffer when the channel does not pass all the frequencies repre-
sented, nor does it tell us about important spectral components which
may be associated with unlikely but possible specific signal sequences.
Keeping these limitations in mind, we still find the spectral density to
have merit as a deseriptive parameter of the system.

Another important function is the autocorrelation, which is the time
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domain analog of the spectral density. Because of the Fourier transform
relationship between the two functions, either can be used as an auxil-
iary step in computing the other. The autocorrelation function is useful
in its own right in signal analysis and can be made the basis of control
operations.

The present paper presents results on the spectral density and auto-
correlation functions associated with binary frequenecy modulation
systems. There are two general types of operation, which in terms of
apparatus may be classified as (a) switching between two oscillators,
and (b) changing the frequency of a single oscillator. The mathematical
distinction between these two cases will be considered here as shifting
the frequency with diseontinuous or continuous phase respectively.

The case of discontinuous phase, which is appropriate when we switch
between independent marking and spacing oscillators, is the simpler one
to analyze. We assume that the oscillators deliver equal amplitude and
that each oscillator preserves its own coherence in time, i.e., that the
two frequencies are constant. The waveforms in intervals containing
the marking frequency, say, are segments of a sine wave having the
marking frequency and extending throughout all time. One would
intuitively expect, therefore, to find diserete spectral lines at the mark-
ing and spacing frequencies. Analysis verifies that if mark and space
signals have independent equal probabilities, each of the two discrete
components has half the amplitude of the complete FSK wave.

In addition there is a continuous spectrum consisting of switching
function spectra centered at the marking and spacing frequencies. Since
the signal wave is discontinuous at the switching instants, the associated
voltage spectra fall off only as 1/f at high frequencies. This means that
the spectral density function ultimately falls off as the inverse square of
the frequency. Degenerate cases arise when there are commensurable
relationships among the marking, spacing, and signaling frequencies.
If these special relations are such as to produce continuous phase at the
transitions, the resulting continuity in the signal wave leads to an ulti-
mate inverse fourth-power variation of spectral density with frequency.
If in addition the derivative of the phase is continuous, an inverse sixth
power is obtained at remote frequencies.

In the case in which the frequency shifting is done with continuous
phase, the signal wave is continuous at all times. The spectral density
function must, therefore, fall off at least as fast as the inverse fourth
power at frequencies remote from the center of the signal band. This is
in accordance with the well-known fact that frequency-shift keying with
continuous phase does not produce as much interference outside the
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signal band as the discontinuous case. The analysis of the continuous-
phase case is considerably more difficult, even though the final results
are of fairly simple form.

It was found necessary to distinguish between four possible cases. In
the most general of these, in which there are no degenerate relationships
among the three {requencies involved, the line spectra completely disap-
pear and the spectral density function is continuous at all frequencies.
When the difference between the marking and spacing frequencies is a
multiple of the signaling frequency, defined as the sum of the number of
marks and number of spaces per second, line spectral terms appear at
the marking and spacing frequencies, and the continuous part of the
spectral density function changes its form. The continuous part of the
spectrum in this case is found to depend also on whether or not the sum
of marking and spacing frequencies is a multiple of the signaling rate.
A curious behavior oceurs when the frequency shift is an odd multiple
of half the signaling rate. Here no discrete components appear in the
gpectrum, but the continuous spectral distribution undergoes a sudden
change relative to that at infinitesimally close values of frequency shift
not possessing the eritical property.

Table IT given in Section VI lists the various cases together with the
corresponding equation numbers for the associated spectral densities
and autocorrelation functions. Section V gives illustrative curves of
these functions for various relations among the marking, spacing, and
signaling frequencies.

II. DISCONTINUOUS PHASE

Before considering the frequency-shift keying problem of this section,
it is helpful to develop some general results applicable to random
switching between two waves. Let y(f) be a given function of time
which is bounded for all ¢ = 0 and such that the limits later encountered
exist. Let 2(t) be a random telegraph wave defined by

z(t) = au, anl=t<(n+ 1T (1)

where n = 0, 1, 2, -+ - , and the 2,’s are independent random variables
which assume the values =1 with equal probability. We calculate the
spectral density w,(f) and the autocorrelation R.(7) of

o(t) = x()y(t). (2)
We note that »(¢) is generated from the source of y(t) by inserting a

reversing switch for which a random choice between positions is made
at instants 7' apart.
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The spectral density of »(t) is given by the limit of 2(| Sx(f) [*)/NT
as N — «. Here { ) denotes “ensemble average’’ and

Sy(f) = fu " e () dt  w = 2nf

. ®
=) xe T f dt e ™ y(nT + 1).
n=0 0
Since (x,Tm)islifn = mand 0if n # m
2
w,(f) = lellll ﬁnﬁﬂ f dte ™ y(nT + 1) . (4)

The autocorrelation function R,(7r) may be calculated either by
averaging (v(¢)v(t + 7)) over all t = 0 with r held fixed, or by taking
the Fourier transform of (4); thus

Ri(x) = [ () cos wr df. (5)
0
Both methods show that R,(7) = 0 for |7| = T and

R()~_f titllP;N"ZOJ(HT‘i‘i)J(“T‘!‘!‘f‘) (6)

ford =7 < T.
Return now to the frequency-shift keying problem and consider the
signal wave

() ' =t < (n+ 1T
u(t) = or
(1) n=20,1,2 -
(7)
ur(t) = A cos (wel + ;) k=12

where the choice is made independently and with equal probability for
each interval of length 7. The signaling frequency is w, = 27/7T rad/sec.
The wave u(t) may be written as

u(t) = uy(t) + x(t)u_(t) (8)
where 2(¢) is defined by (1) and

us(t) = Jw(t) + 3us(t)

u_(t) = Ju(t) — Fua(?).

Thus, u(t) is the sum of two steady-state cosine waves, given by u.,(t),

(9)
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and a random component given by
v(t) = u(t) — uy(t) = x(t)u(t). (10)

The random component assumes the values J=u_(2).

When u_(t) is identified with y(t), the spectral density w.(f) of v(t)
can be obtained from (4). Since the algebra is rather tedious the pro-
cedure will be merely sketched. The integral in (4) is now

T — jwt A —jwT[2
fdte’ wu_ (nT +1) ==& °"
0 4

(11)
{g(w — @) exp [j61 + jouT(n + 1] + -+ -}
where the braces contain four terms similar to the first and
_ sin (aT'/2)
gla) = —@z (12)

The cosines in u_(nT + t) are expressed in exponential form before
integrating.
Multiplying (11) by its conjugate complex gives 16 terms. Substitu-
tion in (4) gives rise to expressions of the form
B 1 N—-1 P 1 _ eJ'AN
yw(A) = ﬁ“; = A=
1,if A 2 (13)
. y 1 = 2mm
7(A) = Ll?l A = {0, A real and ##2mm
where m is an integer. A typical value of N is 2e, 7. At this stage w,(f)
is given by

8Tw,(f) _

= Flo — ) 4+ ¢+ @) + ¢’ (0 — @) + (e + w)

+ 2 cos (26 + enT)g(w — w)glw + 1)y(2enT")
+ 2 cos (20 + wT)g(w — w)glew + w2)y(2w:T)

— 2 cos [32 + 6 + ("’2 ;‘ "") T][q(w — w)g(w + w) (14)

—+ g(w + wl)g(w - wz)]'y(sz + wlT) — 2 cos [8-3 — 6

+ (25 ) 7]t wnte + o

1

+ gle — w)g(w — w)ly(wT — wT).
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Some further reduction leads to the final result

) _ Glo—w) |, Glo+ w) , o —w) , Glw+ w)
2T A w,(f) (0= o) + (@ F o) + (@ = o) + CESPE
n 2 cos 2fl(j(w 2— wi) v (2nT) + 2 cos 2262(?((.: 2—— ws) (2T
)] W w* — o
G(w — w)
— 2 cos (& + 61) [(w o) (o - @) (15)
Glw — w) ) X
(w + wl) (w — wg)]T(EZT + wlq) — 2 cos (82 - 01)
_ Glw — w) Gw + «2) ] o m
[(w Y e Rl erprap Yorprmm J LA
where

(/(a) = sin® (aT/2) (16)

and y(201T), v(2wT), y(wT + @T), v(wT' — wT) are zero except
when 2wi/w, , 2ws/ws, (w2 + wi)/ws, (w2 — w1)/w,, respectively, are
integers (in which case the corresponding +’s are unity).

In the special case in which 2w;/w, = m and 2w./w, = [, with [ and
m integers and [ + m even, all of the 4’s in (15) are equal to unity and
the (s are equal to sin® (w7'/2) if m is even and to cos’ («T/2) if m is
odd. In particular, when 6, = 6, = 0 the following simple result is
obtained

.ol
sin” — , m even
2

. (17)

2A2(0.‘22 _ m12)2m2
T(w2 — wlz)z(wz — w22)2

w,(f) =

02 W
cos 7,modd

F

This spectral density function varies as 1/w’ for large w, showing that
the waveform of the signal is continuous and has a continuous derivative.

The spectral density function of %(t) as defined by (7) differs from
that of v(¢) by the presence of sinusoidal components of amplitude A4 /2
and frequencies w; and w. . That is

wf) = w(f) + A=)+ G =R (18)

It can be shown from (6) and (18) that the autocorrelation functions
R.(7) and R,(7) of u(t) and »(¢) respectively are given by the following
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set of equations
2 2
Ru.(r) = R,(7) + % cos enr + %— COS wer
R,(r) =0, |7 >T
8TAR(r) = (T — 7)(cos wir + €08 wor)

— ST 00599, y (2u1T) — T cos 265 ¥(26T) (19)
wi w2 ‘

+ 2(sin wr + sin wir) cos (B + 01) y(wT + @ T)
w2 + w1

2(sin wyr — sin wir) cos (6 — 0) v(wT — ) 0T
we — w1

Ru( _7) = Rﬂ(f)'

-+

111. CONTINUOUS PHASE
Consider the signal wave

A cos (et + 0,) nlTt< (n+ 1T
u(t) = or (20)
A cos (wel + ¢a) n=012---

where the choice is made independently and with equal probability for
each interval of length 7. The initial values at ¢ = 0 of the phase are
o = ¢o = ¢, and the succeeding values 6, , ¢, are to be chosen so as to
make the phase of u(t) continuous at the transition points.

Let

a = }(w: + w) B = 3(w — o). (21)
Then

w=a—f w = a+ B. (22)
Set
w(t) = A cos B.(t), nT =t < (n+ 1T, n=012--- (23)
By(t) = (a + xB)t + ¢ (24)
Bul) = o+ 2Bt = nT) + 6+ 6T Lz, n>0.  (26)
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We assume z;, 22, --- to be independent random variables, each of
which is equally likely to have the value 41 or —1. We verify that
within the interval beginning at { = nT, the frequency is @ + ,418,
which is equal to ws if 2,1 = +1 and equal to e, if 2,41 = —1. There-
fore, the function B,(f) satisfies the condition of an equiprobable
choice between the two frequencies in each interval. We also note that
the phase at the beginning of the typical interval is

B.(nT) = anT + ¢ + BT 2 , (26)
r=1

while the phase at the end of the previous interval is

n—1
anT + ¢ + x.8mT — (n — 1)T] + T 3 =, (27)

r=1

B,_y(nT)

= B,(nT).

Thus the function B, (¢) also satisfies the required condition of continuous
phase.

We have evaluated the spectral density function of u(¢) by two
different methods, namely

(a) by taking the Fourier transform of the autocorrelation funetion,
and

(b) by direct evaluation from the Fourier transform of the signal
wave over a long time interval. The two methods are of comparable
difficulty. The same results are finally obtained by both procedures,
although the agreement is not immediately evident from the expressions
which emerge naturally from the two sets of calculations.

To evaluate the autocorrelation function, we first calculate the
average value of u(#)u(t 4+ ) over the ensemble at fixed ¢. Set r = 0
and define & as the member of the set 0, 1, 2, - - - satisfying the inequality

m+ BT st+7<n+k+ 1T (28)

with n defined by nT < ¢t < (n + 1)T. Let E.(t, 7) represent the
mathematical expectation of u(f)u(t + 7) with ¢ and = fixed. If &k = 0,
the values of ¢ and { 4+ 7 lie in the same signaling interval and the same
funetion B,(t) applies to both. When £ > 0 we use the function
B.(t) for u(t) and the funetion B, .(t) for w(t + 7).
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We calculate

2
?Eu(t, 7)

2{cos B,(t) cos B,(t + 7))
Re ([exp (jB.(t + 7) — jBu(t)) + exp (jB.(t + 7) + jB.(1))])

I

Re <|:exp (jar) exp (jr.B7) + exp (ja(2t + 1) + j2¢) (29)

- exp (JraB(2t 4+ 7 — 2nT)) IJl exp (g'2:tt,,6T):|>.

Since the 2’s are independent, the average of a product of functions in
which the variables appear separately is equal to the product of the
averages of the individual functions. Since each x has only two possible
values with a probability of one-half for each, we evaluate the expecta-
tions of individual terms by inserting the sum of the two possible
functions with weighting factor one-half. Performing the necessary
operations, we find

2
e Eo(t, ) = cos ar cos 7 (30)

+ cos (2ar + ar + 2¢) cos B(2t + 7 — 2nT') cos"287T.

The corresponding caleulation for & > 0 leads to the result
2
P]L'k(t, r) = cos B(t + r — nT — kT)

cost ' BTcos ar cos B(t — nT — T) + cos (2at + ar + 2¢)  (31)
cos B(t — nT + T) cos™ 28T].

The lag interval r is bounded between adjacent multiples of T' by
defining m as the member from the set 0, 1, 2, - - - which satisfies m1' <
7 < (m + 1)T. We observe that the number % defined by (28) is related
to m as follows

m Al <t< (m+n+1)T -1

k=1 (32)
m+ 1, m+n+ DT —=—7=t<(n+ 17T

The autocorrelation function R.(7) is the average of (u()u(t 4+ 7))
taken fromt = O tot = =, ie.
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R(n) = lim b [ wute +0) @

1 N—1 (m4n4-1)T—7
= }li_n] ﬁ Zﬂ [fT E,,.(t,'r) dt

(41T
+ [ Euia(tr) dt] (33)

(m4n+1)T—r1
N—-1

1 (m+1)T—1

T
-+ f Em+1(i =+ ?‘LT,T) {f.l':' .
(m+1)T—7

As indicated in (30) and (31), the case of m = 0,1, 0 < 7 < T,
requires a separate treatment from that of m > 0. In order to perform
the integrations indicated in (33) it is convenient to expand (30) and
(31) into the sum of terms in which ¢ appears only once. The expanded
equations are, with 0 =t < T

2
Zan (t + nT, r) = cos ar cos 7

+ 4 cos” 287 cos [(e + B) (2t + 7) + 2¢ + 2naT]
+ 3 cos” 28T cos [(a@ — B)(2t + 7) + 2¢ + 2naT] (34)

%Ek(t + aT, r) = cos ar cos” ' BT [cos B(+ + T — kT)

+cos B2+ 7 — T — kT))
+ cos* ™' BT cos™ 28T {cos B[r — (k + 1)T] cos [a(2t + 7)
+ 2¢ + 2naT] + 3 cos [(a + B)(2t + 7) + 2¢ + 2naT — (k — 1)BT]
+ % cos [(a — B)(2t + 7) + 2¢ + 2naT + (k — 1)8T]}.

We note the possibility that some of the terms will not contribute
anything to the result after the limiting process in (33) is performed.
The expressions in (34) and (35) can be divided into two classes: those
which do not contain » and those which contain n in the form of a
factor of type cos” 287 cos (¢ + 2naT). In the former group, we sum
N equal terms and divide by NT; hence the summing and limiting
operations are equivalent to a division by 7. In the other group, the
limit is zero if the sum remains finite as N becomes indefinitely large.
The only ease in which the sum does not remain finite is that in which

(35)
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the terms are equal for all n. Equality occurs if T and BT are both
multiples of = and also if T and 87 are both odd multiples of =/2. If
neither of these conditions exists, the contributions of the terms which
depend on n are zero. We shall call this the incommensurable case and
shall treat it first. Afterward, we shall consider the effect of commen-
surable relations.

Except for the cases we have specifically excluded, we can now write
foro < r< T

A2 Tr—r
R.(1) = 57 ), cos ar cos B di

A2 T
+ — f cos ar[cos Br + cos B(2t + r — 2T)] dt (36)
4-[' I—7
A2
= 18T [B(2T — 7) cos Br + sin B7] cos ar.
Torr>T
A2

R.(7)

(m41)T—T1
— f cos ar cos™ ' BT[cos B(r + T — mT)
"lT 0

+cos B2t + 7+ —T —mT)] dt
AZ T
cos ar cos™ BT [cos B(+ — mT)

ﬁ (m+1) T—r (37)
+ cos 8(2t + r — 2T — mT))] dt

_|._

2
= 18T cos ar cos™ ' BT[BT cos B(r + T — mT)
+ B(r — mT) sin BT sin B(+ — mT)
+ sin BT cos B(r — mT)l.

The spectral density funetion w.,(f) is given by
w,(f) = 4[ R.(7) cos wr dr. (38)
0

It is convenient to evaluate the integral in two parts
A2

T T
4}; R.(7) cos wr dr = éﬁf’fn [8(2T — 1) cos Br + sin B7]

(39)
[eos (w + a)r + cos (w — a)7] dr
and
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4f R.(7) cos wr dr
T

A2 0 (m+41) T
= 3T > f cos ar cos™ ' BTIBT cos B(+ + T — mT)
m=1 YmT
4+ p(r — mT) sin BT sin B(+ — mT)
+ sin BT cos B(r — mT)] cos wr dr
2
= A f [8T cos g(r + T) + Br sin BT sin Gr (40)
+ sin BT cos B7] Z cos alr + mT) cos w(r + mT) cos™ " BT
= )BT [ [8T cos B(r 4+ T') + Br sin BT sin gr
+ sin BT cos Br]lG(w + a, 7) + Glw — a, 7)] dr
where
Glyr) = cos y(r+ 7T) —cosBTcos yr (41)

1 + cos? BT — 2 cos BT cos yT°
The summation is performed by writing
2 cos a(t + mT) cos w(r + mT) cos™ ' BT
as the real part of

lexp (j(w + a)(r + mT)) + exp (j(o — a)(r + mT))] cos™ " BT

and thereby obtaining a geometric series. The series fails to converge
when the absolute values of the individual terms are unity. For this
reason, we must now exclude the case of BT equal to a multiple of =
no matter what a7 is. We have thus accumulated three special cases of
commensurability to be given individual treatment later.

The remainder of the calculation is straightforward, but appears to
lead into a morass of complication. The key to an end result of pleasing
simplicity, which the autocorrelation method tends to conceal, is to
arrange the work as follows

A2 H(w + a)
wlf) = [ 1 4+ cos? BT — 2 cos BT cos (w + a)T

(42)

n Hlew — a) ]
1 + cos? 8T — 2 cos BT cos (w — )T |~
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The integral (40) splits naturally into this form. In the integral (39)
we associate the term cos (w + @) with the first part of (42) and the
term cos (@ — a)7 with the second part. Then

1 (7
26 0
[[B(2T — 7) cos Br + sin Br] cos yr
+ [8T cos f(r + T) + Brsin BT sin Br
+ sin BT cos Br] [cos y (r + T) — cos BT cos yrl} dr

H(y) [[1 4+ cos® BT — 2 cos BT cos yT|

I

—.,IB [(1 4 cost BT)B(2T — 1) cos Br + sin 87]
28 Yo
— cos BTIBT cos B(r + T) + Br sin BT sin fr

+ sin BT cos B7]} cos yr dr

I

(43)

T
+ 1 (BT cos B(r + 1) + Br sin BT sin pr
28 Yo
+ sin BT cos Br — cos BT(B(2T — 7) cos fr
+ sin Br]} cos y (r + T') dr

cos BT 7

T . [3(27’ - T) (o] ]31’

+ sin Br] eos y (r — T) dr.

In the second integral, substitute 7 + 7' = 7" and in the third integral
substitute T — 7 = 7. Dropping the primes after the substitution and
combining terms where possible, we then find that the result can be
written in the form

1 [T 1
H(y) = %fu h(7) cos yr dr + % . hao(7) cos yr dr (44)

where
(7)) = 28(T — 7) cos Br — Brcos B(r — 27) + sin (7 — 21"
+ 2sin B (45)

ha(7) = B(r — 2T) cos B(r — 2T) — sin B(r — 2T). (46)
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The integration in (44) leads to the result

0wty F By 2y —B 1 1y
H(y) = 2 sin y T sin T( - ) 47
! 2 AV BT A

The complete equation for the spectral density can now be written in

the form
‘)2_.2 w — w a2 w = Wwe
247 sin ( 3 )T‘olll ( 5 )T

wu(f) = T[1 — 2cos (@ — )T cos BT + cos? BT

[ 11 T
w — w w — W
247 sin’ (w o w') T sin® (m —; wg) T

+ T[1 — 2 cos (w + a)T cos BT + cos? BT

[ 11 :l"

wtw  wt ow |

The intermediate step converting the original integral (43) to the form
(44) is very helpful in reducing the labor required to obtain the final
form (47). Incidentally, (44) shows that the function H(y) is the
Fourier transform of a function of 7 which is time-limited to the range
0 to 2T. We also point out that discrete components do not appear in
u(t). The spectral density funetion is continuous at all frequencies and
varies as the inverse fourth power of the frequency at frequencies remote
from «; and w.. The latter property must exist beeause the waveform
of the signal is continuous at all times.

We now return to the three cases of commensurability which we
found necessary to avoid in deriving the general result of (48). When
BT is a multiple of 7, an examination of (25) shows that B,(¢) differs
from ot + x,.18t + ¢ by a multiple of 27, and hence

(48)

u(t) = A cos (at + 2.8 + ¢), nT =t < (n+ 1)T. (49)

Comparison with (7) shows that we now have one of the degenerate
cases in which the generally discontinuous phase becomes continuous:
i.e., that case in which 6, = 6. = ¢ and ws — wy = 7w, , r being an integer.

When BT is a multiple of = and «T is not a multiple of 7, we have
Wy — w = Tw,, wr + w # lo,, and it follows that 2w,/w, , 2w./w, are
not integers. Setting v(2w1"), v(2w.T), ¥(w:T 4+ wT') to zero in (15)
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and using

o159 ) w5747

Lol W T @
sin :I T, T even

| 2
cos® | £ 0_ a:l T, r odd (50)
G(w - wg) = G(w - wl) (5])

together with the corresponding expressions for G(w + w), G(w + ws),
gives w,(f) in

0(f) = w(f) + [a(f ) +a(f - fz):l (52)

where the notation is the same as in (18). When r is an even integer
we caleulate

- (5 0) [ ta a2l
w"(f)__Tlﬁm 2 T W — w W — we

1 N
2 f W@ 23
£ T —
+sn ( 2 ) ':w+w: w+w2]}
and when r is odd
A* s fw — a\ ,, 1 1 :
(54)

w+ a 1 1 :
—|-(0'3( 3 )Tliw+w1_w+we:”'

In the next case both BT and a7 are multiples of 7;i.e., wo — w = 7w, ,
wy + w = lw,;, and 2w /w, , 2ws/w, are integers. Now all of the terms in
{15) must be considered and

(lw — w) = Glw — w) sin”':—Tforl — reven
=G(w+ ) =Glw+ w) = (55)
cos’ 9’—2— for I — r odd.

Combining terms in (15) gives
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.ol
sin® 2= for Il — r even

A 2 [( 1 1 )2
w,(f) = 55 -
27 - —w
cos’ C%T forl — r odd eTe @ ’
2 (56)
w+ w w + w

1 1 1 1
2 — — < .
+d(w—wl w—wz) (w-}-ml w+w2)c0‘32¢:’

In the last of the exceptional cases, both T and BT are odd multiples
of w/2. That is,

%7l = (2A+ Dx, 1=01,2,--

(57)
28T = (2r + 1)m, r=20,1,2,--.
Equivalently
s = (I + 7+ 1)/2
qu/m ( (58)
wifwe = (I —7)/2.
The value of E, obtained by substituting (57) in (34) is
2
?Eo(t + T, r) = cosarcos Br + 3cos [(a+ B) (2L + ) + 2¢]
’ (59)

+ 3 cos [(a — B)(2t + 7) + 2¢).

Substituting k¥ = 1 in (35) and then inserting the special conditions of
(57) we obtain

4
?El(t + nT, 1) = cos arlcos B — cos (2t + )]

— cos @7 cos [a(2 + 7) + 2¢] + 3 cos [(a + B)(2t + 7) + 2] (60)
+ 3 cos [(a — B)(2t + 7) + 2¢].

Since BT is an odd multiple of =/2, the value of cos BT is zero. For
k > 1 the right-hand member of (35) contains cos BT as a factor. Hence
Ex(t + nT, 7) vanishes for k > 1. It follows that the autocorrelation
function vanishes for r > 27T and there can be no discrete sinusoidal
components in the spectral density function.

A better understanding of this remarkable behavior can be obtained
by examination of a particular signaling interval in which we are equally
likely to find one of the two possible waves A cos (wt + y1) and
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A cos (wat + yu). At the next switching instant, say ¢ = nT, we either
continue with the same wave or shift to the other frequency with
continuous phase. There are thus four possible waves in the succeeding
interval, viz.,

(7) A cos (et + ¢1)

(77) A cos [wil + 1 — (w2 — w)nT)
(i77) A cos [wit + ¢2 + (w2 — wi)nT)
(fv) A cos (wil + ¢e).

Since (w2 — w;)7' is an odd multiple of =, the second and third terms
can be written as (—)"4 cos (w + ¢1) and (—)"A cos (wt + ¥»)
respectively. Waves () and (i7) are possible when the initial frequency
is wi, and waves (7) and (4v) are possible when the initial frequency
is wp . Now examining the possibilities after the next subsequent switching
instant, ¢ = (n + 1)7, we find that for the original frequency equal to
wi, the waves (7) and (77) can change to the four possible waves:

(z) A cos (wil + ¢1)

(i) (=)"""A cos (wat + Y1)
(ii5) (—)"A cos (wel + ¥1)
(v) —A cos (et + ¢y).

It will be noted that the first and fourth waves are the same except for
opposite signs and likewise for the second and third. In other words, for
any observed value of frequency in a specified interval, the possible
waveforms in the second succeeding interval can be divided into equally
likely positive and negative matching pairs. This behavior, once estab-
lished, must continue into all succeeding intervals. Hence the average
lag product over the ensemble at fixed ¢ and = must vanish for = greater
than 27.

This may also be seen by noting that when 28T = (2r + 1), the
quantity gT(x; + --- + 2, — na,,) appearing in the definition (25)
of B,(l) is an even or odd multiple of = according to whether
(v + -+ + @ — n2y1)/2 = r, is even or odd. Hence

A{"")rﬂ COoS (LUQt + ¢), Tny1 = 1
w(t) = (61)
A(=)"cos (wt + ¢), Ty = —1.

For any observed set of z; , - - - 2,41 leading to a definite %(t) in the nth
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interval, the waveforms in the second succeeding interval can be written
as

./1.(—) rt(rag2=rn) cos (wzt + d’), Tnis = 1
A(—) rat(rpy2=ra) cos (uht + ¢), Tnys = —1.

Since rn4e — 7. contains @,z only through the term Tni2/2, the forms
in (62) are of random sign independent of the original form (61).
Hence the waveform in the second succeeding interval is entirely inde-
pendent (in sign and frequency) of the waveform in the original interval.

Since Eo(t + a7, 7) and Ey(t + nT, 7) in (59) and (60) are found
not to depend on n, we can evaluate the autocorrelation funetion by
averaging over { in a single signaling interval as follows

(62)

1 T—
Ru(T) = —T'f Eu(t + TLT,T) dt,
(1]
1 T
+§,-,fT El(i—l-'nT,‘r) dt 0<r<T (63)
1 2T7—r
Ru(r) = ,Tf Bt 4 nT.n)d, T <r<2T. (64)
0

Tor 0 < 7 < T, we calculate

j—’{ R.(7) = l:(QT — 1) cos Br + #] cos ot

(65)
cos Br sin ar _ sin (a + B)r _ sin (a — .B)-r]
+°°Sz¢[ a NatB8)  2a—p8 I
For T < = < 2T,
‘—14—1; R.(7) = [(2T — 7) cos Br + Sinﬁﬁ‘r:l CcOS aT
] (66)

cos Br sin ar  sin (@ + B)r _ sin (a — B)r
—“°52"’[ «  2+8)  2a-4) ]

The spectral density function is then found to be

2T
w.(f) = 4[ R.(7) cos wrdr
]
« 2 2 2
2 SIN wT 1 1 1 1
4 27 |:(w-—w1 m—wz) +(w+w1_w+w2) (67)

1 1 1 1
+2(w—w;_w—wg)(w-l-wl_w-{-mg)coszd’]'
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The difference between this result and the limit of the general expres-
sion (48) when the special case (57) is substituted consists of the term
containing 2¢. This exceptional case thus has the property of remem-
bering the initial phase angle even though the spectral density is con-
tinuous. The reason is that the phase of the wave with respect to the
signaling interval must remain fixed throughout all time and is, there-
fore, not subject to averaging as in the more general case.

IV. FOURIER TRANSFORM METHOD

Expressions (48) and (67) for w.(f) have been obtained by first
computing R.(r) and then taking its Fourier transform. As mentioned
earlier, w,(f) can also be obtained by working with a Fourier-type
1nteg1al of u(t) taken over a long time interval. This method will now
be sketched for the case in which 28T is not a multiple of x. Most of
the intermediate steps are omitted. If they were included, the length
of the derivation would be comparable to the derivation based on
R.(7).

The spectral density w,(f) of u(t) = A cos B,(t) is the limit of
2(| Sv(f, NT) |'’)/NT as N — =. In this expression

NT . N—1
Sv(f,NT) = f Mty dt =3 s, (68)
0 n=0
. T .
%=m”mfem%m&ﬂ+nm& (69)
0

where s, is a funetion of f. The ensemble average of
N—1 N—1
2 2 susw*
n=0 m=0
N—1 N—k—1 (70)

Z snsu + Z Z (srisn+k + sn+ksn )

| Sv(f, NT) [}

Il

is the sum of terms of the form

T T
2 —jwkT —jwt i
(Snyasa®) = A% j.; e dtf P
0

{cos B,yi(t + nT + kT) cos B.(r 4+ nT)) dr.

(71)

In these equations s,* denotes the conjugate complex of s, .
The procedure used to obtain expressions (30) and (31) for Ey(t, 7)
and Ei(t, 7) leads to
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2(cos B,(t + nT) cos B.(r + nT)) = cos a(t — 7) cos B(t — 7)
+ cos [a(t + 7 + 2nT) + 2¢] cos (L + 1) cos"28T
2(cos Buyi(t + nT + kT) cos B.(r + nT)) = cos a(l — 7 + kT)
cos Bteos B(r — T) cos’ ' BT + cos [alt + 7 + 2nT + ET) (73)
+ 2¢] cos Bt cos B(r + T) cos' ' BT cos" 28T

where & > 0 in the last equation.

We shall consider only the ease in which 287 is not a multiple of .
Then the terms in (72) and (73) containing cos” 287 contribute nothing
to the left-hand sides of

N—1
lim N7’ Z_: (su8u™)

N—=w =0
T T (74)
= 2_1A2f ¢ d'tf &7 dr cos a(t — ) cos B(t — 7)
0 0
N—k—1
lim N7' D (sesn™)
N-—+oo n=0
(75)

T T

= oA cosk‘lﬁ’l‘f ¢! (Etf e eos et — 7 + kT)
1] [i]

cos Bt cos B(r — T') dr.

Expression (48) for the spectral density w.(f) is now obtained by
performing the integrations and then summing with respect to k as
indicated in (70).

V. ILLUSTRATIVE CURVES

Fig. 1 shows a typical curve for the spectral density function when
the phase is discontinuous at the instants of transition. The curve is
calculated from

s(f—f) [ o(f = 1)
3 +

'wu(f)/A2 = 8

(76
Glw — w1) n Glo — ws) )

T (w — w)? 2T (w — we)?

_|_

which is an approximation to (15) and (18). It holds when ws — @ is
not a multiple of w,, and in addition « and «. are so large that the
portion of the spectrum folded back from w = 0, i.e., the portion de-
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Fig. 1 — Spectral density of random binary FSK wave with discontinuous
phase at transitions. Frequency shift = 0.8 times signaling frequency.

pending on inverse powers of w + w and w + w., is negligible. The
contribution of the neglected terms becomes appreciable only when the
marking or spacing frequency is less than the signaling frequency. It is
convenient to let * = w/w, = [/f,, x1 = fi/fs, and 22 = fo/f, .

Fig. 1 is calculated for the case w» — w; = 0.8w,, ie., 22 — 23 = 0.8.
The abscissa is @ — ;. The ordinate is fav,(f)/A°. The curve is sym-
metrical about * — x, = 0.4. The steady-state terms are represented
by spikes of infinite height and infinitesimal width at @ = x;and 2 = 2, .
Kach of these spikes has an area of 4. The area under the continuous
curve is §. The total area is }, which is the mean-square value of the
signal wave per unit of squared amplitude.

Fig. 2 shows a case of continuous phase corresponding to a frequency
shift equal to 0.8 times the signaling frequency. This curve was computed
from (48) where, again, the terms containing inverse powers of w + wy
and w + w. are assumed to be negligibly small. Since the infinite spikes
representing steady-state components are absent, the total area under
the curve must be 1. We note that peaks of finite height and width
appear just outside the interval bounded by the marking and spacing
frequencies. These peaks become more pronounced and move toward
the marking and spacing frequencies as we approach the commensurable
case in which the frequency shift f» — f, is exactly equal to the signaling
rate f, . Fig. 3 shows the curve for frequency shift equal to 0.95 times
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Tig. 2 — Spectral density of random binary FSK wave with continuous phase
at transitions. Frequency shift = 0.8 times signaling frequency.

the signaling rate. Here the peaks are almost twenty times as high as
in Fig. 2. The limiting case of 2s — 2, = 1 is exhibited in Fig. 4. The
finite spikes of Fig. 2 and 3 have now become full-fledged impulses of
infinite height, infinitesimal width, and area }. They represent the
mean-square value of steady-state components at the marking and
spacing frequencies. The continuous part of the curve was caleulated
from (54), noting that (@ — a)T = 2w(xr — a1 — 3) in this case. Fig.
5 shows a representative curve on the other side of the limiting case,
with the frequency shift taken equal to 1.2 times the signaling rate.
The finite peaks now appear inside the interval between marking and
spacing frequencies.

It is instructive to study the transition from Figs. 2 and 3 to Fig. 4.
Since the curves are symmetrical about @ — a; = (xs — @1)/2, it is
sufficient to consider the region of rapid change near = . Setting
T» — a1 = x4, we approximate (48) for w,.(f) in this region by

A’ sin® (z — z1)7 sin® (z — z2)7
27 (x — 21)[1 — 2 cos (2 — a2 — ay)weos xaw  (77)
+ cos?® zam]

w(f) =~
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We are interested in the behavior of (77) as x» — 2, approaches unity.
Setting x2 — a; = 1 — eand @ — &; = y, we find that when both e
and y are small compared with unity we can approximate (77) by

2 1 (y + é)g

Vo lwDIC g camp r g+ o

It is seen that Y depends on y approximately as shown in Table I.
The value y = = = corresponds to several positive or negative multiples
of ¢ and therefore actually becomes small in absolute value as e ap-
proaches zero. It follows that Y hitches onto the value 0.125 shown at
& = x1in Fig. 4. The curves shown in Figs. 2 and 3 correspond to e = 0.2
and € = 0.05. They show the behavior indicated by (78). In particular,

TABLE I — APPROXIMATE ORDINATES OF SPECTRAL DENSITY
IN THE NEIGHBORHOOD OF PEAK

y ‘ — — € —e/2 0 +

v | 0 1/(2nte) } i
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Y obtains its peak value of approximately 1/(27°¢’) near y = —¢/2
and drops down to about half the peak value at y = —e/2 4+ 7e'/4.
When e = 0.05, the peak value of Y is 20.3. The area under the peak,
as measured by the integral of ¥ taken from y = —eto y = +e, ap-
proaches 1 as e approaches zero. This agrees in the limit with the area
of the impulses shown in I'ig. 4.

The work of Sunde' has indicated that the special case in which the
frequency shift is equal to the bit rate has a theoretical advantage in
that intersymbol interference can be suppressed at the sampling instants
in the output of an ideal frequency detector. The results presented here
show one method by which such a frequency lock can be attained. Since
the two principal peaks of the spectral density function reach maximum
height when the condition 22 — x, = 1 is attained, the output of a
spectral analyzer can be used to determine the proper bias on the
tuning control of the keyed oscillator. Another possible instrumentation
can be devised by use of the autocorrelation function. When the signal
wave with continuous phase transitions is multiplied by itself delayed
by a large multiple of the bit interval, the average value of the product
tends toward zero except when the frequency shift is locked to the bit
rate. In practice, the advantage of a rigid lock-in to the theoretical
optimum has not proved to be very significant. The actual reduction
of intersymbol interference which could be achieved by choosing the
best value of frequency shift would typically be masked by other
departures from the ideal conditions.

I'ig. 6 illustrates the case in which o7 and BT are odd multiples of
w/2. The significantly different properties exhibited are not very pro-
nounced except when marking and spacing frequencies are sufficiently
low to be comparable with the signaling rate. The case shown in Fig. 6
applies when the marking frequency is half the signaling frequency and
the spacing frequency is equal to the signaling frequency. The frequency
shift is half the signaling frequency. The curves are calculated from (67)
for three different values of the initial phase angle. Since there are no
steady-state components, the area under each curve must be 0.5. The
peak of the spectral density funetion changes from 0.763 to 0.857 as the
cosine of the initial phase angle is varied from —1 to +1. The ordinates
become zero at « = J, 2,2 --- . As x approaches infinity the maximum
values of the intervening loops decrease as z ° when cos ¢ = 1 and as
2~ for other values of cos ¢.

When the values f; = f,/2, f» = f, corresponding to Fig. 6 are substi-
tuted in the general equation (48) for w.(f), the result is the case
cos 2¢ = 0 shown in Fig. 6. This is to be expected since when the eon-
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Fig. 6 — Spectral density of random binary FSK wave with continuous phase
at transitions. Frequency shift = 0.5 times signaling frequency. Marking fre-
quency = signaling frequeney . Spacing frequency = 0.5 times signaling frequency.

ditions fi = f./2, f2 = f. are almost (but not quite) satisfied, the phase
of w = A cos B.(t) changes by a small amount, or by = plus a small
amount, from one transition point to another. Over a long period of
time these small changes accumulate and have the same effect as
replacing cos 2¢ by its average value 0.

Figs. 7-12 inclusive show the normalized autocorrelation functions
corresponding to the cases of Figs. 1-6 respectively. To avoid making
the curves depend on the values of marking and spacing frequencies,
we have indicated the envelope of the high-frequency oscillations in
Figs. 7-11. The autocorrelations are obtained by multiplying the solid
line curves by 342%/cos [(w2 + w1)7/2], which in terms of the lag time 7
is a cosine wave at the midband frequency. The resulting oscillation has
the value unity at 7 = 0 and is contained within the solid and dashed
curves. Fig. 12, which is drawn for specified marking and spacing fre-
quencies, shows an actual autocorrelation function.

The typical case of discontinuous phase, which is illustrated in Fig. 7,
has a linearly damped envelope until r reaches the value 7. At time T
the envelope changes continuously to that of the sum of two cosine
waves at the marking and spacing frequencies. The latter envelope is a
cosine wave at half the difference frequency and it persists with un-
diminished amplitude throughout all values of r greater than 7' Fig. 8
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plied by (42/2) cos [(w2 + m1)‘r/2]

represents the same case as I'ig. 7 except that the phase is continuous.
The effect is that the envelope of the autocorrelation in Fig. 8 decays to
zero at infinite lag time instead of oscillating with constant amplitude.
The decay in each multiple of T after the second one is produced by a
multiplieation of the corresponding values in the preceding interval by
cos (@a — xp)m, which has the value —0.809 in Fig. 8. As v, — 2, ap-
proaches unity, the multiplying factor produces only a slight reduction
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Fig. 8 — Envelope of autocorrelation function when phase is continuous at
transitions and f» — fi = 0.8f, . Actual autocorrelation is full line curve multi-
plied by (A4%/2) cos [(wa + w1)7/2].
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transitions and f» — f1 = 0.95f, . Actual autocorrelation 1s full line curve multi-
plied by (42/2) cos [(w2 + w@1)7/2].

in each interval and the oscillations retain appreciable amplitude for
very large lag times. Such behavior is emphasized in Fig. 9 for the case
of 2s — 21 = 0.95, cos (x2 — )™ = —0.9877. The very slow departure
from constant amplitude oscillations indicates that the signal wave
contains components which are very nearly sinusoidal. The time demain
analysis thus agrees with the sharp high peaks found in the frequency
domain analysis, as shown in Tlig. 3 for xs — @ = 0.95.

Fig. 10 shows the limiting case in which the phase is continuous and
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Fig. 10 — Envelope of autocorrelation function when Fhase is continuous at
transitions and f» — f1 = f, . Actual autocorrelation is full line curve multiplied
by (A?/2) cos [(w2 + wi)r/2].
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Tig. 11 — Envelope of autocorrelation function when phase is continuous at
transitions and f» — f1 = 1.2f, . Actual autocorrelation is full line curve multi-
plied by (42/2) cos [(wz + wi)7/2].

22 — 21 = 1. The appearance of the line spectral terms is indicated by
the constancy of the amplitude of oscillations for = > 7. Fig. 11 for
22 — 7 = 1.2 corresponds to Fig. 5. The decay rate is the same as in
Fig. 8, since cos 1.2z = cos 0.87. The period of the oscillations is de-
creased.

Fig. 12 shows the singular case in which the sum and difference fre-
quencies are both odd multiples of half the signaling frequency. The
values chosen are the same as those of Iig. 6. The autocorrelation func-
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Fig. 12 — Normalized autocorrelation function when phase is continuous,

1= Ts/2, 2 = fo,and fo — f1 = f./2.
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tion is time limited, vanishing for all values of 7 greater than 27, The
dependence on initial phase is indicated by the three eurves, which are
drawn for the cases of cos 2¢ = 0, 1, and —1 as in Fig. 6. The total
variation in the height of the negative peak with ¢ is 0.07.

Fig. 7 differs from Figs. 8-12 in that the discontinuity in phase of the
signal wave produces a discontinuity in the slope of the autocorrelation
curve at 7 = T'. This is consistent with the decay of the spectral density
of Fig. 1 with the inverse square of frequency at high frequencies. The
spectral densities of Figs. 2 to 6 vary ultimately as the inverse fourth
power of frequency, which requires not only the slope but the second
derivative of the corresponding autocorrelation functions, Figs. 8 to 12,
to be continuous at all values of 7.

VI. SUMMARY OF RESULTS FOR SPECTRAL DENSITY AND AUTOCORRELA-
TION

Table IT lists the equation numbers of the expressions giving w.,(f)
and R.(r) for the various cases which can arise. Let f, = 1/T be the
signaling frequeney and f; , fa be the marking and spacing frequencies.
Also, let l, » denote integers.

TaBLE II — LisT or EQUATIONS FOR SPECTRAL DENSITY AND
AvrocorreELaTION OF FSK WaAvE

Equation Numbers
Case
wu () Ru(r)
Discontinuous phase:
(a) general case (15), (18) (19)
(b) degenerate cases (17), (18) (19)
Continuous phase:
(e) fa—J1=1fa,f2+ f1 #= Ifs (52), (53), (54) (19)
{( )Jjjfz —}'n = Ef‘-l,-fﬂ)?_ 1= If, (52), (56) (19)
e)J:s— 1=
Ay e e L ©7) (653, (86)
(f) all other continuous phase cases I (48) (36), (37)

VII. OTHER RELATED PUBLICATIONS

Jenks and Hannon® have given spectral density curves for the case of
frequency shift equal to bit rate which they state have been taken from
a forthcoming paper by Pushman in the Journal of the British Institute
of Radio Engineers. The curves shown are in agreement with ours for
the same case. We have not seen the complete work. Our interest in
the problem was initially stimulated by discussions with I. Dorros,
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who has made use of some of our results in a study® of the transmission
of binary data by FM over a band-limited channel. Since completing
the work, we have become aware of a publication by Postl,* who has
caleulated the spectral density for binary continuous phase narrow-band
FSK in which the midband frequency is large compared with both the
frequency shift and the signaling rate.

REFERENCES

1. Sunde, E. D., Ideal Binary Pulse Transmission by AM and FM, B.8.T.J., 38,
November, 1959, pp. 1357-1426.

2. Jenks, F. G. and Hannon, D. C., Comparison of the Merits of Phase and Fre-
quency Modulation for Medium Speed Serial Binary Digital Data Trans-
mission Over Telephone Lines, J. Brit. LR.E., 24, July, 1962, pp. 21-36.

3. Dorros, L., Performance of a Binary FM System as a Function of the Channel,
Columbia University Doctoral Dissertation, November, 1962.

4. Postl, W., Die Spektrale Leistungsdichte bei Frequenzmodulation eines Triigers
111(1)1;. einem Stochastischen Telegraphiesignal, Frequenz, 17, March, 1963, pp.

-110.



e AR



