Binary Data Transmission by FM
over a Real Channel
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Formulas are derived for probability of error in the defection of binary
FM signals received from a channel characterized by arbitrary amplitude-
and phase-vs-frequency distortion as well as additive Gaussian noise. The
results depend on the signal sequence and can be presented in terms of aver-
ages over all signal sequences or as bounds for the most and least vulnerable
ones. [llustrative examples evaluated include Sunde’s method of suppressing
intersymbol interference in band-limited FM. The effects of various repre-
sentative channel filters are also analyzed. A solution is given for the problem
of optimizing the receiving bandpass filter to minimaze error probabzlity at
constant transmitted signal power. It is found thal a performance from 3 to
4 db poorer than that theoretically attainable from binary PM s realizable
over a variety of filtering situations.

I. INTRODUCTION

This paper undertakes to refine and extend the state of knowledge
concerning performance of FM systems for binary data transmission
over real-life channels. The particular aim is application to facilities such
as exist in the telephone plant. Efficient use of the available channels
constrains the bandwidth allowed for a given signaling speed. The
luxury of a bandwidth sufficient to permit frequency transitions without
amplitude variations and without dependence of present waveform on
past signal history would in general imply an unjustifiably low informa-
tion rate for the frequency range occupied. We therefore concentrate
our attention on the band-limited channel with its inherent distortion
of the I'M data wave.

We assume a linear time-invariant transmission medium specified by
its amplitude- and phase-vs-frequency functions and the statistics of
its additive noise sources. The limiting noise environment in the tele-
phone plant is typically nongaussian and not well defined even in a
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statistical sense. Nevertheless, with the usual apology, we shall perform
our analysis in terms of additive Gaussian noise. Justification of the
relevancy is based on the following considerations:

(a) Laboratory tests on data transmission systems are made at present
by adding Gaussian noise and counting errors. Good performance in
terms of low error rate as a function of signal-to-noise ratio under such
test conditions is found to be indicative of good performance on actual
channels.

(b) Identification and removal of nongaussian disturbances is a
feasible and continuing process which should eventually lead to a more
nearly Gaussian deseription of the residue.

Our measure of performance is expressed in terms of error probability
vs the ratio of average transmitted signal power to average Gaussian
noise power. In most of the work we assume white Gaussian noise is
added at the receiver input. A convenient reference is then the average
noise power in a band of frequencies having width equal to the trans-
mitted information rate in bits per second.

II.. STATEMENT OF PROBLEM

A block diagram of the transmission system under study is shown in
Fig. 1. The data source emits a sequence of binary symbols which for
full information rate are independent of each other and have equal
probability. The analysis can be generalized without analytical incon-
venience to assign a probability m; to one of the two binary symbols
and 1 — m,; to the other. In conventional binary notation the symbols
are 1 and 0. It is convenient to express binary frequency modulation of

TRANSMITTER

LOW

DATA PASS BANDPASS |

FM
SOURCE FILTER OSCILLATOR FILTER

RECEIVER
DATA
Low ouT
BANDPASS FM
FILTER LIMITER DEMODULATOR et R SLICER ———

Fig. 1 — Binary FM transmission system.
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an oscillator in terms of positive and negative frequency deviations.
The combination of data source and low-pass filter is accordingly defined
by the shaped baseband data wave train

s(t) = i bag(t — nT) (1)

where
b, = 2a, — 1. (2)

The values of a, represent the data sequence in binary notation. The
probability is m,; that the typical a, is unity, and 1 — m; that it is zero.
The value of b, is +1 if @, is unity, and —1 if a, is zero. The function
g(t) represents a standard pulse emitted by the low-pass filter for a
signal element centered at ¢t = 0.

Ideally, the oscillator frequency follows the baseband signal wave
s(t). This would imply an output voltage from the FM oscillator
specified by

V(t) = A cos I:mft + 6, + p,f‘: s(n) dA:I. (3)

Here, A is the carrier amplitude, w, is the frequency of the oscillator with
no modulating signal applied, ¢, is an arbitrary reference time, 6, is the
phase at ¢ = {, and p is a conversion factor relating frequency dis-
placement to baseband signal voltage. The instantaneous frequency of
the wave (3) is defined as the derivative of the argument of the cosine
funetion. It can be written in the form w, + w;, where w;, the deviation
from midband, is ideally expressed by

w; = us(t). (4)

In the practical case, the transmitting bandpass filter restricts the
frequency-modulated wave to the range of frequencies passed by the
channel. The purpose of this filter is to prevent both waste of trans-
mitted power in components which will not reach the receiver and
contamination of the line at frequencies assigned to other channels.
The result is a transformation of the voltage wave (3) to a band-
limited form, which must depart in more or less degree from the ideal
conditions of constant amplitude and linear relationship between
frequency and baseband signal. The line also inserts wvariations in
amplitude- and phase-vs-frequency which cause further departures
from the ideal. For our purposes it is sufficient to combine the line
characteristics with those of the transmitting filter into a single com-
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posite network function determining the wave presented to the receiving
bandpass filter.

The receiving bandpass filter is necessary to exclude out-of-band noise
and interference from the detector input. It also shapes the signal
waveform and can include compensation for linear in-band distortion
suffered in transmission. Two contradictory attributes are sought in the
filter — a narrow band to reject noise and a wide band to supply a good
signal wave to the detector. An opportunity for an optimum design
thus exists and will be explored in this paper.

The frequency detector is assumed to differentiate the phase with
respect to time. The post-detection filter can do further noise rejection
and shaping in the baseband range, but its only funetion in our present
analysis is to separate the wave representing the frequency variation
from the higher-frequency detection products. The slicer delivers
positive voltage when the detected frequency is above midband and
negative voltage when the detected frequency is below midband. The
slicer output is sampled at appropriate instants to recover the binary
data sequence.

The noise-free input to the detector will be written in the form

V.(t) = P(t) cos (wt + 8) — Q1) sin (wt + 8). (5)

P(t) and Q(t) represent in-phase and quadrature signal modulation
components respectively, which are associated with a carrier wave at
the midband frequency w. with specified phase 8. Such a resolution can
always be made, even though the details in actual examples may be
burdensome. The added noise wave at the detector input is assumed to
be Gaussian with zero mean and can likewise be written as

p(t) = 2(t) cos (wd + 8) — y(t) sin (wd + 8). (6)

If »(t) represents Gaussian noise band-limited to 2w, x(t) and y()
are also Gaussian and are band-limited to =«. . If the spectral density
of v(t) is w,(«w), the spectral densities of z(t) and y(f) are given by’

we(w) = wy(w) = wlw. + @) + wolwe —w), |o|<aw (7)
In general, z(¢) and y(¢) are dependent, with cross-spectral density
Way(w) = jlws(we — @) — wolw: + w)] (8)

and cross-correlation funetion expressed in terms of R,(7), the auto-
correlation function of »(t), by

R.,(7) = —2R,(7) sin w,. (9)
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The cross correlation vanishes at r = 0, and hence the joint distribution
of x(t), y(t) at any specified ¢ is that of two independent Gaussian
variables.

We shall also require the joint distribution of z and y with their time
derivatives & and 3. The latter are Gaussian with spectral densities

wi(w) = wilw) = w.(w). (10)

The cross-spectral densities are
wWei(w) = wy(w) = jow.(w) (11)
W(w) = jon(w) = (o + ) — wlw. — @) = —wsy . (12)

The cross correlations are

R.i(r) = f wes(w)e™ dw = —[ ww,(w) sin 7w dw
e ] (13)

= Ryi’;("')

I?.v.zu(f) = _Rz'y(f) = fw wzy(w)e.irw dw
B (14)

= [ wlw,(w. + @) — wy(w, — w)] cos 7w de.

The cross correlation of x and & as well as of y and § vanish at = = 0,
and hence at any instant & is independent of x, and g is independent of
y. The cross correlations of = and g, and of & and y, do not vanish in
general, but do vanish in the special case in which

w(we + ©) = wy(w. — ). (15)

This is the case of a noise spectrum which is symmetrical with respect
to the midband and represents a reasonable objective in system design.
Since the simplification in computational details is quite considerable
when the condition of symmetry is imposed, and since the departures
caused by lack of symmetry are not of primary interest, we shall assume
henceforth that (15) is satisfied. The four variables z, #, y, and ¥ are
then independent and have the joint Gaussian probability density
function

(16)

_.'U? +y2 _ i:2 + yﬂjl

20’0“ 20’1"

plx,y, &, 79) = LBXP[
y Uy -ITI'ED'D?CF{Z

o = [ w.w) do = zf_ wo(we + @) do (17)
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012 = f 'w_.e(w) dw = 2'[ w2'wu(wc + w) duw. (18)

The noise-free detector input wave (5) can be written in the equivalent
form

V() = R(t) cos [wd + ¢(1)] (19)

where
R(1) = P’(1) + Q'(1) (20)
tan ¢(t) = Q(1)/P(1). (21)

The frequency detector and post-detection filter combine to deliver a
wave proportional to the instantaneous frequency deviation from mid-
band. Taking the constant of proportionality as unity, we write for the
output wave

Q) _ P(OQ(1) — Q)P'(1) (22)
P Py + @y -

With the functional dependence on ¢ understood, we write this equation
in the form

d
’ —_— o]
¢ (t) = = arctan

¢'(1) = ¢ = (PQ — QP)/R". (23)
When the noise is added, the detected frequency is changed to

P+0@+y) =@+ +E) o
(P+ )+ (Q+y)? ST

Assuming that the system does not make errors in the absence of
noise, we can express the probability of error in a given sample of
instantaneous frequency taken at the time ¢{ = a7 as the probability
that ¢/'(nT') is negative if ¢’(nT) is positive or the probability that
V' (nT) is positive if ¢'(nT) is negative. Since the system has memory,
the values of P, @, P, and Q at any sampling instant depend on the
entire signal sequence. Our procedure is first to show how the error
probability can be evaluated at any sampling instant for any sequence.
We then calculate error rates for specific sequences and establish bounds
for most and least vulnerable sequences.

Since the denominators of (23) and (24) are inherently positive, the
decisions are made entirely on the basis of the signs of the numerators.
Therefore, we do not require the distribution function of the instan-
taneous frequency itself. In fact if we let

t+P=xz, &+4+P=i
!I+Q=?j1, '1]+Q=?}'1

() = ¢ =

(25)
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we require only one value of the distribution function of the variable z
defined by

z = Ilyl — ylx'l . (_26)

The error probability is fully determined in any specific case either by
the probability that z is negative or by the probability that z is positive.
That is, if F(z) is the distribution function of z, we only require the value
of F(0).

We shall derive a general expression for #(0) in terms of a single def-
inite integral. From this integral we shall then obtain definite integrals
representing bounds for the error probability when arbitrary binary data
sequences are transmitted. No restrictions on range of signal-to-noise
ratios are made. The results will be applied to special cases of practical
interest. One is Sunde’s binary FM system which avoids intersymbol in-
terference in a finite band in the absence of noise. When noise is added
in this system, the detected samples become dependent on past signal
history. It has been found possible to give a complete treatment of the
Sunde method, including optimization of the receiving filter for minimum
probability of error with fixed average transmitted signal power. The
other cases analyzed in detail are based on design parameters actually in
use on FM data transmission terminals.

1II. GENERAL SOLUTION

Qur first observation is that when x; and i are fixed, the variable 2
of (26) is defined by a linear operation on the two independent Gaussian
variables @, and 9; . Hence the conditional probability density function
p(z | o ,51) of z when 2 and y; are given is Gaussian with readily
determined parameters. We accordingly write

p(z |z, ) = lo_exp[—u)—]- (27)

2 20*

The mean z is the sum of the means of x5 and —d,; , that is,
2= avi — yav i = 1Q — pP. (28)
The variance ¢ is the sum of the variances of a3 and .4, ; hence
o = (&' + p’)or’. (20)

The complete probability density funetion p(z) for z is obtained by
averaging the conditional probability density funetion over x; and y, .
This is done by multiplying (27) by the joint probability density
funetion of x; and y; and then integrating over all x; and y; . Calling the
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latter function g(2:, 7:1), we can express its value by substituting the
values of z and y from (25) in (16) and integrating out the % and 3
terms. The result is

2 2
gz, ) = 5 €XP l:_(:lh - P) g—l—ﬂ(m - Q) ] (30)
Tao Z0¢
Then
p(z) = f_w [: p(z | 21, ) q(en, y1) doy dys. (31)

The probability of error when the noise-free sample of frequency
deviation is positive is

P, = [; p(z) dz = j;m p(—z) da. (32)

Likewise, when the noise-free sample is negative, we obtain a probability
of error

P - f: p(2) de. (33)

The problem is thus reduced to the evaluation of the triple integral
obtained by combining (27), (30), and (31) with either (32) or (33).
It is shown in Appendix A that the result of these operations can be
expressed in the following form

P, = %erfc
(34)
dx.

Rk
\/Z‘Uo

i ! R Ré(1 — ") — Ra
T 200V 27 [1 exp (— 20’02) erfe V20

The value of P_ is obtained by subtracting the right-hand member of
(34) from unity. We note that ¢ is positive for P, and negative for P_ .
The symbol R is used for dR/dt where R is given by (20). In a pure
TM wave, B = 0, but this condition ecannot be maintained in a finite
bandwidth.

Differentiating partially with respect to 1 and rearranging, we obtain
aP. _ R 1 l: R quﬁﬂ(l _ xz) + szz:l
—_— = T exp| — - —
oR To0y vy 2a¢? 20*

5, 2}
RRéa(l —27)" .

0‘12

(35)

sinh
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We note that dP,/dR vanishes when & = 0 and at no other value of E.
The latter follows from the fact that the integrand of (35) cannot
change sign in the interval of integration. We also find that P,/ ok
is positive when B = 0. We conclude that P is minimum with respect
to R when and only when B = 0. A lower bound on the probability of
error for any fixed B and ¢ is therefore obtained by setting B = 0,
giving

(36)
+ R fl ex (_R2$2) erfe Re(1 — =) ! dx
2a0V 21 P 20¢? ‘\/50'1 -

Also, since P, must be monotonic increasing with | B |, the largest
probability of error for any fixed R and ¢ occurs when R has its largest
possible absolute value. These deductions are of aid in selecting the data
sequences which have most and least probabilities of error.

It is shown in Appendix A that P; can be written in the equivalent

form
x/2 2 9 2
P = ;l-r f exp | — R:’_Z,/(zm ) de. (37)
° 1+(E;—f—1)cosze
1

It is also shown that when ¢ < (a1/g9), the limiting form for large
signal-to-noise ratio — i.e., R large compared with o¢ — is given by

Py~ —— (""2""2 1)_% ( RE) (38)
Y ReV2m \ o XP\ Tos2)

When ¢ > (o1/00), the limiting form becomes

2 .9\ —% 2 .2
2! _od\" _BE
Pi~ pin/on (I T) exp ( z) : (39

When ¢ = a1/aq, we have the exact result

1 R’
P,! = § exp (—20_—02) . (40)

The general equation for error probability (34) can conveniently be
expressed in terms of the following three parameters
2
- K (41)

2 0‘02
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0_2.2

o =22 (42)
oy’

. _ K

b= 55 (43)

Equation (34) then becomes

1
P, = %erfe p + g\p/.,r_ f—: e erfe [ap(1 — 2V — baldr. (44)

Evaluation of this equation in terms of the three parameters p, a, and b
gives the error probability for any of the FM systems considered.

1V. ERROR PROBABILITY VS8 SIGNAL-TO-NOISE RATIO

In analog systems the performance is often expressed in terms of
signal-to-noise ratio in the receiver output. In the case of audio and
video signals, where subjective judgments determine the requirements,
the signal-to-noise ratio furnishes a good criterion. In the case of data
signals, however, performance is judged in terms of errors made, and
the errors cannot be predicted from the signal-to-noise ratio alone. The
error rate depends in general on the distribution of the noise values.
Furthermore, in good systems the errors are rare and hence are associated
with infrequent noise conditions. The central part of the noise distribu-
tion is of less importance than the tails.

We illustrate the difference between a straight signal-to-noise ratio
analysis and a direct error probability calculation in FM by a simple
example. Consider the case of a long sequence of mark signals leading to
a constant signal frequency . + wa. The signal wave can then be
written in the form

V(t) = A cos (w. + wa)t

= A cos wqt cos wd — A sin wat sin w.l.

(45)
Comparing with (5) and noting that we are omitting the arbitrary
phase angle 6, which is of trivial interest, we make the identifications
P(t) = A cos wal Q(t) = A sin wat. (46)
Then, by differentiation

P'(t) = —wsA sin wil Q'(t) = wad cos wal. (47)

If a sample is taken at £ = 0

P=4A4 P=0 Q=0 Q= wd. (48)
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Then from (24) the error ¥ — wq in the detected frequency deviation
because of additive Gaussian noise is

_ At o)l 4 g) — i
A+ +9 !

In a signal-to-noise ratio calculation for the case in which the signal
amplitude is usually much larger than the noise on the line, (49) would
be written in the form

_wa(l + 2/A) + g/A + (xy — y&)/A* _
(1 + x/A) + (y/A)

1f we then assume that A is large compared with =z, y, &, and ¥, we retain
only first-order terms in small quantities and construct the following
approximate result, valid most of the time

v & wa(l + x/A) + /A — wa(l + 2z/A)
= (§ — waw)/A.

The approximate spectral density of the frequency deviation error is
then

(49)

"='l/—wd

wd . (50)

(51)

w,(w) X [wy + wiw.(w)]/A®

2 2 2 (52)
= 2w + wa )Wolw, + w)/A".

The approximate mean-square value of error ean now be found by
integrating the spectral density function w,(w) over all frequencies.
However, we cannot obtain the probability of error from this value
because we do not know the distribution function. A nonlinear operation
has been performed on a Gaussian process, and the result must be non-
gaussian. In this case Rice’ has shown that the central part of the
frequeney error distribution is approximately Gaussian. His argument
does not apply to the tail. When the signal exceeds the noise most of
the time, it is only the tails of the distribution which are important in
determining the probability that an error is made in distinguishing
between mark and space frequencies.

Since there is no intersymbol interference in our example the exact
expression for probability of error is given by (37) with R = A and
é = wy . It can be seen from the limiting forms for large signal-to-noise
ratio, (38) through (40), that the Gaussian approximation from (52)
cannot approach the correct result. The result obtained from (52) must
contain both the original and differentiated noise spectra in the argument
of the exponential part of the approximation at large signal-to-noise
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ratios. In (38) and (39) the exponential depends on either o; or o1 but
not, both.

As another example of the difference between inferences from signal-to-
noise ratio and error probability, it is interesting to consider the case
of differentially detected binary phase modulation. In this system the
polarity of the present carrier wave is compared with the polarity one
bit ago. The binary message is read as 1 for a phase reversal and 0 for
no phase change. By intuitive reasoning one could easily conclude that
there would be a 3-db penalty relative to synchronous detection with a
noise-free period. Certainly, in the differential case noise is added to both
waves under comparison, and the bit interval is usually long enough to
make the two noise samples substantially independent of each other.
Signal-to-noise ratio analysis supports the intuitive argument when the
average noise power is small relative to the average signal power. A
direct calculation of error probability, however, exposes the fallacy and
reminds us sharply that the noise is not small compared with the signal
when errors occur. If we focus attention on the large noise peaks which
cause error, we can see that the simultaneous combination of dis-
turbances on both waves does not imply the same probability of disaster
as would follow from econcentration of all the noise on one wave.

The differential binary PM problem ean in fact be solved as a simple
special case of the analysis we have developed for FM. The input wave
to the detector can be written as

V.(t) = [P(t) + ()] cos wt — y(t) sin w.d. (53)

The detector operates by multiplying V,(¢) and V,(t — T'), selecting
the low-frequency components of the produet, and sampling the output
at intervals T apart. If we assume w.7' is a multiple of 27 and identify
quantities evaluated at ¢ — 7' by the subseript d, the binary decisions
are based on the sign of the wave
Va(t) = (P + x)(Pa + %a) + yya - (54)

When the correct binary decision is 0, the signs of P and Pg are the
same, and an error occurs if the sampled value V, is negative. When the
correct binary decision is 1, the signs of P and P, are opposite, and an
error oceurs if the sampled value of V, is positive. The two cases are
symmetric and an analysis of either suffices. For the case of the symbol
0, P = P,;, while for the case of 1, P = —P;y.

In calculating the signal-to-noise ratio for the case of a symbol 0,
we would write

VﬂzP(P+x+xd+%3@-‘). (55)
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Then if P is large compared with 2, e, y, and ys, we approach a con-
dition in which the decisions are based on the sign of P + x + z4. If
x and x, are independent, the sum = 4 x4 represents samples from random
noise with twice as much average power as the samples of either x or x4
alone. This tempting argument leads to the 3-db rule.

In a direct calculation of error probability, we recognize that the
influence of rxy and yy. cannot be ignored at the tails of the noise
distribution where the errors occur. In particular, if  and x4 are both
very negative, tending to cause an error in a symhol 0, the value of 2z,
is large and positive, tending to prevent the threatened damage.

To find the error probability, we compare (54) with (26), and note
that we have a special case of the previous solution if we make the
following identification

z=V, =P+ i = Py + 24
(56)

h =y &= —Ya.

The remainder of the solution proceeds as before if x, ¥, x4, and y, are
independent Gaussian variables. The independence is guaranteed if the
second-order correlation functions vanish at lag time T'. One difference
between this case and the earlier one is that the variables x, ¥, x4, and yq
all have the same variance. This specialization can be made in the earlier
work by setting ¢y = o1 = ¢. By comparing with (25), we further note
that we can now set Q = P = 0, Q = P; = P. Hence we also have
R = Pand R = 0. Corresponding to ¢ we insert the value which V,/R*
assumes in the absence of noise, namely ¢ = P*/P* = 1. In terms of
(41), (42), and (43) we then have

. P
P = ;

=1 b=0 (57)

L]

NG

a

§

Hence the answer is given by (40), namely
P,=P_ =", (58)

In the ideal case, a bandwidth f; is sufficient to send signals by binary
PM at a rate fp bits per second without intersymbol interference. This
allows for upper and lower sidebands with widths fo/2. If the spectral
density of the noise is v, watts/cps, it follows that ¢* = »yf. Then M,
the ratio of average signal power to the average noise power in a band
of width equal to the bit rate, is equal to the ratio of P*/2 to wfy and
hence M = p°. The formula for error probability is thus found to agree
with the one given by Lawton.’ Average signal power 0.9 db greater
than the coherent case is required for an error probability of 107", The
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difference in performance between the differential and purely coherent
cases approaches zero at very high signal-to-noise ratios.

V. SUNDE'S BAND-LIMITED FM SYSTEM WITHOUT INTERSYMBOL INTER-
FERENCE

E. D. Sundet has described a binary FM system in which the inter-
symbol interference in the absence of noise can be made to vanish at
the sampling instants, even when the bandwidth is limited to an extent
comparable with that used in AM transmission. The method is remark-
able in that a type of result similar to that given by Nyquist® for AM
systems is obtained for all sequences in spite of the nonlinear I'M detec-
tion process which invalidates the principle of superposition. The per-
formance falls a little short of the corresponding AM case, in that some
dependence on the message appears when noise is added.

Fig. 2 shows a diagram of Sunde’s method. The binary message is sent
by switching between two oscillators. The difference between the oscil-
lator frequencies must be locked to the bit rate, and the oscillators must
be so phased that the frequency transitions are accomplished with con-
tinuous phase. The combination of sending filter, line, and receiving
filter modify the switehed output to produce a spectrum at the input to
the frequency detector with even symmetry about the midband and
with Nyquist’s vestigial symmetry about the marking and spacing fre-

| | | |
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- 7| FiLTER 7 FILTER [~§ | DETECTOR
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-A COS [(w.: —wa)t+ 95] E(t) v(t) Ve(t)
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Fig. 2 — Sunde’s band-limited binary FM system.
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quencies. The latter must be high enough relative to the bit rate to
prevent appreciable lower sideband foldover.
The output of the switch is represented by

B = 511 = s(0)] cos [(w. — wt + 6]
| (59)
+ E [1 + S(t)] €08 [(wc + md’)t + gm]-

In (59) A represents the amplitude of the output and must be the same
for each oscillator. The switching function s(¢) represents the baseband
data wave of (1). When s({) = —1, the first term has amplitude A
and the second term vanishes. When s(t) = 41, the first term vanishes
and the second has amplitude A. The center of the band is the frequency
w. and the total frequeney shift is 2ws . For minimum bandwidth the
angular signaling frequency «y = 2r/T must be equal to 2ws . One of the
two phase angles 6, and 6, can be arbitrary, but the two angles must
differ by 180 degrees. Under these restrictions, the value of (1) can be
written as

E(t) = A sin wdt sin (wd + 6,) — As(t) cos wgt cos (wid + 6,). (60)

Sunde requires that the input wave to the frequency detector can be
written in the form

Vi(t) = A sin wit sin {wd + 8,) — Asi(L) cos (wed + 6,) (61)

where s,(f) represents the data sequence with ¢(¢) replaced by g:(t).
The latter must be a pulse which gives no intersymbol interference when
the data rate is 1/7. That is,

si(t) = 20 (=) "bugu(t — nT) (62)

and ¢,(f) assumes the value unity at { = 0 and has nulls at all instants
differing from ¢ = 0 hy multiples of 7. In mathematical notation

gl[(ﬂ”n‘, - H}T] = amn (63)

and
sitmT) = (=)"bm. (64)
The requirement as actually stated by Sunde differs from (61) in
that his analysis is based on a switching function which assumes the

values 1 and 0 at the sampling instant rather than 1 and —1. The two
expressions for the requirement can be shown to be equivalent. Equation
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(61) has the advantage that the function s,(¢) has the average value
zero for a random data sequence with equal probability of the two
binary symbols. This fact enables an easy separation of the spectral
density of V,(t) into line spectra contributed by the first term of (61)
and a continuous spectral density function for the second part.

Incidentally, it is clear from (61) that all the signal information is
contained in the second term, and that the first term can be regarded
as a pair of pilot tones at the marking and spacing frequencies we £ wq .
The sole function of these pilot tones is to enable an FM detector to
recover the message. The information carrying part of V.(¢) can equally
well be regarded as double-sideband suppressed-carrier binary AM or
binary phase modulation, with the carrier frequency placed at w. . The
ideal way of detecting such signals is by multiplication with a coherent
carrier wave, which must be transmitted as part of the data wave in
some way. Detection of V.(t) as FM has a practical advantage in that
there is no carrier recovery problem; the wave is ready for the frequency
detector with no further processing. The penalty for transmitting pure
sine waves is a waste of signal power. As will be shown quantitatively
later, such waste results in an unfavorable comparison with more
nearly ideal systems.

To show that the stipulated conditions are sufficient to suppress
intersymbol interference in the detected frequency of V.(t), we identify
P(1) and Q(t) of (5) with the applicable terms of (61) as follows

P(t) = —Asi(t) (65)
Q) = —A sin wal. (66)
We then calculate
P'(t) = —As/(1) (67)
Q'(t) = —waA cos wal. (68)

If we take frequency samples at t = mT we find that since w,T = =
P(mT) = (—=)"" b
P'(mT) = —As/(mT)
Q(mT) =0
Q' (mT) = (—)" wA.
Hence in (23), evaluated at ¢t = mT
6 = Q/P = wi/bun = bna. (70)

(69)
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Fig. 3 — Nyquist’s condition of vestigial symmetry.

The value of the instantaneous frequency deviation at the mth sampling
point is, therefore, equal to ws if s(m7) = 1 and equal to —w; if
s(mT) = —1. Freedom from intersymbol interference is thus obtained
if (64) is satisfied.

As shown by Nyquist, a sufficient condition for obtaining (64) is
that the standard pulse g:(¢) is the impulse response of a network with
transmittance G1(w) of the form shown in Fig. 3, deseribed mathe-
matically by

Gi(xws — N) + Gi(Fws +N) =26 (ws) =T  0<AN<aw. (71)

We say that a function satisfying (71) has vestigial symmetry about
frequency wy because it has the type of symmetry called for in a vestigial
sideband filter with the carrier at wys . We can think of the response at a
frequency exceeding ws by an amount A as exactly compensating the
deficiency in the response at the frequency less than w; by the same
amount A. The ideal low-pass filter is a limiting special case oceurring
when the transmittance vanishes for | @ | > ws. The amplitude ecan be
associated with linear phase shift, which changes only the origin of time.
Unnecessary complication is avoided by carrying through the caleula-
tions with zero phase shift.

The conditions imposed on the filters and line to transform (60) to
(61) can be expressed in terms of the Fourier transforms of g(t) cos wat
and g,(t), which we represent respectively by C(w) and G)(w). Both
(' (w) and G1(w) are purely real and are given by

(w) = _/;m g(1) cos wst cos wi df (72)

({0 — wi) + G(w + wa)]/2
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Fig. 4 — Spectrum at input to detector in Sunde’s FM system.

Giw) = fﬂ g1(1) cos wi dt. (73)

The result, obtained by multiplying cos (w. + 6;) by g(f) cos wat or
¢ (1), is to place upper and lower sidebands on the frequencies +w. , as
shown in Fig. 4, with spectra equal to C(0 — w.)/2 and Gi(0 — w.)/2
respectively on w. . The required transmittance function for the com-
hination of sending filter, line, and receiving filter is then
Gl(w - wc)

Y(w) = o =) " (74)
This function transforms the second term of (60) to the second term of
(61). It is also necessary for the first term of (60) to remain unchanged.
The first term can be written as the difference of sine waves of fre-
quencies w, — ws and w, + wq . These components will be unchanged by
the operation Y (w) if

C(xws) = Gi(xwi) or Y(w + wi) = 1. (75)

Tt can readily be seen that the condition (71) required on Gi(w) translates
to the same condition for Gi(u) where v = & — w. .

The relations can be made clearer by working out an example. Suppose
the switching is rectangular and there is no lost time between contacts.
The function g(¢) is then defined by

1, -T/2<t<T/2
g(t) = (76)
0, [t] > T/2.
Let the received signal V,(¢) have a full raised cosine spectrum centered
at w, , with vestigial symmetry about . + ws and w. — wa. We then
write



BINARY DATA FM TRANSMISSION 2405

U
08— 2 <
) = T(l + cos 2wd)/ [u| = 2wa (77)
! 0 | U l > 20.),1 .
We calculate
72
Clw) =2 f cos wal oS wi di = M (78)
0 ws® — o
w(wd: — ) (1 + cos ;i)
Y(w) = d U= w —w (79)
4w’ cos .
2wy

This function satisfies the required condition that ¥ (w, £ ws) = 1.

In practice it is difficult to control two oscillators with the necessary
precision to meet Sunde’s requirements. One method of realizing the
system approximately is to begin with two high-frequency crystal-
controlled oscillators of frequencies n(w, — waq) and n(w. + wa), where
n is a large integer. The phases of the two oscillators are not under
control and are assumed to be 8 and 6., respectively. Frequency step-
down circuits are introduced after each oscillator to give outputs of
frequency w, — ws and w. + ws with respective phases 6;/n and 6./n.
By multiplying these two outputs and selecting the low-frequency
component as shown in Fig. 5, we obtain a wave of frequency 2w; and
phase (82 — 6)/n. This wave can be used to control the timing of the
binary input symbols. For the switched marking and spacing frequency
sources we use the stepped-down component of frequency w. — wq
directly and the component of frequency w. + was with reversed
polarity. The required frequency and phase relations are then satisfied

n{wc+wd) n:1
@-»— FREQUENCY
STEP-DOWN |
LOW 2w
CRYSTAL MULTI— PASS d DA
SOURCE
OSCILLATORS I PLIER FILTER BIT
TIMING
n:i |
@—.— FREQUENCY
N(we-wq) | STEP-DOWN
) SWITCH
Wetdd CONTROL
We—Ww TO
cd :'\: SENDING | LINE
FILTER —_—
L Wty [

Fig. 5 — Practical realization of Sunde’s system.
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except for a slow drift in the time scale caused by the lack of perfect
stability in the original oscillators.

To calculate the probability of error when Gaussian noise is added to
Sunde’s FM signal, we identify the values of P(mT'), P'(mT), Q(mT),
and Q' (mT) of (69) with P, P, Q, and Q respectively. The general ex-
pression for the probability of error, (34), is expressed in terms of R
and E. We calculate

R=(P+@Q)=4 (80)
B =L + o
dt
= [P(OP'(1) + Q(OHQ'(D)/R(E) (81)
R = R'(mT) = (PP + QQ)/R = (—)""Ab.s'(mT). (82)
From (62)
&' (mT) =H=Z_:m(—)”bngl’[(m —n)T]. (83)
From (73) we verify
n(T) = }r,/,;% Gi(w) cos (wrT) dw

wy
= % Gl(wd - w) cOos [?‘T(wd - w)] dw
T Yo

. (84)
+ 11;]; Gi(wa + ) cos [rT(wq + )] dw

wd

G1{wq) cos T’Jrf cos roT dw = 6.

0

_2
(s
This checks our previous requirements expressed by (63) and (64). By
differentiating (73) and substituting ¢ = rT', we find

Qe g
g (¢T) = _1 f w@(w) sin wrT do. (85)
m Jo

The value of this integral in general is not zero except when r = 0. It
appears, therefore, that at any sampling instant ¢ = mT the value of R
depends on all the values of b, in the sequence except b.. .

For further progress we take a specific example, namely the full
raised cosine spectrum for Gi(w). We set
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G(w) = '1'(1 + cos "’—"’)/2 |w]| S 2wa. (86)
2wa
Then
! 3 T 2ud TW .
g (rT) = — w(] + cos —) sin wrT dw
2 Jy 2wg
p (87)
— Jo
Sy 70

I'rom (85), we noted that ¢,'(0) = 0. The value of 1 can now be found
from (82), thus

5 m+1 - (—)nb"
R = (=)""bafod [Z + Z ](m —n)[l — 4(m — n)Y

n=—0 n=m+1

(88)

) = . bm+y, -_ b,,._,,

= hufod Z:: (=) n(dn? — 1) °

We observe from our previous study of the integral defining the
probability of error that for fixed R the most vulnerable sequence is
the one which has the largest absolute value of 2. The least vulnerable
sequence is the one for which £ = 0, and this can be obtained by setting
Duin = bm_n for all n. The maximum absolute value of F occurs when
bumyn and b,_, have opposite signs and the signs are reversed when n
changes by unity. The resulting value of | R | is"

B =9
m = 2hd ,.Z:l n (4:;- - 1)

(89)
= 2fA (log, 4 — 1) = 0.7726 fod.

The upper and lower bounds for the error probability are found by
substituting R, and 0 respectively for B in (34). By (80) the value of
R is constant and equal to A. From (70), ¢ = b,wa . It is important to
note that while the intersymbol interference is suppressed in the absence
of noise the error probability with noise present does depend on the
signal sequence. This occurs because frequency detection is a nonlinear
process, and the effect of noise cannot be found by merely adding a
noise wave to the detected frequency output.

The actual spectral density of the noise facing the frequency detector
is under the control of the system designer, since the selectivity of the
receiving bandpass filter is not determined by the requirements thus
far discussed. We have stated what the received signal spectrum at the
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detector input should be, but this is a resultant of signal shaping at the
transmitter, the transmitting filter selectivity, and the transmittance
of the line, as well as receiving filter selectivity. The latter can be
varied within reasonable limits if the others are adjusted in a comple-
mentary fashion to obtain the desired output response. In evaluating
the merit of different receiving filter designs it is reasonable to compare
them with the same average signal power on the line. We shall also
assume that the line has been equalized for unity gain and linear phase
over the band so that it can be considered as a transparent link in the
system.

The average signal power on the line can be computed in terms of
(a) the transmittance funetion Y,(w) of the receiving filter, (b) the
required function Gy(w) representing the spectrum of the modified
switching funetion gi(¢) at the detector input, and (¢) the statistics of
the data sequence. Details of the calculation are given in Appendix B.
An interesting consequence of the assumptions that the FM wave has
continuous phase and that the frequency shift is equal to the signaling
rate is the appearance of diserete components on the line at the marking
and spacing frequencies even when the data sequence is random. This
means there are transmitted sine waves which consume power but carry
no information. An optimization procedure aimed at conserving power
would very nearly suppress these components at the transmitter by
balance or by sharp antiresonances and restore them to their proper
relative amplitudes by complementary narrow-band resonance peaks in
the response of the receiving bandpass filter. The bandwidth used to
augment these frequencies at the receiver could in theory be made so
small that no appreciable effect on the accepted noise would result. The
system would then only have to deliver the average power associated
with the continuous part of the FM spectrum.

Actually, even a partial suppression of the steady-state components
on the line would destroy much of the advantage of signaling by FM.
The system would become more sensitive to gain changes and over-
load distortion. Accurate tracking of the suppression and recovery eir-
cuits for the marking and spacing frequencies would be difficult at best
and would be practically impossible over a channel with carrier fre-
quency offset. The narrow-band recovery circuits would contribute to
a sluggish start-up time. In fact, about the only remaining resemblance
to FM would be the use of an FM detector. If low-level tones can ac-
tually be recovered successfully from a received wave, it would be better
to use them for synchronous PM detection, which is a linear method
capable of attaining ideal performance in the presence of additive Gauss-
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ian noise. It appears that Sunde’s system should carry the power in the
steady-state components in order to deserve the name of FM.

Standard variational procedures can be applied to find the shape of
receiving filter selectivity which minimizes probability of error when
the average signal power and the spectral density of added Gaussian
noise on the line are specified. The solution of the optimization problem
is given in Appendix B, and means are shown for completing the com-
putation of the corresponding probabilities of error for the most and
least vulnerable data sequences. In the case of white Gaussian noise on
the line, the optimum receiving filter has very nearly the same cosine
characteristic found by Sunde for optimum binary AM transmission.
The bounds for error probability are plotted in Fig. 6 for both I'M
proper with no suppression of steady-state tones and the abnormal ¥M
with marking and spacing frequencies suppressed. Also shown is the
ideal curve representing what can be proved to give the best possible
binary performance. The ideal curve can theoretically be obtained for
example by coherent detection of binary phase modulation. Differen-
tially detected phase modulation requires about 1 db more signal power
than ideal at an error probability of 107

It is seen from TFig. 6 that when the suppression bands are inserted
in Sunde’s binary FM system, the theoretical performance is only about
a half db poorer than ideal, but, as previously pointed out, this does
not represent a true FM system. The more legitimate FM has error
bounds from 3 to 3.5 db poorer than ideal. However, a penalty of this
order of magnitude could be a fair trade in many cases for the advan-
tages of a much simplified receiver relatively immune to many channel
faults.

VI. APPLICATION TO DATA TERMINALS FOR USE ON TELEPHONE CHAN-
NELS

We now apply our formulas to calculate error probabilities in binary
TM transmission with terminals more closely resembling those actually
in use on telephone channels. In the design of real-life terminals, the
emphasis is placed on ruggedness and simplicity. The bit rate is not
locked to the frequency deviation. The filters do not meet elaborate
optimization requirements. The significant conclusion from our evalua-
tion of error probabilities for the practical systems is that the degrada-
tion of performance compared with the ideal is actually very slight.

The probability of error as given in (44) is generally applicable to
FM systems. There are three parameters, p, a, and b, given in (41) to
(43). The first parameter p is a signal-to-noise ratio. It depends on the
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Fig. 6 — Error probabilities for Sunde’s binary FM system with additive
Gaussian noise. Bounds are for most and least vulnerable sequences. Noise refer-
ence is mean noise power in bandwidth equal to bit rate.

ratio of instantaneous envelope of the received signal to the rms noise
voltage at the detector input. For any given front-end filter, this pa-
rameter can be expressed in terms of average signal-to-noise ratio at
the input of the receiver. The parameter ¢ depends on the ratio of in-
stantaneous frequency displacement at the sampling time to the Gabor
noise bandwidth, ¢1/¢¢ , of the receiver. The third parameter b depends
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on the derivative of the instantaneous envelope at the sampling time.
Ior a given channel these parameters can be computed for any par-
ticular signaling sequence. The true probability of error could conceiva-
bly be obtained by averaging over all possible sequences, but this would
be a formidable task. Instead we will give bounds on the probability of
error for the most and least vulnerable sequences over a finite repre-
sentative set of signaling intervals.

We first consider the system in IYig. 7, which has amplitude-vs-fre-
quency ‘‘raised cosine” type roll-off but no phase distortion. Equal filter-
ing takes place at the transmitter and receiver. The modulator applies a
pure M wave of constant envelope to the transmitting filter. In other
words, the modulator and the demodulator are ideal. The data source
is composed of rectangular pulses. The frequency deviation in cps is
equal to half the bit rate. These rates and deviations are characteristic
of practical systems.

With the aid of a digital computer, S. Habib has calculated the pa-
rameters given in (41) to (43) for 2!° sequences. F'rom these calculations
we have computed an upper and a lower bound on the probability of
error. These results are shown in I'ig. 8. The probability of error for all
other sequences will fall between the two curves labeled “best” and
“worst.” Superimposed on the same graph is the ideal curve, which
can ouly be achieved with ideal phase systems and coherent detection.
The FM detection is, of course, incoherent.

Our next example applies the theory to a real bandpass filter used in
an operational data set. Fig. 9 shows the system considered. The curve

t
v(t) = cos [wct + ‘A./S(x)d:c} Vp(t) F(t)  F(nT)
T H to | ! |
i * ' o
| I | |
| | | |
1 ! [ |
| | LT
FM
MOD- —— H(f) H(f) y Drfn':u"oo- LY ot
S(t) ULATOR ULATOR
\
H(f) = cos (ZL IH@)l
(2°°) ~~< N(t) = WHITE GAUSSIAN
NOISE

F(t) =% {ARG[Vo(t)]}

We—wy  We wc+wd
|f| = 100

_ Fig. 7 — Ideal FM modulator and demodulator with transmitted and received
signals equally shaped by “raised cosine’’ type roll-off amplitude characteristics
and no phase distortion.
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Fig. 8 — Probability of error for system depicted in Fig. 7. Noise reference is
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of loss vs frequency for the filter used is given in Fig. 10. The curve
departs from the condition of symmetry about midband, and also the
separation between the signal and carrier bands is not sufficient to make
overlapping effects negligible. The marking and spacing frequencies were
assumed to be 1200 and 2200 cps, respectively, and the signaling rate
1200 bits per second. As shown in Fig. 11, the calculated results are
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t
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Fig. 9 — Ideal modulator and demodulator with received signal shaped by filter
characteristics used in FM data set and shown in Fig. 10.

about 1 db better than the experimental results obtained with a random
word generator, random noise generator, and error counter. The experi-
mental system included an axis-crossing detector and post-detection
low-pass filter, which do not correspond precisely with the theoretical
model. In view of the differences cited, the agreement between calculated
and experimental curves is good. The penalty suffered by the actual
back-to-back channel compared with the best theoretical FM perform-
ance is between 2 and 3 db. Somewhat more optimistic estimates have
been given in other published studies.”* The effects of amplitude and
delay-versus-frequency variation in the channel are calculable by use
of the computer programs we have established.

Tt was shown in the previous sections that a lower bound on the prob-
ability of error occurs when the parameter b is set equal to zero. For
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Fig. 10 — Receiver bandpass filter loss vs frequency characteristic.
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this reason we include Fig. 12, showing a set of universal curves relating
the corresponding minimum probability of error to p and a.

APPENDIX A
Evaluation of Integral for Error Probability
We evaluate the integral

Py = f: dz f_: f_: p(—z|zy)q(zy) dz dy (90)
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where

N 1 (2 4+ Qz — Py)”]
pl—z|ay) = m exp [_ 202 (2 + 4) (91)

qlzy) = 2;@, exp [— (z = P) 2::2(?; i) :| (92)
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The integration with respect to z can be performed at once in terms of
the error function by substituting a new variable « defined by

(z + Qe — Py)* = 20:°(a" + y")u'. (93)
The result is:

P+:11 fferf Qe — Py

2 4oy’ o1[2(2? + ¥y} 2 2 (04)
exp [_ (z — P) 2}@ - Q) ] d dy.
We now transform to polar coordinates, setting
x=rcosb y=rsinf dxdy=rdrdf (95)
We also let
Pecosf + Qsind = Rcos (6 — a) = Reosy
Qcos @ — Psin@ = Decos (6 +B) = Dcos (¢ +v)
where
R'= P + @ =200 tana = Q/P
D'=P+Q tan 8 = P/Q (96)

y=0—-a ¥y =a-+ B
The result of the transformation is

1—2P.|.=

T DCOS(M’/—FT) * [_'rz—Qchos‘b:I (97)
o L, o1 V2o e e I

The integration with respect to » can be performed by subtracting
and adding the term R cos ¢ to r. This enables separation of the inte-
grand into a perfect differential and a term which ean be expressed as
an error function. We thereby obtain

Dcos +
1—2P+=—f_r (2‘;’01"')

[ + \/‘)1r — exp (— i sin v'/) cos ¥ (1 — erf R\/cgsf)] dy.

-4()

e

(98)

We note that both cos ¢ and cos (¢ + v) change sign when y is
increased hy = and that sin’ (¢ + =) = sin’ ¥. Furthermore, the inte-
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gration in (98) is over one full period in ¢, and for every value of ¢ in
the left half of thc period there is a corresponding value in the right
half at ¢ + . Since the error function, erf z, is an odd function of 2, a
change in the «ign of cos ¢ or cos (¢ + v) changes the sign of the corre-
sponding error function in the integrand. If we multiply the first term
under the integral sign by the terms within the bracket following, we
see that there is only one produet which does not change sign at points
= apart. The integral of the other products must vanish. The integral
of the one which does not change sign is twice the integral over a half
period of ¢. Hence

R w/2 RE s
1 —2P, = oo f‘fme,\p (— 27“28”1 \b)

(99)
“cos ¥ er fD———*—COS(‘b + ) dy
V2 a1 '
IF'rom (96) and (23)
D cosy = D(cos a cos B — sin a sin §8)
D(EQ_QI_:’)—M=R¢ (100)
B RD RD/ R
Dsiny = D(sin a eos 8 + cos a sin g
_ D(QQ L PPy_@o+rr
RD " RD) R (101)
1 dR
= - ° =2 _ R
2R d (R ) dt
Therefore
Decos (¢ +v) = Dcosycosy — D siny sin y
. (102)
= R¢ cos ¢y — I sin y.
Now substituting x = sin 1// in (99) we rearrange to obtain
pat ch(l — ") — Rz
p, =1 e. (103
+ = 2 t)\f \/2 o1 axr ( )
Equation (34) of the main text is obtained from (103) by substituting

the complementary function erfe z = 1 — erf z.

The lower bound P; on the probability of error for any fixed R and 4
was shown in the text to be obtained by setting ® = 0. When this
substitution is made in (103) and the definition of the error function
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in terms of an integral is inserted, we obtain

]. 2p 1 2:2 ap(l—:ﬂg)i 2

P == - ”f e’ da:f ¢ da (104)
2 m Jo 0

The parameters a and p are defined by (41) and (42). If we substitute

px = 1 the expression becomes

o rp patei-yht
P, = ; - = f f eV dy da. (105)
T Yo 0

The region of integration in the double integral consists of the first
quadrant of the ellipse

Z/(ap)’ + y'/p" = 1. (106)

After transforming to polar coordinates by setting y = r cos 6 and
z = r sin 6, we can perform the integration with respect to r. The result

is
_ 1 fﬂ'2 a2p2
Py = o exp |: sin’ @ + o’ cos’ @ dé. (107)

This is equivalent to (37) of the main text.

The integral has a simple value when a = 1, which is equivalent to
é = a1/0o. For this case the integrand is seen to become a constant
and (40) results. This coincides with a result given for a special case by
Montgomery.’ By a change in the meaning of the parameters it also
gives the error probability for differential binary phase detection as
discussed in Section IV. In the general case, the limiting form of P;
for large signal-to-noise ratio can be calculated by the method of steep-
est descents. Saddle points occur at # = 0 and 8 = =/2. When e > 1,
the saddle point at § = 0 determines the asymptotic form of the in-
tegral for large p and (38) is obtained. When a < 1, the saddle point
at # = =/2 is dominant and we obtain (39).

APPENDIX B

Optimization of Receiving Filter for Sunde’s FM System

Our problem is to find the receiving filter characteristic which mini-
mizes the probability of error in Sunde’s FM system when the average
transmitted signal power and the spectral density of the noise on the
line are specified. In terms of Fig. 13 the transmittance function for the
filter is Y,(w) and the output of the filter is V,(¢) as defined by (61),
(62), (71), and (73), namely
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V. (t) = A sin wit sin (wt 4 6,) — As;(t) cos (wt + 6,) (108)

T) (109)

]

a(t) = T (=)"ban(t =

G1(:|: wd — ?\) -f- G1(:’: [63F] + l)

2Gh(ws) =T 0<A<ws (110)

Gr(w)

f g1(1) cos wt dL. (111)

The input to the filter is the sum of the signal wave V(¢) plus the
(Gaussian noise wave vy(t). The wave V(t) is defined as that function
of time which when operated on by Y,.(w) produces V,(f). The noise
wave »(¢) at the input to the frequency detector has a spectral density
equal to | V,(w) |* times that of vy(t).

We shall simplify our treatment by assuming a random sequence of
data in which the two binary symbols are selected with equal proba-
bility. The probability is then equal to 0.5 that any particular b, has
the value +1 and also 0.5 that the value is —1. We regard V,({) as a
member of an ensemble of random functions with a distribution in the
infinite number of independent random parameters b, . The randomness
appears entirely in the function s;(f). We can calculate the ensemble
average of s;(¢) at fixed ¢ by adding the individual averages of the terms
in the infinite series defining s;(¢). When we do this we find that the
only random variable in each term is b, , which assumes the values 41
with equal likelihood and therefore has the average value zero. Hence
the ensemble average of s,(¢), which we shall designate by (s;(¢)), is
zero for any fixed value of {. It follows that s,(¢) can contain no periodie
components, for the presence of any such components would give a non-
zero average at some values of {. Therefore, the spectral density function
of the second term in V,(¢) must be a continuous funetion of frequency.

To calculate the average square of s;(¢) over the ensemble, we note
that s (¢) is the sum of an infinite number of independent random
variables of form

2, = (= )"buga(t — nT). (112)

The average value of each z, is zero and the variance, or mean square
minus the square of the mean, is equal to the square of ¢;(¢ — nT).

TO
UINE' FREQUENCY
LINE V(L) + vylt) RECEIVING Vol(t) + V(1)
BANDPASS FILTER r DETECTOR
Yr(w) -_—

Fig. 13 — Function of receiving filter in Sunde’s system.
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Since the variance of the sum of independent variables is equal to the
sum of the variances of the individual variables, we can write

@'(1) = 2 gt = nT). (113)

The average in (113) is an ensemble average at fixed ¢. We can show
that this average is periodic in ¢ with period 7' by noting that

> g'(t+ T —nl)

n=—og

= > gt — mT)

m=—00

(s:"(2)).

Therefore the average over ¢ can be computed by averaging over a
single period from ¢ = 0 to t = 7. Hence the average over time which
we shall designate by av is

av si(1) = %fu (s2(0) dt = ITEJO o2 — nT) dt

(st + 1))

Il

(114)

(ne1 (115)
Ly [T Tt an =5 i) an
- T ngun —nT gl N T —00 gl ’
By application of Parseval’s theorem
1 o0
av s(1) = mf_w G (w) do. (116)

From (116) we deduce that the spectral density of s;(1) is given by

2 2
wi(w) = GQ‘TS;) = “"(;;E“’). (117)
The spectral density of V,(t) can now be easily calculated. The first
term can be expressed as the sum of sine waves of amplitude 4/2 and
frequencies w, + ws and w, — wa . The first term therefore contributes
line spectra with mean square A*/8 at the marking and spacing fre-
quencies. The average square of the second term can be written

2
av [A% (1) cos” (wd + 0,)] = ‘fl)ﬁ av s (1). (118)

The speetral components comprising & (t) cos (w.t + 6) are those of
5,(t) shifted from their original positions to appear as sidebands around
the frequencies +w, . Hence w,(w), the spectral density of V(i) with
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all power assigned to positive frequencies, is given by

2 2
ww) = %5&» — w, + wa) -I-%Mw — @, — wy)

(119)
+ wdAZGf(OJ - mc) w

47

0.

v

It is convenient to let w — w. = w and write for the transmittance
of the filter

U(u) = Yi(w — o). (120)

We shall also designate the spectral density of V(¢) as w(w). Since
the linear operator U(u) can be applied individually to the components
which make up (119) we must have

A*s(u + wa) + A% (u — wa) n wi Gy (w)
8IU(—w) P 8[U(wa) 3 [U@)

wlu) = (121)

The average power on the line is proportional to W,, the average
square of V(¢), which is given by

IV 2wg A2 42
/ = , d = -
o= [, wlw dn S U(=ad |t T 8]0 T

wgA? e G;Q(u)_ .
4t Jsw, | Ulu) |

(122)

+ lu.

We malke the reasonable assumption that | U{w) | is an even function
of w. Combined with the further assumption that the spectral density
of the noise on the line is symmetrical about w, , this furnishes a con-
venient assurance of a symmetrical spectral density for the noise in the
output of the receiving filter. Since (/;() is also an even funection of u,
we can write (122) in the equivalent form

A wad® [0 GE (w)
T iX(es) T2 b X

Wy du (123)

where
X(u) = | Uu) [~ (124)

The funetion X(u) is to be chosen to minimize the probability of
error under the constraint that 177, is held constant. In calculating the
optimum function, the signal power represented by the steady-state
components ean be ignored, since this power could be reduced to an
arbitrarily small value by the use of narrow-band suppression tech-
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niques. The constraint on the signal power is therefore that the integral
in (123) is to be held constant.

Let N(u) represent the spectral density of the Gaussian noise wave
vo(t) on the line. Then the spectral density of (), the noise in the output
of the receiving filter, is X (u)N(u). In terms of the spectral density
w,(w) previously defined for »(t) with values symmetrically distributed
between positive and negative frequencies, we have

X(w)N(u) = 2w,(u + w). (125)

The values of o, and o necessary to complete the calculation of the
probability of error by (34) can now be found by substituting (125) in
(17) and (18) giving the results

2uwg
o = 2[ X(u)N(u) du (126)
0

2w

2ug
o = 2[ WX (w)N(u) du. (127)
0

If we substitute (126) and (127) into the general expression for error
pmbability, (34), and attempt to formulate a variational problem, the
expressions become unmanageable. Instead, we concentrate attention on
the lower bound for error probability obtained by setting R =0, (36),
in which it is evident that to make the error probability as small as
possible both ¢, and ¢, should be made as small as possible. As shown by
(126) and (127), oy and o, are not independent. The effect of the de-
pendence can be taken into account by performing the minimization
problem in two steps. First we minimize o, with both ¢; and Wo held
constant. After this solution is obtained, we find by trial the value of
oy which yields the lowest minimum probability of error.

Omitting inconsequential multiplying factors, we set the variational
problem as

5|:j;2md X(u)N(u) du + X f%d WX ()N (u) du

e | Gh() | I*
Tm .[ X (u) du
where A and g are Lagrange multipliers and the function under variation
is X (u). The solution is

(128)

w|Gi(u) |

(1 + a®)! Ni(u) (129)

X(u) =
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It is straightforward to verify that this stationary value of X (u) actually
gives a minimum value of ¢y and hence minimum probability of error
for fixed values of ¢, and W,

Substituting our partially optimized solution in (123), (126), and
(127), we obtain

2wy
ot =2 [ LA ;\’zg;u) du (130)
2wy ]
o = 2,;[ W |(G1‘(_;‘f)£u’f)*(“) du. (131)
2 2wg
Wem Wo = 24 [ 600 NGO+ M) du (132
2mu Yo
AN (wa) (1 4 Aes)!
W, = 133
4# [ Gl(wd) l ( )
1 Qaq° 2wl I,
&7 T - W) (134)
1 P _ 211,
a?p Awid  mwa(We — W) (135)
where
2w \ ]
_ 4 | (11(1!-) | N (ll-) »
I = fo Ry du (136)
2wy
I = f |Gi(w) [N () (1 + €M) du (137)
0
and

(138)

[ | Gaw) | N )
I; = j'; T+ ) du.

These equations furnish a straightforward procedure for calculating
the optimum filter characteristic. Itach assumed value of A determines
a pair of values p and ap from which the corresponding upper and lower
bounds for the error probability ean be evaluated by computer tech-
niques. By successive trials the best value of X ecan be approximated to
any desired degree and substituted in (129) to obtain the best filter
selectivity function. In actual examples tried, this procedure could be
shortened because the error probability turned out to be very much
more sensitive to the value of p than to the value of ap. If this were
known beforehand, we would place no constraint on ¢; in the minimiza-
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tion of ¢y . This is equivalent to setting A = 0, leading to the simpler
formulas

1 2w, hod ’
b= m [ e v a] o

atpt wwa(Wo — W) o w |G| u) du
(140)

_j;%a | Gi(w) LN'(u) du.

By applying Schwarz’ inequality to the produets of integrals in (134)
and (135), we verify that the case of A = 0 gives the maximum value of
p, but that the maximum value of ap oceurs when A = . It seems
therefore that an intermediate nonzero value of A would be best, but
in the cases computed the improvement obtainable in this way turned
out to be negligibly small.

As an example, consider the raised cosine signal spectrum in which
G (u) is given by (77). We also assume a white noise spectrum in which
N (u) is equal to a constant N, . It is convenient to introduce as a signal-
to-noise ratio the quantity M defined by

We W,

— m = 2and. (141)

M

This is the ratio of average transmitted signal power to the average
noise power in a band of frequencies of width equal to the bit rate.
Computer results show that the case of X = 0 is practically indis-
tinguishable from the optimum A. Hence we set A = 0 and calculate
for the optimum filter

U

N = ovi) — [ ET ] . 9
U(u) = X'(u) (deﬂ) €08 7 | <2wq. (142)

This is the same cosine filter characteristic found by Sunde to be optimum
for binary AM with synchronous detection. I'rom (132) and (133) we
find that with X = 0

2 ]
Wo — W, = LelNol _ gy (143)
2mu
Hence
W, = W¢/2 and Wy — W, = Wy/2. (144)

From (139), (140), and (141) we then calculate
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" e 2 (143)
a‘z 2 _ 31!'211'70
P 7 16wiNo(w* — 6)
a2 (146)
m -
= m = 0.956M.

If the steady-state components were suppressed, we would set W, = 0
and would then obtain p° = M, @’p° = 1.913M. This would correspond
to a 3-db shift in the direction of lower signal-to-noise ratio when the
error probability curves are plotted against 10 log,, 1.

The curves of Iig. 6, showing the upper and lower bounds for error
probability when Sunde’s I'M system is optimized, were calculated by
S. Habib on the digital computer. The case of a nonoptimum receiving
filter is illustrated by the corresponding curves for a rectangular band
defined by

X)) = X, | w | < 2w . (147)
Ior this case we compute from (126) and (127)

2w

0'32 - 2[ XuNu du = 40}dX(]N|} (148)
0
2wy 3y

o’ = 2[ wXoNo du = M". (149)
0 b

From (123)

, A? A? f ( ru\ 54°
o= 4 S 1+ cos v ) du = 2% 5
W e + G, . + cos S, du 8Y, (150)

We then caleulate

ot =2M/5 d’p = 3M/10. (151)
If the steady-state components are suppressed, the average transmitted
power could be reduced to (§ — 1)/(§) = £ of the previously deter-

mined value, which is a saving of 2.2 db.
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