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A relationship is derived between the delay characteristic in a dala trans-
mission system and the distortion in the form of intersymbol interference
created by the delay variation. The relationship is valid for small delay and
involves a sequence of linear functionals, each of which has a particular sig-
nificance. In addition to applications in the analysis of specific systems,
problems of a more general nature may be studied using this approach. By
various manipulations on the sequence of functionals, bounds on distortion
in terms of rms and peak-to-peak delay are derived. On examining the prob-
lem of delay equalization, a set of virtually distorlion-free delay functions is
derived and related to minimum-effort and compromise equalization. Both
low-pass and bandpass systems are discussed in turn, with the same general
method of analysis applying lo cach.

I. INTRODUCTION

In this paper we will analyze and discuss one aspect of the problems
associated with the transmission of digital data through an unknown
linear network. The particular aspect with which we will be concerned is
the effect of delay distortion on the fidelity of the transmission. Delay
distortion arises generally from nonlinearity in the phase shift with fre-
quency of the system transmission characteristic. This nonlinearity
causes different frequencies of the input waveform to arrive at the re-
ceiver at different times, thereby distorting the input waveform.

The problem of delay distortion is particularly acute in the voice tele-
phone network. Since speech is relatively insensitive to phase, the
switched telephone network has not been equalized for phase shift as
well as it has been for attenuation. However, the need has now arisen
to make use of this network for transmission of digital data at high
speeds. The digital data receiver takes the waveforms it receives quite
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literally and becomes hopelessly confused by delay distortion if we try
to send at too high a rate. For instance, in a voice-band channel of 3 ke
Nyquist’s famous result tells us that it might be possible to send 6000
independent signals (representing data symbols) per second. However,
the usual rate is around 1000 symbols per second (2000 bits for quater-
nary systems), and higher speeds are impossible because of transmission
distortion.

In subsequent sections of this paper we will be concerned with quanti-
tative effects that delay distortion has on data transmission. This does
not mean that we will analyze any particular system operating in the
presence of a particularly shaped delay variation. This has been done
previously by a number of authors, but notably E. Sunde.! 24 Rather,
we will be more concerned with the gross features of the relationship
between delay and system performance. I'or example, if a particular level
of performance is required, what standards may be set on delay such that
this minimum performance level will be guaranteed? What shapes of de-
lay are particularly bad or good? How well does differential delay (the
difference between the maximum and minimum values of delay across
the band) define performance? If a channel is equalized within a certain
tolerance of delay, what level of performance can be achieved?

Inasmuch as the telephone network consists of an ensemble of trans-
mission characteristics from which the channel is randomly chosen, these
questions would seem to be more meaningful than specific performance
figures for particular channels. Consider the problem of comparing data
systems for transmission over the voice network. It is clear that this sus-
ceptibility to delay distortion is an important factor in such a comparison.
The performance of system A will be a random variable defined over the
set of possible connections we could dial, likewise system B. The ana-
lytical portion of comparing the two systems would be best shown as
the probability distributions of performance for the two systems. One
system could only be said to be statistically ‘“‘better’” than the other.
For example, its average performance over the ensemble of channels
might be greater.

Data are now becoming available on the delay characteristics of the
voice network (e.g., Alexander, Gryb and Nast).? Using these data, it
might be possible to analyze systems for which the delay characteristic
is echosen randomly from this network, or it might be possible to synthe-
size systems which operate well (with high probability) over this net-
work. The latter could be accomplished by taking advantage of certain
features common to the majority of delay characteristics. One way of
doing this is to use a “‘compromise’’ equalizer. Quite a question exists as
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to how to design such an equalizer and how much would be gained by
its use. Other possibilities include the use of a bank or set of equalizers
from which a best choice may be made for each call or the ultimate use
of automatic equalization.

In the remainder of this paper we will show an approximate method
whereby the effects of delay distortion may be easily considered in an-
swering such questions as we have asked here. The first section will be
devoted to explaining what performance criterion will be used whereby
a particular channel may be judged as to goodness for data transmission.
In subsequent sections the criterion suggested will be manipulated to
show clearly its dependence on delay for both lowpass and bandpass sys-
tems. A summary of results obtained is presented following the section
on criteria.

II. A PERFORMANCE CRITERION

What we seek in this section is a eriterion which may be applied to a
transmission channel to determine how good the channel is for data trans-
mission. Obviously, such a eriterion should depend upon what system we
intend to use over the channel as well as upon the noise environment and
input data statistics and the over-all system performance criterion (such
as probability of error) that is used. A channel can’t be said to be “good”’
or “bad” irrespective of how we intend to use it. Therefore, the only
exact thing which can be done is to treat each possible system sepa-
rately and derive the relationship between delay and performance sepa-
rately for each.

For example, Sunde! 234 has analyzed several common systems such
as AM, PM, and FM in a noiseless environment, using the deviation of
the detector output voltage from its undistorted values as a measure of
performance. When the details are carried out, the system performance
is given as a function of sample values of the impulse response of the
over-all system. We call this impulse response k(t)

Wt = }rfm A(w) cos [ut — B(w)] do (1)

where A(w) includes signal shaping at the receiver and transmitter as
well as the attenuation characteristic of the channel and g(w) is the
channel phase characteristic. Unfortunately, the relationship between
the samples of h(t) and system performance is a complicated one and it
is unclear as to how the shape of the delay, 8'(w), affects the perform-
ance.
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What we shall do is to take one specific system, amplitude modulation,
and show that its performance is monotonically related to a quantity

Z | h(to + nT) | = ;M,,[ (2)

=
n#ll

which we shall call distortion.

Now, in later sections of this paper we will see how the shape of delay
affects this distortion measure. Therefore, the results given in these sec-
tions may be interpreted as performance for AM systems. However, we
shall argue that this distortion measure may be quite plausible even
though the system being used is not AM. Indeed, many common sys-
tems may have their performance related monotonically to D. This is
to say that a channel which is bad for AM is probably bad for PM too.
This may be considered similar to the “What’s good for General Bull-
moose is good for the U.S.A.” proposition, but the thought may also oceur
that, considering the unknown nature of the noise and input data sta-
tistics, the criterion (2) may be just as good a starting point as some
arbitrary definition of environment and performance measure. At any
rate, we do not intend to dwell on the difficult problem of criteria here.
The criterion D is monotonically related to performance for linear sys-
tems and for those systems which can be approximated as linear.

2.1 The Performance of a Stmple Baseband System

A mathematical model of this system is shown in I'ig. 1. The trans-
mitted signal consists of amplitude-modulated waveforms whose shape

is gi(t)

+oo
S(t) = Z arigl(t_'ﬂT) (3)
n=—=00
TRANSMITTER CHANNEL RECEIVER
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PULSE |
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n=-00 n=-00

Fig. 1 — A baseband amplitude-modulated system.
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and is generated in our mathematical model (not in practice) by a train
of area-modulated delta functions pulsing a filter whose impulse response
is ¢1(1). The transfer function of the channel is Ga(w)e™™, so that the
over-all transfer function for the impulse is A(w)e®™? with

A(w) = Gi(w)Ga(w).

In the noiseless case, the received signal y(t) is

o 4o
y(t) = f h(r) D ab(t —nl — 71)dr (4)

n=—00

where h(t) is the over-all system impulse response
1 [t
h(t) = = f Alw) cos [wt — Blw)] do. (5)
]

Equation (4) may be written

40
y(t) = Z ah(t — nT). (6)
We sample this received signal at regular intervals of 7' seconds starting
at time f, . At time {, we expect the amplitude a, , but we actually get

+o0 +e=

y(t) = 2 ah(ty — nT) = >, a_h(to + nT) (7)
which is a function of the history of the data sequence {a,}. For some
sequences (o) will be more likely to be detected wrongly than for
others. The error due to intersymbol interference s

+

E = ay— y(t) = aoll — h(to)] — 2 a_ah(te + nT). (8)

n=—=0

n#0
Now, we are interested in the maximum value this error (which is fre-
quently termed the eye opening) can assume. Assuming the maximum
positive and negative values of the coefficients a, are d and —d re-
spectively, this maximum error is easily written as

Euax = all — h(to)] — d@ 2" [ h(te + nT) |. (9)

The first term represents an amplification or attenuation of the signal
by the channel, while the second term represents the worst possible
effect of intersymbol interference. The prime in the summation sign
means deletion of the n = 0 term
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+%
;’ ==);; (10)

With the attenuation A(#) close to unity* or normalized, we see that
the distortion is proportional to

D = X" | hity + nT) |. (11)

If the noise were additive with a unimodal distribution, the maximum
probability of error over all sequences would be a monotonic function
of D. IFor example, if the levels a, are spaced equally between +d and
—d and there are N levels, the distance between levels is

2d
|H" —_ ﬂq;-[' =N7—1 (12)
and the probability of making an error with Gaussian noise of mean

zero and variance ¢ is

max prob of error = prob ( | noise | > ¢
lan] N - 1
(13)
—a Y | ity — nT) ;)
, _ 1 . |_ad |

erf (ﬁ) = \/_1‘2—1_ f:z e . (15)

The distortion D is a function of the initial delay, {, . This sampling
time is optimally chosen such that the criterion D is minimized. This
best time is a functional of the delay 8'(w) through its influence on the
impulse response. Unfortunately, it is extremely difficult to optimize
lo even for a specific impulse response. Therefore, we shall arbitrarily
choose ) at the peak of the impulse response. This is a very good approxi-
mation to the best possible sampling instant.

2.2 Discussion of the Criterion D

The distortion criterion D has been written as the sum of the absolute
values of the system impulse response sampled at the symbol repetition

* This is a second-order effect for the small-delay case in which we will be in-
terested.
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rate. The zero sample of impulse response, hy = h(to), is taken at the
peak of the response and is deleted from the summation. We have shown
that for an amplitude-modulated system this criterion is proportional
to the maximum deviation in the absence of noise of the detector output
voltage. The maximum is taken over all possible input symbol sequences.
This performance measure is frequently termed the “eye opening,” from
the resemblance to an eye when the output voltage is displayed on an
oscilloscope while random patterns of input symbols are transmitted.

That the criterion D) is reasonable for most linear systems may be
roughly shown. We recognize that h({) represents the system memory,
or response from past signals. At time {, we are looking for symbol sg,
but unfortunately the system remembers remnants of past and future*
symbols at this time. The symbols are spaced 7' seconds apart so that
the nth past symbol is “remembered” with relative amplitude

| h(te + nT) |.

It makes sense that, the larger the sum of these relative memories, the
worse will be the intersymbol interference. We will show in the course
of our later work how well the performance of a nonlinear system employ-
ing phase comparison detection is predicted by use of the distortion
criterion D.

2.3 A General Di-lortion Criteriont

More generally, we would wish to send the signals chosen from a set
si(t),1 = 1,2, ---, N. Each symbol is chosen according to some prob-
abilistic rule from this set in time sequence to form the signal

+a0
a(l) = 2 st — nl). (16)
n=—w

The signals s;(t) are sometimes viewed as veetors in a Hilbert space or
in some finite-dimensional subspace. The effect of sending the sequence
x(¢) through a linear network is to cause the received signal during a
T-second interval to be a linear combination of the desired signal vector
and all other unwanted signal vectors rotated and attenuated by the
channel. For a given channel, if we consider the position of the resultant
vector for all possible infinite sequences of symbols, we define regions of

uncertainty in signal space surrounding the unperturbed vectors s; .
For purposes of combating noise we are concerned with the distances
* The memory of future symbols is possible because of the time delay iy between

input and output. .
t This section is not essential to the understanding of subsequent material.
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in signal space between the transmitted vectors, that is, with the num-
bers || s; — s; ||, ¢ # j. The greater this set of numbers is, the greater the
potential noise immunity of the system. The effect of the channel is to
make these distances a function of the symbol sequence. So we can say
something about what the channel has done to the noise immunity by
specifying the minimum protective distance || s; — s; ||, ¢ # 7, with and
without the channel. Thus, we might define a measure of distortion as

Dy =1 — min [m'n MI:I (17)

id Lwizri | Si — Si|
i

R; = region of uncertainty due to intersymbol interference surrounding
the symbol s; .

This criterion is illustrated in Fig. 2. The way the criterion was formu-
lated did not take into effect the receiver characteristics, but rather
evaluated the “loss of detectability’” to an ideal maximum likelihood
receiver owing to intersymbol interference. Notice also that this eriterion

R,
S2
N
AY
\
W\ da
\
\
d AN
R
3 1 \\ Ry
\
Sa \

Rp=REGION OF UNCERTAINTY
OF Sp DUE TO INTERSYMBOL
INTERFERENCE

dy=UNDISTURBED PROTECTIVE
DISTANCE ||S; -S|

Ra dz =MINIMUM DISTANCE
ly-s2|l, Yy=R,
da
Sa DISTORTION =1- a,

Fig. 2 — A general distortion criterion,
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is dependent upon the system to the extent that it is a function of the
set of possible signals, s;(1). As was previously stated, it is impossible to
eliminate system dependence from a criterion and maintain usefulness
for all conditions.

When this measure is applied to the AM system of Fig. 1, the result
is the eriterion D previously expressed in (2).

III. SUMMARY OF RESULTS

The problem now is to explore the functional dependence of the dis-
tortion, D, upon the delay characteristic, #'(w). As we have previously
shown, the distortion D is a measure related to the eye opening for most
linear systems. Specifically, for an N-level AM system we have

I y-tevel AM & I - (N - I)D- (]8)

However, by ignoring second-order effects the criterion may be applied
to some nonlinear systems. In examples used subsequently in the text,
results are obtained for a four-phase data system using phase comparison
detection. These results are in close agreement with published data on
this system. The eye opening for this system is approximately

Jr-&-plmse ~ 1 - D- (19)

Similar expressions may be obtained for other systems.

3.1 The Fundamental Equation

In Section 4.1 an approximation of small delay is made. The validity
of this approximation is explored in a later section, where it is shown to
hold for all delay such that the peak delay is limited to 1.1 pulse intervals.
For most delay curves the range is wider than this figure, however, and
accuraey is generally maintained when D = 0.6.

The fundamental equation obtained with the aid of this approxima-
tion relates the distortion to the delay variation through a sequence of
linear functionals

D=23 (8,5 (20)
where
@5 = [ " B (@)fu(w) de. (21)

Each linear funetional yields the intersymbol interference from a par-
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ticular range of symbols. For example, the adjacent symbol interference
is

]+ 1Al = 2 (800 (22)

For real delay curves only the first few terms of (20) are usually signi-
ficant.

The linear functionals (8',f.) are defined by a sequence of functions
{f.}, independent of delay, obtained from the amplitude shaping of the
system, A (w), by the following operation

fnlw) = fw [awr — sin naT] A(z) dx (23)

f wA () sin neT de
a, = 0 . (24)

]:D o'A(w) dw

3.2 Application

Examples are given of the use of (20) in the analysis of system per-
formanee when raised cosine amplitude shaping is employed. By re-
formulating the equation to

D = g max (ﬁ’, Z e,.f,.) (25)
T {en) n=1
€, = =1

bounds on distortion in terms of delay may be derived. We find

D = 1.15 X (rms delay) (26)
D = 0412 X (peak-to-peak delay) (27)

with delay normalized so that the bandwidth w = . The delay curves
which achieve equality in the bounds (26) and (27) are illustrated. Other
bounds are considered.

In computer simulations, experimental testing, and analysis it is fre-
quently necessary to consider only finite-length input sequences resulting
in an effective truncation of the system memory. The possible error in
such results is examined and bounded.

The effect of changing the input symbol rate upon distortion is ana-
lyzed for a particular example where a binary system is compared with a
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quaternary system operating at half speed (thus having the same infor-
mation rate). Depending upon the particular delay function, either
system may perform better than the other. However, it is shown that
the quaternary system is ultimately the more sensitive to delay variation.

Problems connected with delay equalization are approached with the
aid of (20). In the equalization of a specific delay to achieve zero dis-
tortion, it is necessary and sufficient that the resultant delay variation
be orthogonal to all f, . For raised cosine shaping there are an infinite
number of nonconstant delay curves which have this property. An
orthonormal basis for this space of distortionless delay is derived, and
examples of projections yielding minimum effort equalization are given.
[All curves so derived have, of course, zero distortion only to the order
of approximation involved in (20)]. Optimum compromise equalization
to match an ensemble of delay variations is also considered.

3.3 Bandpass Modifications

For bandpass systems the eriterion D is reformulated using the sum
of samples of the envelope of the impulse response

D = 2 Pty + nT) (28)
h(t) = P(¢) cos [wd — ¥(1)] (29)

w. = carrier or reference frequency.

A fundamental equation for bandpass systems analogous to (20) is
derived involving quadrature components

D = VDi T Dy (30)

The distortion component D, results from even components (for sym-
metrical amplitude shaping) of delay variation, and the component D,
results from odd components of delay variation. Each may be treated
as in the low-pass analysis by a sequence of linear functionals

Dr = ?r "Z=l i (ﬁo,: frn) l (31)
Dq = :i "ZZI | (‘P’sfuu) | (32)

where ¢'(w) is the bandpass delay and the sequences {f.,} of even func-
tions and {f,.} of odd functions are derived from the amplitude shaping
by operations similar to (23).

All results obtained for low-pass systems may also be obtained for
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bandpass systems. For example, it is shown that for raised cosine ampli-
tude shaping
D = 1.337 X (rms delay) (33)
33
D = 0467 X (peak-to-peak delay).

Thus the bandpass system is slightly more sensitive to delay distortion
than its baseband equivalent.

IV. THE RELATIONSHIP OF DISTORTION TO DELAY FOR LOW-PASS SYS-
TEMS

4.1 Derivation of a Sequence of Linear Functionals Relating Distortion,
D, to Delay, B'(w)

D=3 |hity+nT)| = E eh(to + nT) (34)

+1 h(ty + nT) 0
€ = (35)
-1 ity +nT) <0

v

D=Ye fu A(w) cos [wlto + nT) — 8(w)] do  (36)

D = 1 Z’ [fucn - EnSu] (37)
T n

C, = fw A(w) cos nwT cos [wty — Blw)] dw (38)
0

S = [ Alw) sin no sin lolo — Aw)] des (39)
0

Equations (34) to (39) are self-explanatory reformulations of the
criterion D. Equation (37) is summed over all n, — » to 4 », except
n = 0. Because of the obvious symmetry properties of C, and S, ,

namely ¢, = C_, and S, = —8_,, we can rewrite (37) as a sum
over positive integers only
1 o0
D = ;_ Zl [Cn(fn + E—n) - Sn(€ﬂ - é—ﬂ)]- (40)

Since ¢, = =1, one of the pair (e, + e-,) and (e, — e_,) is zero and the
other must be +=2. Therefore the criterion becomes

D=?ri;lma.x(|0..|,|8n|). (41)
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What we are doing here is evaluating terms of the sum D of (34) two at
a time. The integral C, represents [h(f, + nT) + h(to — nT)], while the
integral S, represents [h(ty + nT') — h(ty — nT)]. Since what we want
is | h(to + nT) | + | h(ty — nT) |, this is equivalent to | C,, | if these two
terms are of the same sign and is | S, | if they are of opposite sign. We
shall now argue that, for small delay, | S, | > | €| and (41) may be
summed over the S, terms alone.

Specifically, what we mean by small delay is that the sine and cosine
of [wty — B(w)] may be approximated by the first terms of their ex-
pansions. Later we will investigate the conditions under which this
approximation is valid. Making these approximations in (38) and (39)
gives

C, = f A(w) cos neT da = 0 (42)
0

(since we must assume that A(w) is such that transmission is perfeet in
the absence of delay, distortion; i.e., h(nT) = 0, n # 0).

S, = f ol — ()] A(w) sin neT do. (43)

Thus we see that, to this order of approximation, terms linear in

[wto — B(w)], | Su| > | Cu|,* and

D=2% 18] (44)

Now, as we have previously explained, the initial delay ¢, is ideally
chosen so as to minimize D for a given h(¢). Unfortunately this is im-
possible to do analytically. We recognize that for zero delay distortion
{o = 0and that the presence of delay increases to . As a good approxima-
tion to the ideal sampling time, we are using {, as the time of the peak
value of the impulse response 2(f). An additional, and extremely im-
portant, consideration in this choice is that the approximation of
|wlo — B(w)] small has been made. To choose # at the peak of the im-
pulse response results in the smallest possible values for the function
[wle — B(w)]. We shall see this more clearly later on.

* The second term in the cosine expansion is
w1
- f Q{wfo — B(w)PA(w) cos nwT de.
0

Since [wlo — B(w)]? < | @ty — B(w) | we would generally expect | Cy | to be smaller
than | S, | . However, this is not necessarily true; e.g., [wto — B(w)] may be or-
thogonal to sin nwT on the [0,w] interval.
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We now solve for the time ¢, as a functional of 8(w) using the equation
h(ty) =0
Kt =0="22 [ wA(w) sin [wl —B()] da (45)
T o
[ tate = () (@) do = 0 (46)
0

fw wd (0)8(w) do
h = 0 . (47)

f wA(w) dw
0

Notice that #, is a linear functional of f(w) and observe that conse-
quently S, , (43), is linear in B(w). Therefore, according to the theorem
of Riesz,® S, is expressible in the suceinet form

Se = [ 18 () do (48)
since B(w) is linear in 8'(w). We now proceed to put S, into the form of
(4%)c;mbining (48) and (43), we write S, as

S, = fnm Blw)aw — sin nwT)A(w) do (49)

where a, does not depend on 3, i.e.

f wd (w) sin nwT dw

0

n = - w
[ A0 do
Integrate (49) by parts to yield
= sln(@)| = [ @) do (50)
gulw) = fm . — sin naT)A(x) dx (51)
0

which may finally be manipulated to give

_ j(;wf,,(w)ﬁ"(w) de (52)
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where
falw) = fw [a,z — sinnxT]|A(z) d. (53)
We have now written the distortion D as
D=23 181 (54)
T =

where each term S, is a linear functional of delay and represents the
distortion arising from intersymbol interference from symbols +n sym-
bols away. Obviously the terms S, become quite insignificant for large ».
For many delay curves, the principal interference is from adjacent sym-
bols and only S; is of major importance. We shall demonstrate this when
A(w) is the commonly used raised cosine shaping and the delay is
parabolic.
Using the Schwarz inequality in (52) gives a useful bound on S, .

| S, \ = P Rl (55)
“fn“ = /‘/f f,, w) dw

,‘/ f (w}] dw = rmsdelay X v/w.

(56)

s

Thus we can see how fast the sucecessive terms in (54) must approach
zero. The total distortion is of course bounded by

D<—1|BI\E

n

fu - (57)

The norm || f, || may be thought of as the sensitivity of a system to
intersymbol interference at a distance of #=n symbols. The greater | f, |,
the more sensitive the system is to delay distortion.

The effect of the shape of the delay curve is clearly illustrated in (52),
which is abbreviated

S, = (B'f.) (58)

and represents the inner (or scalar, or dot) produect of the functions
(vectors) f, and 8’. S, is less than or equal to the product of the lengths
of the two vectors, which is what the Schwarz inequality in (55) says,
and the equality oceurs when the delay g'(w) has the same shape as

Ja(w).
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While expression (57) represents an upper bound on the distortion as
a funetion of rms delay, this bound is generally not realizable. In fact,
this bound is generally useless, since the sum of the norms || f, || fre-
quently diverges. This does not mean the distortion can diverge, since
this would require the delay to simultaneously have appreciable com-
ponents in the direction of each of the vectors f, . In the two examples
we will study, it is shown that this divergence is possible in one case,
where all the f, are approximately in the same direction, whereas it is
impossible in the other, where the f, are nearly orthogonal.

To find a least upper bound on distortion as a function of rms delay
we write

9 = +1 Sn ; 0

D==3% e = (59)
T =1 _1 Sn < 0
25 , 2( <

D == E EH(IG ’fn) = - ,8 y Z: Enfn) . (60)
T n=1 T =1

The distortion D is thus a scalar product of delay and some combination
of the functions f, . The sequence of sign coefficients {¢,} is chosen so as
to maximize this scalar product. The resulting value of D is the same as
forming the sum of absolute values of the individual scalar products

(B'fn)-

Using the Schwarz inequality in (60) we obtain

D= M X (rms delay) X max || 2, efu (61)
T [€n] n=1
D < 9\/— X (rms delay) X max |:E E enem(fn,fm):l- (62)

Expression (62) is the least upper bound on distortion for a given value
of rms delay, and the equality is obtained when

lg:worst. = Z;fnfn . (63)

The inequality (62) may be used to define the over-all sensitivity of a
system to delay distortion

D = (rms delay) X (sensitivity) (64)
sensitivity = 2—£ ma'x [Z > enem(fu, fm):l . (65)
[€n n=1 m=1

The sensitivity is equal to 2\/ w/w times the length of the longest vector
which can be obtained by summing the vectors +f, .
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We also have the obvious bounds

2vw [ !
v [ 1IlJrﬂli*] < sensitivity

™ ne=

(66)

o

=

Vol 5 5 1 (s ]

n=1 m=1

4.2 Example — Perfect Low-Pass System Operating at the Nyquist Rate

As our first example we choose the “ideal” system, a perfect low-pass
channel operating at a rate of 21/ symbols per second

A(w) =1 0=EwsEnr
Alw) =0 T w
(67)
T=1
w = T.
We now evaluate the function [, (w), using these values
1w) = [ law — sin nat) de (68)
f @ SN Nw dw _3
a, = iri = :. (_1)" (ﬁg)
2 nr-
f w dw
0
flw) = f [a,x — sin na] dx
: (70)
(=" [ 3 5 (=1)"cosnw _ l:l
T n A n 2"
If the delay is constant, say 8'(w) = ¢, we have
So= (@0 = [ ulw) do (71)
0

y 1 ‘J'I'3 3 1y 1 (—1)“ _

Thus there is no distortion when the delay is constant. Of course we al-
ready knew this, but it serves as a useful check on the method.

Looking now at the system sensitivity, we compute the following
products
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(furfin) = %[g-%(miJr}T)] " m

1= T 6
m[ﬁw‘;@] n=m

Choose all the coefficients e, as positive and it is immediately seen that

2 ® ® i
sensitivity = 7,;[2 > (f,,,f,..>] o (74)

(73)

Il

n=1 m=1

Therefore the perfect low-pass channel is infinitely sensitive to delay
distortion, so that the smallest increment of delay can result in diver-
gence of the eye picture. This result is not entirely unexpected, and is a
good reason for not using “perfect” channels even if they were physically
realizable.

1.3 The Raised Cosine System

4.3.1 Derivation and Discussion of the Functions f,(w)

Now, instead of the flat amplitude shaping of the previous example
which was so sensitive to delay distortion, we use a more gradual cutoff.
The raised cosine shaping is the shaping most frequently used in prac-
tice, since it retains the proper zero crossings at the Nyquist rate and, as
we will show, is less sensitive to delay distortion. Of course the penalty
one pays for this protection against delay distortion is a doubling of the
bandwidth for a given symbol rate as compared to the flat shaping
previously discussed.

For the raised cosine shaping we have

A(w) = cosw + 1 0=ws=En
Aw) =0 wZ T (75)
T =2 =
f @ sin 2nw(cos w + 1) dw
a, =2 — (76)
f w(eos w + 1) do
0
@ — 1
T ’ 77
(% — 2) 2n(dn® — 1) _ (77

Notice that a. falls off as 1/2° as contrasted with the previous example
where a, ~ 1/n.
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falw) = f [a,2 — sin 2na](cos x + 1) da (78)
fulw) = a, cos w + .T(_fanﬁ cos (2n — 1w

+ i cos 2nw + - cos (2n 4+ 1)w  (79)

1
2n 2(2n + 1)

2 2
+ a,w sin w —]—a'_')w — a, [1 -f—%:'

The first few funetions fi(w), f:(w), and fi(w) are shown in Fig. 3.
Observe that fi(w), representing adjacent symbol interference, has the
greatest energy of these functions. Its shape in crude terms might be
deseribed as one cycle of cosine exponentially attenuated. The next
funetion, f2(w), eonsists of about 2 eycles of cosine with less exponential
attenuation, and this trend continues for the higher-order functions.
The effect of delay distortion on the raised cosine system can be visu-
alized with the aid of these functions. About the worst form of delay
consists of one eycle of delay looking like fi(w). When the residual delay
consists of a large number of ripples, say n cycles, then its distortion is
not so great and comes largely from intersymbol interference at a dis-
tance of n symbols. When the delay is a slowly varying function of w,

1.0

0.8 00
DISTORTION= %r?;. I(f‘n ,ﬁ‘)‘

0.6 B’ =DELAY

0.4

0.2

-0.2+

L
o w2 T
G —

Fig. 3 — The functions f.(w) for raised cosine shaping.
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the higher-order terms S, = (f,,8) n > 1 become insignificant, and
only adjacent symbol interference is of importance.

4.3.2 Use of the Functions f.(v) in Computing Distortion

All the funetions f,(w) integrate to zero over the [0,7] interval, so
there is no distortion when the delay is constant. Now suppose we have
parabolic delay

Blw) = hw'. (80)

This is the general shape of delay to be expected in an unequalized
voice channel.,

Carrying out the relevant integrations gives
Sy =f ko'fi(w) dw = —0411xk
0

S. = 0.0257k (81)

8, ~ 0.28?#!; .
n

In Ref. 2, Sunde computes the impulse response of a raised cosine
network with parabolic delay distortion. In terms of the parameter m,
the maximum delay in pulse intervals used in this reference, we find

k= 2m/=". (82)
Using a value of m = 2 we read from Sunde’s curve*
[f| + [ha| = 031 (83)

while from (81) we have
2
ih'1!+lh*1r=;lsll=0-33- (84)

The agreement is good, although the value of delay m = 2 is somewhat
outside the range where the approximations are entirely valid.

To compute the distortion arising from parabolic delay we form the
sum

r) - -]
D= 1:r > | S.| = 0912k, (85)
n=1

* We occasionally abbreviate h(fy, + nT) as simply h, .
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Notice that some 90 per cent of this distortion is due to the term S;
(adjacent symbol interference). For this general shape of delay the term
S: = (#,f1) would seem to be sufficiently indicative of system perform-
ance.

As another example of the computation of the effect of delay, we con-
sider delay of the form

B = a cos vw. (86)

This cosinusoidal delay is of the type frequently encountered as residual
delay after partial equalization or in wider band systems. Depending on
the number of cycles of delay across the band », only one or two of the
terms S, are of importance. These are the terms n = v. These various
products (8',f,) are shown as a function of » in Fig. 4. Each product
(B',f.) peaks for » a little less than n cycles and is very small elsewhere.

Rappeport’ has studied the effect of this type of delay on the 4-phase
data set using phase comparison detection. This study was effected using
a digital computer simulation of the system. Rappeport plots curves of
eye opening versus the number of cycles of delay in the passband, ».
Since the cosine is symmetrical, our low-pass results carry over directly
to the passband in this case. The 4-phase system is essentially nonlinear
because of the multiplication in the detection process. An exact expres-
sion relating eye opening to impulse response is not derivable for this
system. An approximate expression for the eye opening is

I=1-D. (87)

This expression neglects terms involving products such as h,h,. . When
the first four curves in Fig. 4 are summed to form D, the curve relating
eye opening to delay frequency may be drawn as shown in Fig. 5. This
curve is compared with the curve computed by Rappeport using a = 0.5
in each case, and it is seen that the general agreement is quite good
except for somewhat more oscillation in the latter than in the former.

The exact eye opening for the 4-phase system depends not only on D,
but on the relative magnitudes and signs of the samples £, which sum to
form D.

4.3.3 Sensitivily and Bounds on Distortion for Raised Cosine Shaping

The sensitivity of the raised cosine system to delay distortion may be
calculated from consideration of the functions f, . For n > 4 the terms
involving a, become approximately negligible and f, consists of the
terms
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24 ~ |
Is,|= (a3, ) DELAY = a COS Vw
22—+ f | ADJACENT symBoL — 2%
INTERFERENCE DISTORTION = ﬁnz_:' fsn I
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[S2| =|(A; f2)|
/\ ]

\ '53| = I(ﬁ: fa)l
ra

RELATIVE AMPLITUDE

)|

o] 1 2 3 4 5 L] 7 8 9 [¢] i 12
DELAY FREQUENCY, ¥, IN CYCLES

Fig. 4 — Various components of distortion for cosine delay.

1 1
~_-—————cos (2n — + — 2
In 500 = 1) cos (2n — 1w 5y, 08 2ne
(88)

+ 5(2111——1) cog (2n + 1)w.

Thus f, becomes approximately orthogonal to all f,. except for m = n
and m = n &+ 1. There is an overlap between f, and f,: in the term
1/2(2n 4+ 1) cos (2n + 1)w and similarly an overlap between f, and
fuoa in the term 1/2(2n — 1) cos (2n — 1)w. Obviously, to construet
the sequence {¢,f,] of greatest energy we choose the signs e, such that
all these shared cosine terms (the other terms are orthogonal) add in
phase and thus reinforce each other. Thus it seems reasonable that
e, = +1lforn =2 M.
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Fig. 5 — Iye opening for 4-phase data set for cosinusoidal delay.
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By an exhaustive search on a digital computer of the effect of the first
twelve coefficients e, , it was found that the maximum energy combina-
tion oceurred for all ¢, = +1 except for & = &2 = €5 = —1. We designate
this combination fue.(w) (maximum energy combination). This function
has the worst shape a delay can assume for a given rms value, and
the sensitivity of the system is proportional to the norm of this function

Zf"(w = 2[filw) + falw) + fi(w)].

n=1

fmuu( w )

We first perform the infinite summation involved here

D]E e

I:m cos (2n — 1w

n=1

Efu(w) = [C()Sw 4+ wsin w +%_ — (1 +

LY

n=1

+ s 2nw +

n

m

Both sums can be put in closed form. The first sum is

- -] l
= e

while the last sum in (90) may be recognized as simply

Z= T m_ i = 0.14973

cos (2n + l)w:|.

(89)

(90)

(91)
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> L cos nw — % cos w (92)
=1 2
which converges to
—log | 2 sin%’ ’ - % COS w. (93)

So that we finally find
2

fumeo(w) = 0.14973 [w sin @ + 5 — 2.64493] — 0.35027 cos w
) (94)

— log

2 sin = } — 2fi(w) — 2fo(w) — 2fs(w).

This function is shown in Fig. 6. A delay curve of this shape has maxi-
mum detrimental effect on the raised cosine shaped system. The norm
of fmec(w) was computed numerically to be

| fnee || = 1.02 (95)

and so the sensitivity of the raised cosine system is

2f

sensitivity = || fuee | —— = 1.15 (96)

D = 1.15 X (rms delay) (97)

In the previous paragraphs we investigated the effect of cosinusoidal
delay. I'or this shape and for an amplitude @ = 0.5, the bound (97)
gives D < 1.15 X 0.5 X 0.707 = 0.407, so the eye opening (1 — D)
must be greater than or equal to 0.593. This value is shown on Fig. 5
along with the curves representing actual and computed performance
for the cosine delay. At the lowest dips in these curves the distortion is
about % of the bound (97). The distortion computed for the parabolic
delay dlstomon however, is only about } of its corresponding bound.
As might be anticipated, the parabolic shape is a relatively weak form of
delay distortion.

It is also of interest to compute bounds on samples of the impulse
response.

[l + [ heal = 21 (8,5 | = \%H 7ol X (rms delay) (98)

|| + | ho | = 0.829 X (rms delay) (99)
|ha| 4 | hoe| = 0.443 X (rms delay) (100)
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Fig. 6 — RMS bound on distortion; D = 1.15 X (rms delay).

[ha| + | hs| = 0.289 X (rms delay). (101)
For large n we have asymptotically

< V3

= 99

[ ho | + | Ao | X (rms delay). (102)

Thus the individual samples of the impulse response are only bounded
inversely proportionally to their distance from the peak time of the
impulse response. In each case the maximum value is obtained when the
delay is some constant times f,(w). However, the sum of all these terms
can never exceed 1.15 X (rms delay), which paradoxically is less than
the sum of the attainable bounds on only the first two terms.
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Since adding or subtracting any constant delay does not affect the
distortion D, the bounds given here are most effectively used by first
subtracting the mean value of delay and dealing only with the varia-
tional component.

We can find similar bounds in terms of peak-to-peak constraints on
the delay. The “differential’” delay is frequently taken as the difference
between the maximum and minimum values of delay across the band.
We shall now find the shape of delay which maximizes distortion for a
given peak-to-peak constraint and the corresponding value of distortion.

From (60) we have

D - - InaX (B Z ann)- (103)

T [en)
If B'(w) is peak-limited then the maximum value of (103) is obtained

. ’ . oy ’
when 8'(w) is chosen as +Bmex wWhen D ef, is positive and —Bmax
n=1
-}

when 2 e.f. is negative. The resulting distortion is
n=1

)

E Eﬂfﬂ.(w)

n=1

2Bmax v
Diax = max f
0

T leal

(104)

The problem reduces to finding the combination of signs {e,} such that
the absolute integral of ¥ e,f,(w) is maximized. We call this maximiz-
n=1

ing combination fu.i(ew) (maximum absolute integral). By trial and
error on a digital computer, the following sequence of signs for raised
cosine shaping was found

e, = +1 except ¢ =& = —1 (105)

Fni(w) = Z fulw) = 2[fi(w) + filw)]. (106)

This function is shown in Fig. 7. The worst peak-to-peak delay is

positive when fu.i(w) is positive and negative when fmai(w) is negative.

This worst delay curve is also shown in this figure. It is rectangular in

shape with the single axis crossing at w = 0.32x. The integral of | fmai(w) |
was computed numerically, so that from (104) we have

9
D =2 % 1.293 X % (peak-to-peak delay) (107)
m p)

D = 0412 X (peak-to-peak delay). (108)
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Fig. 7 — Peak bound on distortion; D = 0.412 X (peak-to-peak delay).

For example, the peak-to-peak delay of the cosine delay example was
1.0 and so the bound on D is 0.412 for this particular class of delay
waveforms.

4.3.4 The Effect of Increasing the Period T on Distortion

It is possible to decrease the distortion due to intersymbol interference
by sending symbols at a slower rate. If the same information rate is to
be retained, the amount of information a given symbol conveys must be
proportionally increased. With more symbols to be distinguished at the
receiver, the smaller amount of distortion may be even more troublesome
than before the rate was diminished, so there is a question as to whether
or not the system performance for a given information rate can be
improved by sending at a slower rate.
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We consider a binary AM system. We previously found that the dis-
tortion from the normalized quiescent values of +1 and —1 is limited by
the inequality

D = 1.15 X rms delay. (109)

Suppose that we now send at half speed and, in order to maintain a con-
stant information rate, change from a binary system to quaternary. First
we compute a new value for sensitivity using the period 7' = 4.

Obviously the same functions f,(«) that we computed before still
apply, with the change that we now use f;,(w) instead of f,(w). Now
there is no overlap in the successive cosine terms in f,(w) and f,;(w) and
the terms f,.(w), fu(w), n # m are very nearly orthogonal.

Assuming orthogonality we can easily compute the sensitivity from
(65)

- )
sensitivity = \—;: [g 1 fon nz] (110)

sensitivity = 0.628
D(half speed) = 0.628 X (rms delay). (111)
However, in an n-level AM system the amount of distortion necessary

to cause an error is

D(error) = anl (112)

The eye opening is defined as unity minus the ratio of distortion to the
amount necessary to cause an error

Inieve amy = 1 — (n — 1)D. (113)

Therefore we have for the same information rate
Thinary =2 1 — 1.15 X (rms delay) (114)
Tquaternary = 1 — 1.884 X (rms delay). (115)

It is seen that the system has been made more susceptible to delay dis-
tortion by sending at a slower speed with proportionally more informa-
tion per symbol. However, for any particular delay curve either system
may perform better than the other. In comparing the two systems the
statistics of the particular ensemble of delays to be encountered should
be taken into consideration. Lacking any such statistics, the binary sys-
tem is the obvious “minimax’ choice in that it has less sensitivity to
delay than the quaternary system.
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4.3.5 Zero-Distortion Delay Functions

We have derived upper bounds on distortion as a function of rms and
peak-to-peak delay. Now we might ask for some corresponding lower
bounds. Sinece distortion is a positive quantity, we might wonder if it is
possible to have zero distortion for some nonconstant delay curves. The
distortion has been shown to be the sum of absolute values of certain
linear functionals (8',f.). Thus, to achieve zero distortion each of these
functionals must be identically zero. In other words, the delay 8'(w)
must be orthogonal to each of the functions f, . This leads naturally to
consideration of the completeness of the infinite sequence of functions
{f.}. If this sequence is complete in the space L*(0,7) then there exist no
delay funetions in this space for which the distortion is identically zero
(see, for example, Ref. 6).

Actually, we have already demonstrated that constant funections are
orthogonal to all f, , so trivially the sequence is not complete. However,
we are not particularly interested in constant-delay funetions, so we
might as well append a constant function to the sequence {f,} and con-
sider the augmented sequence. That this sequence is not complete either
may be easily proved by finding a function which is orthogonal to all f, .
For this purpose we write

1 . 1
fulw) = au(w) + ICR=N)) cos (2n — 1w + 3, CoS 2nw
) (116)
+ ICE) cos (2n + 1w
C!J2 17'2
p(w)=003w+wsinm+7)--(1+§>. (117)
Now observe that a function of the form
Yn(w) = cos 2nw + b" cos (2n + 1w + b" cos (n + 2)w (118)

+ bs" cos (2n + 3)w + by cos (2n + 4)w

can be made orthogonal to all f,(w) by proper choice of the coefficients
b". The four simultaneous conditions on these coefficients are

(Y, u) =0
nytun) = 0

(¥n s Ju) (119)
(\bu :fn—l) =0
('an !f?£+1) =0
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These four conditions insure the orthogonality of v, and f,. , since for
m >mn + 1and m < n — 1 there is no overlap in the cosine terms and
we made y, orthogonal to p, which constitutes the remaining portion
of fm .

Inserting (116), (117) and (118) into the four simultaneous equations
(119) yields the result

b = ﬁ% (120)
b = %}’Lﬁ% (121)
Y ;2?;) (_in)—i- 5) (122)

Some special considerations come in when solving for Yo(w), which is a
little different from the others. We merely quote the result here

Yo(w) = cos w — 6 cos 2w + 15 cos 3w — 10 cos 4w. (124)

Thus, we have derived an infinite sequence of functions all of which
are orthogonal to {f.} and therefore are distortionless. What we would
really like to do, however, is to find all the functions which are distor-
tionless in the space L*(0,r). We designate the subspace consisting of all
distortionless functions as G. We call the linear manifold spanned by the
sequence {f,} the distortion subspace, F'. Each delay function in L*0,r)
can be expressed as the sum of two orthogonal functions f < F which
causes distortion and ¢ C  which is distortionless.

o) =F @ G. (125)

We can form a sequence of orthonormal basis functions for # by ortho-
normalizing the sequence {f,}. Unfortunately the sequence {¢,} is not
complete in G. For the purposes of analysis a sequence of approximate
basis functions for & may be derived by the following procedure.

(i) Approximate f, to the desired accuracy by

M
fo = > an'™ cos mo. (126)
m=1
(#2) Orthonormalize the funetions f,;»n = 1,2, ---, (M — 1)/2

giving (M — 1)/2 orthonormal basis functions in the M-di-
mensional space of the approximation.
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TapLE I—AN APPROXIMATE SET oF ORTHONORMAL Basis FuNcTioNs
FOR THE SPACE @ oF DISTORTIONLESS FUNCTIONS

(1/59,, = a; oS @ + as oS 2w + a3 €08 3w + - -+ 4 an cos 11 m)

2
£ 82 £ g4 g8 gs
a 0.8478
as —0.5053 | —0.2887 | —0.0016 | —0.0004 | —0.0001
a; —0.1042 0.8087
ay 0.1136 | —0.4837 | —0.3296
as 0.0435 | —0.1483 0.8233
as —0.0016 0.0766 | —0.4322 | —0.3540
ar 0.0044 0.0251 | —0.1445 0.8259
as 0.0092 | —0.0131 0.0713 | —0.4078 | —0.3687
ay 0.0066 | —0.0049 0.0252 | —0.1443 0.8295
ay 0.0047 0.0018 | —0.0116 0.0664 | —0.3819 | —0.4138
an 0.0021 0.0008 | —0.0053 0.0302 | —0.1736 0.9104

(tii) Derive the missing (M + 1)/2 orthonormal basis funetions in
this M-dimensional space. These are approximately g, ;n = 1, 2,
B (M + 1)/2.
(1) go= 1.

The reason this procedure works well is that each successive function f,
adds strong components of cos 2nw and cos (2n + 1)« as the sequence
{f.} is orthonormalized. The g, functions “‘interleave” to form a Fourier
series. For M = 11 the six g functions thus generated are given in Table I.

Now any linear combination of the functions g,(w) has zero distortion.
In particular, for any given delay curve we can find the closest distortion-
free curve. This would indicate the minimum amount of equalization
necessary to eliminate intersymbol interference. This nearest distortion-
free function may be found by taking the projection of the particular
delay B’(w) onto the subspace G

Po(p') = ,; (B',0n)Gn - (127)

In Figs. 8 and 9 an example of the use of (127) is shown. In Fig. 8 we
consider a cosine delay, 8’ = cos 3w, which we have previously considered
(see Fig. 4). The projection of this delay on G using (127) is also shown
in Fig. 8 and their corresponding impulse responses are shown in Fig. 9.
Notice that the samples &, of the impulse response of the uncorrected
delay are poor. There is a peak in the response between Ay and he which
we expect from our previous considerations in Section II. The corrected
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Fig. 8 — An example delay function and the nearest distortion-free delay.

delay seems to be a good fit in the interval [x/2,7], and its response is well
behaved, as is evidenced by the impulse response shown in Iig. 9.

Thus, we have apparently found an infinite set of delay functions cor-
responding to a particular amplitude characteristic such that the impulse
responses satisfy the Nyquist criterion of regularly spaced zero crossings.
Note that this was not possible for the case of flat amplitude character-
istic mentioned in Section 4.2, since the set {f,} for this shaping is com-
plete in the system bandwidth. For the raised cosine shaping we use
more bandwidth for the same rate of transmission and consequently have
more leeway in selection of good delay characteristics.

Actually the responses h(t) corresponding to delays in ¢ need not go
exactly through zero at time {, + nT, but only approach zero to the
order of approximation employed in our original assumptions. Since
ordinarily* the approximation is good to terms cubic in [wf; — B(w)], the

* 8o long as S, = C, ; see Section 4.1.
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Fig. 9 — Impulse responses of uncorrected and corrected channels.

difference between h(#y - nT) and zero becomes insignificant for small
delays.

4.3.6 Equalization

There are several alternatives available when dealing with delay dis-
tortion. One alternative is the use of automatic equalization, whereby
channel characteristics are measured and automatically equalized at the
transmitter or receiver. Another alternative is the use of compromise
equalization, in which a fixed network or a choice of fixed networks is
designed to provide for average correction over a particular range of
channels. Finally, one can do nothing to the system while amusing one-
self with caleulations of degradations in performance. We always assume
that the particular channel to be used for transmission is chosen ran-
domly for each call, so that it is not economically feasible to design an
equalizer for each channel to be used.

Tor a fixed delay characteristic, the last section shows that there are
an infinite number of all-pass networks which will provide near perfect
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equalization. The network with least rms delay has delay 8" = — 8" 4
Pq(B), and in general any function g(w) C G may be added to this
delay so long as the approximation remains valid. Thus, the particular
funetion easiest to realize physically may be chosen from this class of
funetions.

Now suppose we desire to design a delay equalizer to work over a
certain class B of delay funetions. For each call, the delay 8'(w) is to
be chosen randomly from this ensemble. The optimum compromise
equalizer 8. (w) is to be chosen such that the average distortion over
the ensemble B is minimized. Since the delays 8'(w) (random) and
B/ (w) (fixed) simply add, we have for the resulting distortion

D=2 | +8.0 (128)
D= ?r RS ENCEATE (129)

The expected value of D averaged over the ensemble B is written
2« ’
E[D] = =30 EL| (8'.1) + (8/7a) | 1. (130)

This is the expression to be minimized by choice of 8./. Knowing the
statistics of the ensemble of channels we can derive the joint distribution
of the variables S, = (#8,f,) and the marginal distributions p(S,). In
terms of the latter distributions we have

2. [t
B0l = 23 [ 18, 4 855 [p(Sds..  (31)

T n=1

Each term of the summation is positive, and it is possible to specify in-
dependently each component (8./,f.) of 8.".

Therefore, we simply choose each component (8.',f,) so as to minimize
the corresponding term of the summation (131). Each integral may be

written
—(B' fn)
1= [ s - G lpsis,
o (132)
t [ , 8. + (B, 7)1p(8a)dS,.
Bo' vfn)

Differentiation with respeet to (8.,f») yields the stationary point
(8,fx) chosen such that
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_(.ﬁz'-fn]
[ pesoas, = (133)

(SR

Therefore, each component (8..f.) of the compromise delay is optimally
chosen such that it is the negative of the median value of S, . The compro-
mise delay 8. is not uniquely specified by these components; only its
projection onto the space F has been determined. As before, any function
¢(w) C G may be added without affecting the optimality of the resulting
equalizer.

As a somewhat trivial example, suppose we desire to equalize a set of
channels bounded by the narrow “ribbon” of width 2A.

B (w) — A £ B'(w) = B(w) + A (134)

Now suppose that each of the scalar products (8',f,) is equally likely to
be greater or less than (8y’,f.). In this event the completely trivial solu-
tion is to use 8. = —By + ¢. In particular, the smallest rms function
of this sort is 8. = —B¢ + Pe(By). The residual delay in using this
equalizer is bounded by A across the band (plus a harmless g fune-
tion), and our peak-to-peak distortion bound derived previously may be
used to give

D residual = 0.824A. (135)

4.3.7 The Range of the Approximation

The key approximation made in the analysis thus far has been that
[wlo — B(w)] is small enough to use

sin [wly — B(w)] = |wte — B(w)] (136)

where #, is chosen to be the time of the peak value of the impulse re-
sponse. We will now briefly examine the range of delay for which this
approximation is valid.

By setting h'(t) = 0, we were able to derive an expression relating
o and the phase shift, 3(w). This equation, (47), was

fw wA (0)B(w) du
fy = =2 (137)

j;w WA (w) dw

and this was the value used for {yin (136).
Now we will demonstrate that the resulting function [wfy — B(w)] is
the erroran a least-squares straight-line fit to 8(«). Hence, consider fitting
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a straight line y = cw to the phase curve 8(w). The integral square error
in the fit weighted, as all our integral expressions are, by the amplitude
shaping A (w) is

integral squared error = f [cw — B(w)*A(w) do. (138)
0

By minimizing the error (138) with respect to ¢ and using (137) we ob-
tain enin = fo.*¥ Thus, the use of the peak time of the impulse response
for o results in the smallest values of [wly — B(w)] in a mean-square
sense, which was an assertion previously made in connection with the
choice of # . Also, we see that the time / is the slope of a best fit straight
line to the phase B(w). This state of affairs is depicted in I'ig. 10.

In order to be assured of, say, 10 per cent accuracy in the use of ap-
proximation (136), we might guarantee that [wly — B(w)] = w/4. Thus,
the phase should not deviate from a straight line by more than =/4
radians. (Of course, these are sufficient but not necessary conditions for
10 per cent accuracy.) Now we ask what limits we may put on peak delay
such that the phase will meet this condition no matter what the exact
shape of the delay happens to be. Remember that 8(0) = 0 and 8'(w) =
0 for physical realizability.

This problem is best suited for the semi-mathematical method called
“common sense.” Since the delay is to be peak limited between 8',,.x
and 0, we allow only use of these two extreme values in finding the shape
of delay such that the deviation of its integral (phase) from a straight
line is maximized. I"urthermore, it is evident that only one transition
from B’ = B max to 8 = 0 should be used in the interval [0,w]. The reader
may convince himself that more transitions in delay would result in a
better straight-line fit to the phase. Therefore, the shape of the phase
which for a given peak delay results in the poorest use of the approxima-
tion (136) is specified except for the transition point wy . This situation
is shown in Ifig. 11.

For raised cosine amplitude shaping, the error near the edge of the
band is very lightly weighted, and so we take the error at w = «p as the
largest important error. This error is equal to wole and is to be maximized
with respect to the transition point wp .

B =ty = ﬂ'fw wA (0)B(w) de (139)
m Jo

* This expression with ¢ = {; may be used as a useful distortion measure relat-
ing performance and phase shift. For an AM system operating at rate 2W symbols/
second this may be shown to be proportional to the mean-square estimation error
at the receiver due to intersymbol interference.
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A (w) - PHASE CURVE: B3(0)=0
Alwzo

to— TIME OF PEAK OF IMPULSE RESPONSE
SLOPE OF BEST FIT STRAIGHT LINE TO A(w)

|[wto-/3(w):|1 < %T FOR 10% APPROXIMATION ACCURACY

PHASE

W —

Fig. 10 — Factors involved in the approximation.

where m is a constant

m =f w'A (o) dw. (140)
0
Using the curve 8(w) shown in IMig. 11 gives
=% 0B max(w — wo) A(w) de (141)
m Ju,
d_E = B max {f WA () dw — QwOf wA (w) dw}. (142)
dwu m wo wp

For the raised cosine shaping the maximum point of (141) may be
found by a solution of the resulting transcendental equation when
dE/dwy, = 0 and A(w) = cos w + 1 are used in (142). This procedure
yields

wo = 0.255. (143)

Notice that the corresponding delay curve is very similar to the worst
delay from the standpoint of distortion, which is shown in Fig. 7. For
this choice of w, we may evaluate the maximum error from (141).

Emax = 0-376’mn:- (144:)
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Fig. 11 — Most unfavorable (approximation poorest) delay curve for a given
peak value.

For this error to be less than x/4 for an assured 10 per cent accuracy,
we finally arrive at

B'max = 2.12, (145)

Thus, as long as the delay variation does not exceed 2.12 seconds across
the band we are assured of at least 10 per cent accuracy in results re-
gardless of the actual shape of the delay. This is, of course, normalized
for the choice of @ = v and T = 2 seconds, so that 2.12 seconds of delay
variation corresponds to 1.06 pulse intervals.

When the delay differs from the worst form we have just derived, the
approximation holds for greater ranges. For example, we found that for
the parabolic delay discussed in Section 4.2.2 the approximation was
accurate to within 10 per cent in spite of a total delay variation of 4
seconds across the band. The important consideration is that the dis-
tortion is quite appreciable before the approximation breaks down. From
the peak distortion bound derived previously, we find that the distortion
corresponding to a variation of 2.12 seconds may be as large as 0.873.
There is a definite connection between the value of the distortion and
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the goodness of the approximation through the validity of (138) as a
distortion measure. Thus, we would expect that the techniques would be
accurate in nearly all cases of, roughly, D = 0.6. For this value of
distortion, the eye in a binary system is more than half closed, and the
channel may be unsuitable for higher alphabet size transmission.

4.3.8 Channel Memory Truncation Error

Theoretically, the response from a band-limited network lasts to in-
finity, so that in calculating distortion an infinite number of terms must
be used for the criterion D

D= % | B |. (146)

n=0

In many analysis problems and particularly in experimental work and
computer simulations it is necessary to neglect the channel memory for
|t| > NT seconds. In experimental runs and computer simulations this
corresponds to using all possible patterns of length 2N + 1 symbols.
The problem arises as to how much of an error can be made in computing
the distortion D using a finite number of terms.

Assume that the terms | h, | for |n | > N are to be neglected in the
summation. The error in computing D is

420 +N
EN)= 2 [kl = 2 |’ (147)
n0 o
—N—1 -]
EWN) = 2 |kl+ 2 |kl (148)
As we have previously shown, this expression is approximately equal to
2 - ’
EWN) == 2 | (f,8)] (149)
T n=N+1

and thus the error can be bounded using the Schwarz inequality on the
maximum energy combination of the functions f, ,n = N + 1, --- , o.
For N > 3 we may as well neglect the terms in f, involving the fast-
vanishing constant a, , leaving only the three cosine terms. Obviously,
the maximum energy combination of these is all terms adding in-phase

2

E(N) = e

X (rms delay) X || & || (150)
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tv(w) = 2. fulw) (151)
n=~N+1

Ev(w) ~ “SZN;d [ml——l) cos (2n — Dw + ﬁl?g, cos 2nw

) (152)

+ m Cos (Zn + l)w:l
= 1 1
EN(W) = "=§+1 ﬁ COS hw — m Ccos (2N + l)w (153)
e T o 1 3

" En ” - Tj .~ a-g- 8(2N+ 1)2' (154)

We finally write the maximum error as

E(N) = ey X (rms delay) (155)

1/ il 3 3= 1 (156)
ey = T . __° —.
v 3 TIEGNFIE P &m

As shown in Fig. 12, this bound drops rapidly for N small and then
levels out to a very slow descent, so that some 20 per cent of the original
distortion bound can still remain after consideration of 16 pulse intervals
on each side of the peak. This rather negative result tells us only that
there exist mathematieal delay functions that have considerable distor-

1.2

\ hit)
1.0
08
06 \
én=2 |hn| £ e x RMS DELAY
NG INI>N "
04 Ny
-‘-"-..______-_-__
0.2
0
[} 4 8 12 16 20 24 28
N

Fig. 12 — An upper bound on distortion arising from symbols at a distance
greater than N.
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tion at great distances from the reference (peak response) time. These
funetions, however, are high-frequency waveforms which would not
ordinarily be encountered.

Consider a computer simulation in which 40 samples across the band
[0,7] are used to specify the delay. The highest delay frequency which
need be considered is then 20 cycles of delay across the [0,x] band. Con-
sequently, only the functions f, for n = 20 will contribute distortion
components. In order to test distortion over this interval it would be
necessary to test 2* sequences of binary symbols, which is, of course,
quite unreasonable. Therefore, the effect of intersymbol interference is
usually only measured to the extent of, say, four symbols in either
direction.

We can find the maximum error now by eomputing the norm of the

sum of the funetions f,(w), n = 5,6, ---, 20
40
1 1
E,20(w) = ngu - cos nw — 55 cos 1lw (157)

40
| ol = "{Z L_3 } (158)

2 \iSan 22

The sums involved in the expressions are conveniently computed using a
Tuler-Maclaurin expansion for the integral of 1/2*. This gives

Es 00 £ 0.352 X rms delay (159}

which is still a considerable error, even though the delay is bandwidth
limited.

In all our computations of distortion bounds we have been using the
maximum energy combination of the functions =f.(w). For each par-
ticular delay it will be one of the combinations of functions +f.(«)
which defines the distortion functional, not necessary the maximum
energy combination. However, it is interesting to note that the combina-
tion with least energy would only result in a factor of 4/2 in the bounds
calculated.

V. THE RELATIONSHIP OF DISTORTION TO DELAY FOR BANDPASS SYSTEMS

5.1 Dertvation of the Sequence of Functionals Involved for Bandpass Sys-
tems
In dealing with bandpass systems, the system impulse response is
most conveniently given in terms of its envelope and phase with respect
to a earrier or other reference frequency within the bandwidth of the
system

hit)y = P(1) cos [wt — (1)]. (160)
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Alternately, the response may be written in terms of in-phase and quad-
rature components at the carrier frequency

h{(t) = R(t) cos wt — Q(I) sin w.t (161)
P(t) = VR(1) + @) (162)

As discussed by Sunde,' the in-phase and quadrature components of
the impulse response may be related to the amplitude and phase charac-
teristics of the channel’s frequency domain description by a simple
transformation of the defining Fourier integral. This transformation to
passband coordinates gives

R(1) =11rf_°° @) cos [uf — o(w)]do (163)
1 (" .
Q) = ;f_ @(w) sin [ — o(w)] do. (164)

In this seetion we use G(w) and ¢(w) for amplitude and phase instead
of A(w) and B(w) since these functions are now defined with respect to
the carrier frequency, .. That is

G(w) = A(w. + w) (165)
e(w) = Blwe + w). (166)

Now we will work under the hypothesis that a suitable criterion of
distortion for bandpass systems is
4o

D= X P(nT + ) = X' P.. (167)

n=—=u

n#=0

This criterion is similar to the low-pass criterion, except we now assume
that the receiver makes use of the envelope properties of the impulse
response.

In terms of samples of the quadrature components we have

D = Z VR + Q.2 (168)

Unfortunately this is a fairly hopelessly nonlinear criterion to work with,
so we shall make the judicious approximation shown in IFig. 13. Here we
take the distortion D as the length of the vector formed by summing all
vectors of the form

IIQril

P, / tan™ .
| Ra |
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D=y P,
n

o= T

P

Ry|

Fig. 13 — The approximate distortion criterion for bandpass systems.

Thus we have

D ~\D? + D2 (169)
D, =2 |R.| (170)
D,=2.1Q.]. (171)

Now, the component distortions D, and D, are of the same form as the
low-pass distortion treated previously. We take D, as an example in
what follows

Q.+ Q. = %[: @(w) |sin [w(ly + nT) — o(w)] (172)
+ sin [w(ty — nT) — ¢(w)]} dw
Q.+ Q_, = 7——: f_w @(w) sin [wly — e(w)] cos nwT dow  (173)
9 o0
Q. — Q. = i[ @(w) cos [wly — e(w)] sin nwT dw.  (174)

Using the approximation [wly — ¢(w)] small gives
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Q4 Qa 12? f a(w)uts — ()] cosneT do  (175)

c

Q. —Q.~0 (176)

Q]+ 10|~ 2

[“’ R(w)wly — ¢(w)] cos nwT dw|. (177)

Notice that in (177) the quantity (@, — Q_,) need not be identically
zero as in the approximation (176), but should only be smaller in ab-
solute value than the quantity (@, + Q-.).
We find the time of the peak value of the impulse response, f, by
requiring R'(f) = 0. The quadrature component goes through zero at
= 0 and is small enough at fy to be neglected
R =0="1 [ wa)sinloh - o(@ldo  (178)

[“ w@.(m)p(m)dw
e . (179)

f 0 @(w) dw

This is incidental to the development of the quantity | Q.| + | @—. |,
because for symmetrie shaping of G(w) the terms involving fy in (177)
integrate to zero. This shows that the antisymmetric portion of the
delay ¢'(w) does not have a first-order influence on #,. However, in
solving for |R,| + | R_. | the equations do involve {, in first-order
terms.

To maintain notational eontinuity with low-pass results as much as
possible we designate

Sen = — [’" @(w)[wly — ¢(w)] cos nwT dw (180)

|Qul + Q0] = 280l (181)

For @(w) symmetrical about zero (the carrier frequency) (180) be-
comes

S = f o(0)@(w) cos neT de. (182)

We integrate by parts and make the arbitrary assignment of zero phase
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shift at the reference frequency to obtain*

+w/2
Sqn = f fq"(w)p’(w) dw = (fanwf) (183)
—w[2

fonlw) = j;w @(z) cos nxT dx. (184)

A similar development holds for the terms | R, | + | R_. |, and the
resulting expressions are exactly the same as the low-pass equations
except they are translated to the reference and are defined for both
negative and positive deviations from this reference

|Ru| + | R | =':’r|s,.i| (185)
+w/2
Srn = f frn(m)ﬁp’(&’) dw = (frnpw') (186)
—w/2
w/2
Jrnlw) = f [a.z — sin naT]@(z) dx (187)
wl2
f w@(w) sin nwT dw
a, = —u . (188)

w/2
f w'@(w) dw

wf?2

To briefly summarize, we have written the distortion in a bandpass

system as the length of a vector whose two quadrature components are
D, and D,

= VD24 DA (189)

Fach of these components is the sum of the absolute values of a sequence
of linear functionals of delay

D, = | (frns ') | (190)

(ISR I

||M3 nMs

D, ==

T n

l(fqn,?’)l (191)

The funetions f,, and f,, are of course independent of delay and are ob-
tained from the amplitude characteristics by operations (187) and (184).

We are working with symmetric amplitude characteristics, and con-
sequently it may be seen that

* Another choice of reference phase may easily be made here.
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fan(w) = —fu(—w) (192)
Jen(w) = fou( —w). (193)

The quadrature functions f,, are odd functions of frequency and the
in-phase functions f,, are even functions. The two parts into which the
distortion was divided therefore arise separately from the odd and even
portions of the delay. For example, if the delay is an even function,
D, = 0 and the only distortion is D, . Since D, is defined identically
except for a translation as the low-pass distortion D, we have the neces-
sary result that the system may be treated as low-pass with identical
results in the event of even delay. Obviously also

(fon ) fam) = 0 all n and m. (194)

The delay function ¢'(w) may be divided into its even and odd com-
ponents, ¢, (w) and ¢, (w), and the analysis of the distortion properties
of each of these components proceeds exactly as in the low-pass analysis.
For the even component of delay, we use the functionals defined by the
sequence {f.,} and for the odd components we use the sequence [f,.}.
The two distortions D, and D, are then added root-sum-square.

5.2 The Raised Cosine System

5.2.1 The Functions fr,(w) and fo.(w)

We now consider the use of an amplitude shaping of the raised cosine
form

G(w) = 3(1 + cos w) -7 = w =+ (195)
By substitution into equations (188), (187) and (184) the following

results are obtained
1

ay 2 Q
(% — 2) on(4n® — 1) (196)

2
Jenlw) = %"[cos:u + wsin w + % — (1 +%T)]

4 =

1 1
b eos (2n — 1w+ - cos 2
i@n = 1) " (2n — 1w 1, €08 2ne (197)

+ cos (2n + 1w

__1
42n — 1)
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Jolw) =

1 o 1.
1n = 1) sin (2n — e + 7, Sin Inw

1 .
+ 100+ 1) sin (2n 4+ 1)a.

(198)

The first few pairs of these functions are shown in Fig. 14.

5.2.2 Sample Distortion Calculations

Having assumed any particular shape of delay curve, one may easily
compute the resultant distortion to the desired accuracy by computing
a number of the linear functionals. Although the primary use of these
funetionals is in understanding the effect of shape in delay on the dis-
tortion and in ascertaining bounds and other factors in this relationship,
it is quite necessary that when confronted with the reality of an actual
system the mathematics be able to predict specific results.

First, we consider a check on the mathematical methods and approxi-

1.0

0.8~

0.4

0.2

==—==IN PHASE

-0.8— QUADRATURE

-1.0 | |
- ~1j2 o 77/2 T

Fig. 14 — Some of the functions f,. and f,. for raised cosine shaping.
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mations used. Consider the effect of linear delay on the raised cosine
response

¢ (0) = ko. (199)

Since this delay function is odd, the products (f,.,¢’) vanish and the
only distortion is D, . For adjacent symbol interference we have

2 2
P1+P_1:;JSQ1[=;l(fql,kw)l (200)
_ * 17
(far,kw) = hafa(w) do = 2 k (201)
P, + P, = 11k/18. (202)
For a specific example we take k& = 2/7 which gives
Py + P, = 0389 (predicted ) (203)

while from Sunde® the computed impulse response for this value of
slope is

Py + P_, = 0.387 (computed ). (204)

The agreement here is probably better than should ordinarily be ex-
pected.

Now we turn to predicting the performance, measured by the eye
opening, of the four-phase data subset. As explained in the previous
chapter, this system is inherently nonlinear and using I = 1 — D as the
eye aperture for this system involves a certain approximation. In par-
ticular, we will examine the performance of this system for delay of the
form

¢ (w) = osin v (205)

since there are published results for this choice of delay. Again we are
dealing for the moment with an odd delay function and need only evalu-
ate D,. As a function of the number of delay ripples in the band, »,
the various products (f,.,¢") are easily visualized, since f,, consists of
only three sine terms itself. The behavior of these products is very nearly
like the behavior of its cosine counterpart shown previously in Fig. 4
and will not be depicted here. In Fig. 15 the distortion for @ = 0.5
calculated by summing these products is illustrated as a function of »
along with the corresponding curve from Rappeport.” The latter curve
was obtained by use of a computer simulation of the system, and the
agreement between this simulation and actual results is claimed to be
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Fig. 15 — The performance of a four-phase system for sine and cosine delay.

excellent. Two other curves are also drawn in Fig. 15 representing the
system performance for cosine delay variation previously shown in Fig.
5. Notice that the slight difference in rate of deterioration of performance
at low frequency between sine and cosine delay is correctly predicted by
the mathematical model.

To test the mathematical model with delay which has both odd and
even components, we turn to published results concerning a different
data system. This system is an amplitude-modulated system investi-
gated by computer simulation by R. A. Gibby in Ref. 8. Again our eri-
terion is not expected to hold exactly, since Gibby’s binary system is an
on-off system rather than bipolar. Gibby considers delay of the form

¢ (w) = acos (bow + ) (206)

and plots loci of constant eye aperture (constant distortion) on a polar
diagram of delay amplitude « and phase 6 for a given value of delay
frequency b. The quadrature components of the distortion for the delay
(206) are

‘) o0

D, =Zacost 2 | (frn,cosbw) | (207)
™ n=1
2 . - .

D,=Zasing 2, | (fgu,sinba) |. (208)
™ n=1

The integrations are performed and summed to give (for b = 1.5)

D, = 0.508 « cos 6§ (209)
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D, = 0.590 « sin 0 (210)
D* = 0.258 [a cos 6]° + 0.348 [« sin 6]". (211)

Therefore, lines of constant distortion are ellipses on a polar chart of
a and 6. Iig. 16 shows two of these ellipses of constant distortion with
b = 1.5 along with the corresponding curves obtained by Gibby."

I"igs. 15 and 16 demonstrate that the mathematical model has pro-
vided a good deseription of the behavior of two diverse modulation
systems under the influence of delay distortion.
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Fig. 16 — Loci of constant eye aperture for cosine delay.
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5.2.3 Sensitivity and Bounds on Distortion

In the low-pass analysis we found the system sensitivity, which we
defined as the maximum achievable distortion for one rms unit of delay,
by summing the funetions =£f,(w) in such a fashion as to produce a
combination of greatest energy. Obviously, in the bandpass case we can
bound both distortion components in like fashion. The system will have
a certain sensitivity to even delay and a certain sensitivity to odd delay.
Any delay funetion can be divided into its odd and even components and
these components are orthogonal. The contribution to the distortion
from each is bounded by the system sensitivities to odd and even delay.
Now we ask for a given rms value of delay, how should the delay energy
be divided between odd and even components such that the distortion is
maximized? Naturally, all the delay energy should be put into the com-
ponent (odd or even) which has greatest sensitivity to delay distortion.
Therefore the over-all system sensitivity is the maximum of the pair of
odd and even delay sensitivities.

The sensitivity to even delay is the same as the sensitivity caleulated
previously for low-pass systems:

even sensitivity = 1.15. (212)

For the sensitivity to odd deléy, we find the maximum energy combina-
tion of the functions =f,.(w). This is found trivially as the sum of the
functions f,,(w), since all the terms add in phase in this sum

fqmcn(w) = _lfqn(m) (213)
1« sin ne sinw

Jamec(w) = Enz=l n 4 (214)
e — @ — sinw) w=0

fqmc('(w) = . (215)
=7 —w—sinw) w < 0,

This particular form of delay is the worst odd delay for a given rms value
and is shown in Pig. 17. The norm of this function is

1 e 3T _
“ff.lmﬁﬂ ” =3 1/ E - ? = 0.835 (2]_6)
and the sensitivity becomes

odd sensitivity = 2 /‘// ?r || fomee || = 1.337. (217)
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Fig. 17 — Bounds on distortion for bandpass, raised cosine systems.

Thus we see that the bandpass, raised cosine system is somewhat more
sensitive to odd delay than it is to even delay. The over-all system sen-
sitivity is therefore equal to the odd sensitivity and consequently we
have

D = 1.337 X (rms delay). (218)

Also, the delay curve fime(w) in Fig. 17 becomes the worst shape a
delay can assume for a given rms value of delay.

For a peak-to-peak constraint on delay, the technique for bounding
the distortion is less obvious. Clearly we can find the combinations of
signs {e,) and {e,} such that the resulting functions

-

ff(w) = E_lfrnfm(w) €rp = +1 (219)
fq(w) = ;ﬂeqnfqn(w) € = +1 (220)

have maximum absolute integrals and the distortion may be as large as
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TABLE IT—AN APPROXIMATE SET OF ORTHONORMAL Basis
Funcrions FOR THE SPACE (G oF DISTORTIONLESS
Fuxctions For Banprass, Raisep CosiNg

SYSTEMS
(\ﬁrgm =ac08w+ azco82w + -+ + aycosll w)*
(V7T gan = brsinw + by sin2w 4+ -+ 4 by sin 11 w)
[ g2 [1] B g5 £s

by 0.7205
bs —0.6674 | —0.2715
ba —0.1593 0.8145
by 0.0947 | —0.4841 | —0.3204
bs 0.0288 | —0.1473 0.8234
be —0.0151 0.0773 | —0.4321 | —0.3540
by —0.0051 0.0258 | —0.1444 0.8260
bs 0.0025 | —0.0128 0.0713 | —0.4078 | —0.3687
by 0.0009 | —0.0045 0.0252 | —0.1443 0.8294
bio —0.0004 0.0021 | —0.0116 0.0664 | —0.3819 | —0.4138
b —0.0002 0.0009 | —0.0053 0.0302 | —0.1737 0.9104

* For values of a, see Table I.

the greater of these absolute integrals. The question is, ean we do better
than this by using a delay with both odd and even components?

If we were to use both odd and even components in the delay, the
only acceptable strategy for maximizing distortion would be to use odd
delay (¢'(w) = —¢'(—w)) when |fo(w) | > |fi(w) | and even delay
(¢'(w) = ¢'(—w)) when |fi(w)| > |fy(w) |.* In addition we would
have to run through all possible sequences of the signs {e.,} and {eg.}.
This procedure was earried out to the extent of time limitations on the
IBM 7090 digital computer with the result that the best such delay has
distortion less than a delay using an all odd strategy.

The maximum absolute integral of f,(w) is obtained by using e, =
+1, i.e., by simply adding all the functions f,,(w). We found this func-
tion previously as fme(w)

+r o0

D=0 52 [ | T o) |do (221)

2 t*
D [ [Hr—w—sina)de (222

m™ 0

< m 2 12

D =\5 — = ] ¢ max (223)
& m™

* This is not exactly true, but an exact proof here does not seem to be worth the
considerable effort involved.
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D = 0467 X (peak-to-peak delay). (224)

The worst peak-to-peak delay is simply positive when fyme.(w) is positive
and negative when fyue(w) is negative. This is a particularly simple
delay function which is +¢'mux for @ = 0 and —¢'max for @ < 0. This
function is also shown in Fig. 17.

5.2.4 Zero-Distortion Delay Funclions

A space & of distortion-free delay functions for raised cosine systems
may be obtained using techniques similar to the low-pass methods. After
orthonormalizing the sequences |{f..} and {f,.}, we find the orthonormal

9qu

0.8 Ire

0.2+

=0.2-

-0.4}

-0.6}

-1.4 1 ]
- -7/ (o} 77/2 v
Q) —

Fig. 18 — Bandpass distortionless delays.
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o8l ¢'=‘5[cosw+ SIN 3W]
06}
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-7 -77/2 0 T/2 7
W —>

Fig. 19 — An example delay and the nearest distortion-free delay.

functions which complete these sequences in their respeetive subspaces
of even and odd square-integrable functions. Thus we derive the se-
quences |g.,} and {g,.} of even and odd functions which span the dis-
tortionless space (7. Any delay ¢’ in L*(—=, +) can then be expanded
in terms of the functions fr. , fau , Grn , and g,, with the terms involving ¢
functions comprising the projection of ¢’ upon @ and yielding zero dis-
tortion and the terms involving f funetions containing all the distortion
content of ¢’

ﬂo’ = Z=1 bri’f frn + Z:, bqn fqn
even odd (225)

o0

+ Zl Con Grn +

cqn gqu
1

n=
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Fig. 20 — Resolution of the example delay into odd and even components.

Py(e")
Crn = (¢J’ gm) (Q’m , grm) =0n#m (226)

Cqn = (@’r gqn) =1ln=m

A list of the functions g,, and g,, obtained for raised cosine shaping is
given in Table II, and the first few functions are illustrated in Iig. 18.

1.0

0.8

v

FOR ¢’ =+ [cos w+siN3w]
/

FOR Fg (¢') ;
AN / //
0.4 ~a/) \or”
(= By Il \\ Py P
' \
/ \
0.2+ 7 \
/ \\
/) \

————— T ——

~

=02

Fig. 21 — Impulse response envelopes for the corrected and uncorrected delays.
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It is necessary here to reiterate the fact that functions ¢ € G have zero
distortion only to the extent of the approximations employed in obtain-
ing the fundamental relationship for distortion in terms of the sequence
of linear functionals. As an example computation a delay ¢’ = 3[cos w +
sin 3w] is shown in Fig. 19. The odd and even components of this delay
and their respective projections on (@ are shown in Fig. 20. Combining
these projection components the total projection is shown in Fig. 19
back with the original delay function. The envelopes of the impulse
responses of the corrected and uncorrected delays are illustrated finally
in Fig. 21. As may be seen from this figure, the correction is near perfect.
The corrected envelope approaches zero at each sample point as close as
the numerical integration techniques employed permit.
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