Signal Distortion in Nonlinear

Feedback Systems

By L. W. SANDBERG
(Manuseript received May 6, 1963)

This paper reports on some properties of the solutions to the funclional
equation ss(t) = ¢[Cs:(1) + s:(1)], where ¢ s a nonlinear function, the
operator C is a convolution, and s, is a known function belonging to a
preseribed Banach space.

The equation plays a central role in the theory of signal transmission
through a general physical system containing linear time-invariant ele-
ments and a single time-variable nonlinear element. In particular we es-
tablish conditions under which s,(1) 1is the fived point of a contraction
mapping of the Banach space into itself and we discuss some consequences
of this resull.

As a direct application, we consider the range of validity of two simple
cascade flow graphs (i.e., flow graphs without feedback loops) for approxi-
mately determining the signal distortion in nonlinear feedback systems
when the distortion is small. Our discussion is not restricted lo specific
types of nonlinear characteristics.

I. INTRODUCTION

This paper reports on some properties of the solutions to the functional
equation s:(f) = ¢[Css(t) + si(1)], where ¢ is a nonlinear function, the
operator C is a convolution, and s, is a known function belonging to a
prescribed Banach space.

The equation plays a central role in the theory of signal transmission
through a general physical system containing linear time-invariant
elements and a single time-variable nonlinear element. In particular we
establish conditions under which s.(t) is the fixed point of a contraction
mapping of the Banach space into itself and we discuss some conse-
quences of this result.

As a direct application, we consider the range of validity of a simple
cascade flow graph (i.e., a flow graph without feedback loops) for
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approximately determining the signal distortion in nonlinear feedback
systems when the distortion is small. Our discussion is not restricted to
specific types of nonlinear characteristics.

Except in cases in which the nonlinearity is very small, our results
establish the utility of the graph only when (in a certain precise sense)
the feedback around the nonlinear element is small. However, our re-
sults show that the range of validity of this flow graph is very much
greater than that indicated by an earlier writer' who has considered this
question for the case in which the nonlinear characteristic is of the form
x + ex”, where e and m are real constants with m an odd positive integer.

As is well known, large amounts of feedback are often present in
physical systems. In fact, large amounts of feedback are often used to
reduce nonlinear distortion. Consequently the established range of
validity of the flow graph mentioned above does not include the most
important cases of interest. To deal with such situations we propose an
alternative, but very closely related, flow graph for approximately de-
termining the signal distortion when the distortion is small. It appears
that the range of validity of this graph includes the vast majority of
cases of engineering interest.

Section IT considers some mathematical preliminaries. In Section 11T
we describe a model of the physical system under consideration and
show the relevance of the funetional equation mentioned above. Section
IV presents some preliminary results which are concerned with the
properties of certain linear operators. In the remaining sections we
consider both some properties of the solutions to the functional equation
and engineering implications of the results.

II. MATHEMATICAL PRELIMINARIES

Let ® = [0,p] be an arbitrary metric space.” A mapping A of the space
@ into itself is said to be a contraction if there exists a number £ < 1
such that

p(Ax,Ay) = kp(a,y)

for any two elements x,y € 6. The contraction-mapping fixed-point
theorem® is basic to much of the subsequent discussion. It states that
every contraction mapping defined in a complete metric space ® has
one and only one fixed point (i.e., there exists a unique element z £ ©
such that Az = 2z). Furthermore z = lim A"x,, where x; is an arbitrary

element of 6.
Throughout the discussion £. denotes the space of complex-valued
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square-integrable functions defined on the real interval (— o, ). The
norm of f(¢) e £» is denoted by || f [|» and is defined by

112 = [ 1o P

The symbol £, denotes the space of absolutely integrable functions de-
fined on ( — =, ). We shall use the symbols £z and £,r, respectively,
to denote the intersections of the spaces £, and £; with the set of real-
valued functions. It is well known that £, and £., are Banach spaces.
We take as the definition of the Fourier transform of f(¢) e £, U £,

Fw)

f_ ) f(t) e dt, fe&

F(w) = Lim. f_mf(z) etdt,  fe(L, — £1)

and consequently when f(¢) e £,
J(0) = lim. = [ F(e) ¢ do.
2‘11’ ]
With this definition, the Plancherel identity reads
on [0 di = [ P@)G) do, g et

Throughout the discussion K(Z) denotes the space of bounded real-
valued functions that (¢) are defined on the real interval (— =, ) and
(7i) are continuous on (—w,») — Z, where T is an arbitrary fixed
finite or infinite set of isolated points.* The norm of f &€ X(Z) is denoted
by || f |- and is defined by

1l = sup 150 |

With this norm ®(2) is a Banach space.T The norm of a linear operator
Q defined on ®(Z) is denoted by | Q || and similarly for the norm of a
linear operator defined on £, .

We shall say that a real-valued function f(¢) belongs to © if and only
if there exists a function f(¢) that agrees with f(¢) almost everywhere

* Various signals of interest in communication systems such as pulses are not
contained in J¢(2) if Z is the null set.

t Any Cauchy sequence of functions belonging to X(Z) converges toa bounded
continuous function on (—=,=) — = (since the sequence converges uniformly on

(—=,®) — Z). Since, in addition, the sequence converges at each point of dis-
continuity, JC(2) is complete.
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and is such that the set of points at which* sign [f(¢)] is discontinuous
is a set of isolated points.

The symbols I and O are used throughout to denote, respectively, the
identity operator and the null operator (i.e., for all f, Of = 0).

III, MATHEMATICAL MODEL OF THE PHYSICAL SYSTEM

Consider a physical system containing linear time-invariant elements
and a single time-variable nonlinear element. Let s; and s, , respectively,
denote the system’s input and output signals and let » and w, respec-
tively, denote the input and output signals associated with the non-
linear device, which is assumed to be characterized by the equation

w = p(vt) = ] (1)

in which ¢(»,t) is a real-valued function of the real variables » and (.
We shall consider separately two cases:
(2) 81,8 ,0,we K(Z) for some =
(42) 81,8 ,0,w & Lop .
It is assumed in each case that there exist well-defined linear operators
I' and A such that{ » = I'[s; ,w] and s; = Als, ,w]. It is convenient to
define four linear operators A, B, C, and D in the following manner

v = F['Sll !'w'] = F[Sl :IO] + F[DJTU]

(2)
= As; + Cw
8y = A[sl lw] = A[Sl rOJ + A[O)w] ('*})
— Ds, + Bu. '

The relation between s, , 82, v, and w is summarized by the flow graph in
Iig. 1.

As a very simple illustration of the generality of the graph in Ifig. 1,
observe that the flow graph of the classical single loop feedback system
in Fig. 2(a) in which E and F are linear operators can readily be reduced
to the form shown in Fig. 1. The reduced graph is given in Fig. 2(b).

Our concern is with the influence of the nonlinear element represented
by ¢. Hence it is sufficient to consider the situation in Fig. 1 in which
D = Oand A = B =1 The corresponding graph is shown in Fig. 3.
For this graph, using (1), (2), and (3)

82 = ¢[Css + s1]. (4)

* Let sign [/()] = 1 when f (£) = 0.
1 This is essentially the same model used by the writer in another study.?



SIGNAL DISTORTION 2537

c

S, Sz

Fig. 1 — Flow-graph representation of a general transmission system contain-
ing linear elements and a single time-variable nonlinear element ¢.

3.1 The Time-Variable Nonlinear Element and Definition of Signal Dis-
tortion

It is assumed throughout that ¢[f(¢)] is measurable whenever f is
measurable, that ¢(0,t) = 0 for all ¢, and that for all # and all v; = v,

a(vy — 1) < @(v1,t) — e(m,t) < B(vr — 0)

where a and 8 are real constants.

E FE
O =
Sy F ¥ Sz S1 £ Sz

Tig. 2 — Two flow graphs with identical transmission from s, to sa.

In our application of the theorems in Sections V and VII, we shall
suppose that o(vt) = v + @(n,t) where, for all ¢, &(v,t) is of order less
than v as » — 0. That is,* we shall suppose that for sufficiently small

Cc
_ . A
S, » Sz

Fig. 3 — Basie flow graph for studying the influence of ¢.

input signals the element represented by ¢ behaves essentially as a unit
gain amplifier and hence that, for such signals, the system in Iig. 1
behaves essentially as a linear time-invariant system. Let sp denote the

* Note that in the frequently encountered case in which ¢ is independent of ¢
and ¢’ is a monotone decreasing function of v, 8 = 1.
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output signal s in Fig. 1 when ¢(»,t) = ». We shall say that (s, — so2)
is the signal distortion introduced by the departure of ¢(,f) from .
3.2 The Operator C

Unless stated otherwise, it is assumed that
¢f = [ ot —n)f(r) dr (5)

where ¢(1) is a real-valued function of ¢. In cases of engineering interest
C is a causal (ie., ¢(t) = 0, ¢ < 0). However our mathematical results
are not restricted to cases in which C is causal.

IV. PRELIMINARY RESULTS

This section is concerned with a proof of
Theorem I: (a) Let c¢(t) & £,z and C(w) % 1. Then (I — C) 45 a bounded
mapping of K(Z) into itself that possesses a bounded inverse. In fact,
there exists a function h(l) € L1z, with Fourier transform C(w)[l —
C(w)]™, such that

(I — C)_lg =g+ _/:: h(t — 7)g(r) dr
for any g € X(Z). If h(t) & D,
Hu—crwm=1+[3hm1a

(b) Suppose alternatively* that c(t) € £Lor , ess sup | C({w) | < o, and
that inf |1 — C{w) | > 0. Then (I — C) is a bounded mapping of Lor
into itself that possesses a bounded inverse. Moreover

I (=€) = ess sup | 1 — Co) |

€l

ess sup | C(w) |.

4.1 Proof of Part (a)

Since c(t) e £,z , the validity of the assertion that (I — C) is a bounded
* The notation ess sup @(w) denotes inf sup @(w) where I is an arbitrary zero-
w w;
measure subset of the real line. In at least almost all cases of engineering interest,

the ‘“‘essential supremum’ of the modulus of a Fourier transform is equal to its
supremum.
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mapping of X(2) into itself is obvious. For the remainder of part (a)
we need

Lemma I: Let ¢(t) € £1x and C(w) # 1. Then there exists a function h(t)
€ Lix , with Fourier transform C(w) [1 — C(w))™", such that

W) — ety = [t = )elr) dr
almaost everywhere.

4.1.1 Proof of Lemma I:
It is known®* that if ¢(¢) € €1z and inf | 1 — C'(w) | > 0, there exists

an f(1) of bounded total variation on (— =, ) such that
- CI™ = [ ™ .

Under these conditions, it follows that

h(t) = [: c(t — 7) df(r)

is an element of £, which possesses the required Fourier transform.
However, since ('(w) is uniformly continuous and C(w) — 0 as o — =,
the inequality inf | 1 — C'(w) | > 0 is satisfied if and only if C'(w) # 1.

Thus the assumptions in Lemma I imply the existence of a function
h(l) ¢ €1 with the stated transform.j Since

Clw) C(w)

1 — Clw) Clo) =7 C(w)

C(w)
the Fourier transforms of [A(t) — ¢(1)] and

_[ hit — 7)e(r) dr

are equal. This establishes the equation stated in the lemma.
Let g(t) denote any element of 3(Z) and assume that there exists
an f(¢) e ®(Z) such that

. ; The writer is indebted to V. E. Bene& for directing attention to the result in
tef. 4.

t A moment’s reflection will show that when C(w) is rational in w, a proof of this
result follows directly from the identification of the terms in its partial-fraction
expansion.
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00 = @=0Cf =10 = [ et—Dpmyar.  (©
It is certainly true that (6) implies

[: h(t — 'r)g('r) dr
. - . (7)
= .[.., h(t — T)f(‘r) dr — f_w h(t — ) l:-[w c(r — u)f(u) du] dr.

Since f is bounded and k¢ € £;z, Fubini’s theorem implies that the last
integral can be written as

[: J(w) [f: h(t — )e(r — ) dT:I du

and hence, in accordance with the lemma, as

[: Wt — ) f(z) dr — [: e(t — 1) f(z) dr. (8)

Therefore,
[ e =gy ir = [ ott =) fr) dr = $0) = g0,

Thus, if there exists an f € 3(Z) sueh that (I — C)f = g,
St = g(t) + L Wt — 1)g(r) dr. (9)

However, direct substitution and an application of Fubini’s theorem
show that the right-hand side of (9) is a solution of (6). Hence it is
the solution.

Since || (I = €)' [[= = sup{ ||/ [l=: (I = C)f = ¢; f,g & K(2);
| gl = 1}, it is evident from (9) that
1= 0" o1+ [ 140 | a
We shall next show that if (¢) ¢ D
la=o ez 1+ [ 100 @ -,

where 8 is an arbitrary positive number and hence that

[I-=C)"e=1 +[:|h(s)|dz.
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Choose a real number #; and consider
g(t) + f h(ty — 7)g(z) dr. (10)

We may assume that the set of points at which sign [£(¢)] is discontinuous
is a set of isolated points. Let = denote the union of the closed intervals
of length 8, centered at ¢, and at each of the discontinuities of sign [k(f, —
r)] regarded as a function of r. Let Z, denote the complement of =
with respeet to the real line. I'or any é > 0, choose §; such that*

ﬁ |ty — ) | dr < 3o.
Choose g({) € ®(Z) such that g(t)) = 1, |[g]l« = 1, and

g(7) = sign [h(ty — 7)], TEE,
Then

o) + f: Wty — m)g(r) dr = 1 + f_:mu) | dt

+ f h(ty — 7)1g(r) — sign [h(te — )1} dr,

and

}9(50) +f_:h(tu— r)g(r) dr| = 1 +f_:|h(t) | dt — s.

This completes the proof of the first part of Theorem 1.
Of course similar arguments show that if ¢(¢) & D,

1l = [ 1o fa

4.2 Proof of Part (b):

The proof of this part involves essentially the same arguments pre-
sented elsewhere.’
Let [ e Lo . Then, using Plancherel’s identity,

* The integral of | h({o — 7) | over = does not exceed the sum of the integrals
over |7 |2 Tand £ — [—T,T], where [—T,T]. denotes the complement of [—1",T']
with respect to the real line. The first integral can be made arbitrarily small by
choosing 7 sufficiently large and with fixed 7' the second integral can be made
arbitrarily small by choosing 8, sufficiently small.
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[er 1 = o [ 1P [ do

IA

ess sup | C(w) [* [ £ [l2"
Thus C, and hence (I — C), are bounded.
Now consider the equation
(I-C)f=yg; gelun, lgl=1.
Since inf |1 — C(w) | > 0, there exists a unique solution [ & £z and

Flw) = G(w)[l — C(w)]”". Again using Plancherel’s identity

1712 = 1A=l = o [ 11— C@) P16 Fdo (),

< ess sup [1—C(w) [ gl

Clearly, (I — C)™"

[ < esssup |1 — C(w) [

According to the definition of the essential supremum of a function,
for any 8 > 0 there exists a set of values of w of nonzero measure such
that

11— C(w) | >esssup |1 — Clw) [ — 6.
Since | G(w) | is permitted to vanish only on the complement of such
a set, it is evident from (11) that

| (1= )7 o2 esssup |1 = ) [ =3

for any 6 > 0. Thus, in view of the upper bound on | (I — C)™" ||z,
[(I—C)"|.=esssup|l — Cw) ™

A similar argument shows that || C |z = ess sup | C(w) |. This com-

pletes the proof of Theorem I.

V. PROPERTIES OF SOLUTIONS TO So = ¢[Cs: + 1]

Theorem II: Let ¢(t) & L1z, Clw) # 1, and let ¢[v] = v + &[v] be as
defined in Section 3.1. Let ¢[f] be continuous with respect to t on the com-
plement of = whenever f ¢ X(Z). Suppose that

[(I=C) " [l [ Cllomaz (|1 —al,[#—1])=r <1
Then for any s; & X(Z), there exisls a unique s, € K(Z) such that sy =
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¢[Cs: + s1]. Furthermore ss = lim s», where

n—w

o = (I — C)7'¢[Cso0—ry + &] + (I — C)7'sy

and s 1s an arbitrary element of X(Z). The nth approximation s, salis-
fies

n

” Sap — 82 ”m = ” S21 — 820 ”w .

11—

Before proceeding to the proof of Theorem II we state the analogous
result for the space Lo .
Theorem II1: Let ¢(1) € Lo, sup | C(w) | < o, inf|1 — C(w) | > 0,

and let ¢[v] = v + @[v] be as defined in Section 3.1 Suppose that
(T =C) " o [ Clomas (Jl —al,|B—1]) =7 <1.
Then the conclusion of Theorem I follows with 3 (Z) replaced with
Lo and with the K(Z) norm replaced with the £y, norm,
5.1 Proof of Theorem 11
We have
s = Cso + s + @[Csz + 51

and hence, in view of the first part of Theorem I and the assumption
that C(w) # 1, s» = Ls, where

Lso = (I — C) 'p[Cs: 4 8] + (I — C) sy

It is evident that L is a mapping of K(Z) into itself. We shall show that
under the conditions stated in the theorem L is in fact a contraction
mapping of X(Z2) into itself. Let f, g € X(Z) and observe that

| Lf — Lyl = | (T = ©)7'{e[Cf + sl — &[Cq + sil} [
(X —=C) " la-]l 2ICf + 81 — 2[Cqg + s1] [l
and that
[ ¢ICf + sl — #[Cg + sl [l

olCf + 1] — ¢lCg + sl _ _
( oG l) ¢y -0 Hu

max (|1 —a|, [B—=1D [ Cf —9) |
max (|1 —al, [B—=1D) [ Clle-llf—gll-

IIA

IA
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Thus L is a contraction when r < 1. This proves Theorem II with the
exception of the last inequality* which follows directly from the fact
that s, ean be written as

oo
Sa = 8g + Z [sai+1) — 824 (12)
J=0
in which forall j = 1
|| S20i41) — S2j {w = [‘ Ls;; — Lssgon “w = ” Saj — Sa¢j-1) ”w-

5.2 Proof of Theorem I11:

With obvious modifications the proof of Theorem II suffices.

V1. A CASCADE GRAPH FOR APPROXIMATELY DETERMINING THE SIGNAL
sz IN FIG. 3

Suppose that the input signal s in Fig. 3 is an element of X(ZX).
Then under the assumptions stated in Theorem II, the output signal s.
is an element of K(Z) and is given by (12) where sy is an arbitrary
element of %(Z2). The key inequality that must be satisfied ist (using
the first part of Theorem I and assuming that ¢, &t € D)

f_:[c(z)mz (1 n f_:mu) Idt) (13)

‘max (|1 —ea,|8—1]) =r <L

If we take ssp = (I — C) 's;, the sum > [Sacs41) — 8] represents the
i=0
nonlinear distortion present in the output. The first term in this series is
(52— sm) = (I — C)7g[(I — C) ']

and, using the inequality in Theorem II, a bound on the error incurred
in ignoring the remainder of the series is given by

= || sn = 82 [
o0

o0
(821 — s20) — Z [sa¢i41) — 9]
i=0

T
1 —7r

H 821 — S ”en .

* Note that when s2p = 0, this inequality implies that
ls:lle =@ =7 llsmla.

1 In physical systems both integrands vanish for negative arguments.
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That is, the error in ignoring the remainder of the series is at most
r(1 — 7)"" times the norm of the first term. Thus if r is sufficiently
small the function (s — $u) is a good approximation to the distortion
component of the signal s:. Fig. 4 shows the corresponding flow graph
for determining s., , the approximation to the output signal in Fig. 3.
Theorem IIT leads to analogous results and the same flow graph for the
case in which signals belong to £:r . The essential difference is that in
the €., case attention is focused on the energies of the signals.

6.1 Relation of the Graph in Fig. 4 to a Well-Known Engineering Technique

The flow graph in Fig. 4 characterizes the essence of a well-known
engineering technique”™’ for approximately determining the effect of
feedback on nonlinear distortion introduced in one stage of an amplifier,
when the distortion is “‘small.” In partieular, observe that if, as indicated
in Fig. 4, u(t) denotes the distortion* produced by the open-loop system

I

(1-¢) [

s F U (re) sa

Fig. 4 — Cascade flow graph for approximately determining the output signal
in Fig. 3 (su is the approximation to s).

with the same “small-signal transmission” and the same output stage
as the feedback system in Fig. 3, then the output distortion in Fig. 3 is
approximately (I — €) 'w. In engineering terms, feedback is said™"" to
reduce the nonlinear distortion by the amount of the “return difference”
[1 — C{w)] [i.e., by the formal frequency domain representation of the
operator (I — C)J.

6.2 Comparison with Desoer’s Resulls

In an interesting paper' Desoer has considered the range of validity
of the graph in Fig. 4 for the case in which ¢(v,f) = v + ™, where ¢
and m are real constants with m an odd positive integer. In his discussion
all signals belong to }(Z) with Z the null set. He considers the analysis
of a feedback system of the type shown in Fig. 2(a) and argues that
if the norm of the input to the amplifier is sufficiently small and if
| €| is sufficiently small,f then the distortion component of the output

* The ‘‘distortion generator’’
produces the signal u(t).

t This writer feels that some additional restriction on | ¢ | is necessary in order
that Desoer’s condition (B) be satisfied. It would suffice to assume that | e | < 3/16.

referred to in the usual engineering arguments
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signal is given by the sum of an infinite series in which the norm of
each term is less than one-fourth the norm of the preceding term. When
the system is characterized by a flow graph of the type shown in Fig. 3
[as indicated earlier, the analysis of the seemingly more complicated
situation in Fig. 2(a) can be reduced at once to a consideration of this
type of graph], the first term in the series is the distortion determined
from Fig. 4.

Desoer focuses attention on simplifications that can be exploited in
cases of engineering interest. According to him it is a matter of experi-
ence that for a typical low-pass feedback amplifier | C [, = —C(0)
[observe that in general || C [|» = sup | C'(w) |]. In addition he presents

a heuristic argument to support the claim that in such amplifiers || (I —
C)7' ||, is approximately equal to 2. With

tk [ e = a7 =2,

the condition that r [in (13)] be less than 14 (i.e., the condition cor-
responding to Desoer’s criterion for determining the applicability of the
graph in Fig. 4) is

L
Bl Clle”

1t is a routine matter to show that in the high loop-gain case (i.e.,
the case of principal engineering interest) (14) is a much less stringent
condition on the permitted degree of nonlinearity than that implied by
Desoer’s upper bound on | e | and his input norm bound. For a loop gain
of 100 [i.e., C(0) = —100] and m = 3, the bound on | €[ is such that
(14) permits any deviation from unity of the slope of ¢(v) [i.e., max
(|1 — a, | 8 — 1])] which does not exceed 2,500 times the permitted
maximum deviation from unity of the slope of » + &’ over the operat-
ing range*} implied by Desoer’s input norm bound.

max (|1 —al, |8 —1]) < (14)

6.3 An Extension of Theorem I1

Note that when the loop gain is large the permitted amount of non-
linearity in (14) is quite small. Although it is not clear whether the
range of validity of the graph in Fig. 4 ecan be substantially increased,
it is a simple matter to show that the iterates s., defined in Theorem II

* In the notation of Ref. 1, the signal input to the nonlinear element is z — u@{
and ¢ =46l =5 e

Desoer’s bound on | € | can be considerably improved in the large loop-gain
case by assuming that ¢ lies within a ball of much smaller radius (such as || w8 |[71).
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converge to the unique s, £ K(Z) that satisfies s, = ¢[Cs, + 8] even if
r = 1, provided that

[COI— C) " |lemax (|1 —al, [8—1]) <L

This follows from the contraction-mapping fixed-point theorem and
the fact that the relation between s; and s» can be written as s; = s +
#[C(I — C)'sy + & where s3 = (I — C)sa.

In the next section we consider an alternative, but closely related, cas-
cade graph for determining the output distortion in Tlig. 3. For a given
loop gain (assuming it is large) the alternative graph is valid for much
larger amounts of nonlinearity than that indicated in (13) or (14).

VII. ADDITIONAL RESULTS RELATING TO THE EQUATION 852 = ¢[Cse + sy
In this section we assume that there exists a function ¢ such that
Yle(x)] = x for all real 2 and . Hence ¢[s.] = Csa + s . Specifically
Definition: Let y(at) = x + la,t) be a real-valued function of the real
variables ¥ and t such that Y(0,0) = 0 for all t, and that for all t and all
Ty
y(x —y) £ Yat) —lyt) = ol — y)

where v and ¢ are real conslants.
Theorem [V : Let Y|f] be eontinuons with respect to t on the complement of
= whenever [ £ K(2). Let e(t) £ L, C(w) # 1, and suppose that

[ (I—=C)  flumar (|1 —x||c—1])=¢<1

Then for any s, € K(Z), there exists a unique s» € X(Z) such that Y[s;] =
Css + 8. In fact, s» = lim 8, where

n-»>%

fn = —(I — C) YlSawn] + (I— C) sy

and Sy is an arbitrary element of X(X). The nth approximation 3., salis-
Jies
- 7 - -
6o — Fon le € —2— || 821 — S0 |0 -
82— 8l = i — q||-‘>21 S |
The analogous result for the space Lap is

Theorem V: Let ¢(t) & Lor, sup | Clw)| < o, inf [1 — C(w)| > 0,
and suppose thal

(I = C)fomax (|1 — 7], |o—1]) =¢ <1
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Then the conclusion of Theorem 1V follows with 3}(Z) replaced with L.p
and with the X(Z) norm replaced with the Lap norm.
7.1 Proof of Theorem ['V

In view of the first part of Theorem I and the assumption that ('(w)
1, the equation y[s:] = Cs: + s can be written as s, = Ms, , where M
is the mapping of X(Z) into itself defined by

Ms; = —(I — C) [s:] + (I = C)7'sy.

Thus, Theorem IV follows from the contraction-mapping fixed-point
theorem and the readily verified fact that

IMf—Mg |l =g[lf—gle, a¢<I
for any f,g £ ®(Z). With obvious modifications this argument suffices
to establish Theorem V.
7.2 A Cascade Graph for Approximately Delermining the Signal s» in
Fig. 3 when || C || I's Large
As in the discussion of Theorem II, if we set &, = (I — C)™'s in

Theorem IV,

0
2= S+ 2 [Sesn — S,
=0

o0
in which D[S — &;] represents the nonlinear distortion component
i=0

of the output signal in Fig. 3. The first term in this series is

(8 — 8w) = —(I — C)P[(I — C) s, (15)
and the error incurred in ignoring the remainder of the series
(i.e., (5 — Bw) — 2 [Bacieny — 55 ) is, as in Section VI, at most
7=0 £l

q(1 — ¢)”" times the norm of the first term [(i.e., of (15)].
Thus if
¢=(I-C) " fleamax (|1 —v| [o=1]) (16)
is sufficiently small, (8 — 3s) is a good approximation to the distortion

component of s,. Fig. 5 shows the corresponding flow graph* for de-
termining 3 , the approximation to the output signal s, in Fig. 3.

* An analogous interpretation of Theorem V leads to the same flow graph.



SIGNAL DISTORTION 2549

I

(-c)”
Sy -y (1-c)™" 5z

Fig. 5 — Alternative cascade flow graph for approximately determining the
output signal in Fig. 3 (8 is the approximation to sz).

Observe that this graph differs* from the one in Fig. 4 only in that ¢
is replaced with —¢. However the expression for ¢ in (16), unlike the
corresponding expression for r in Theorem II, does not contain the
factor || C ||, which is a measure of the amount of feedback present
in the system (as indicated earlier, in low-pass feedback amplifiers
typically || C |l = | C(0)]).

The condition that ¢ in (16) be less than 14 when || (I — C)7'|l. =
2 (i.e., the condition corresponding to Desoer’s practical eriterion for
determining the applicability of the graph in Fig. 4) is clearlyt

max (|1 — |, |e—1]) <1/8.
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APPENDIX

The following inequality, in which 9% denotes either X(Z) or £.r, can
be used in some cases to compare the output signals in Figs. 4 and 5

| Qals1+ QUlf1 || = 2 - I QUIf1 (17)

where f is an arbitrary element of 9, || - || denotes the norm for the
space 9, and Q is any linear operator defined on 9 such that

QI -lQ max (|1 —v[[e—1])=p <L

* In the Appendix a general inequality is presented which in some cases can be
used to bound the norm of the difference between the two approximations to the
distortion component of s» , (s21 — $20) in Fig. 4 and (82 — 89) in Fig. 5, in terms
af the norm of (8:; — ). The inequality is not applicable when || C |, is large
unless max (|1 — v |, |e — 1)) is sufficiently small.

+ It is sometimes desirable to consider the unrealistic and very much simpler
situation in Fig. 3 when C represents multiplication by a real constant ¢. In that
case the relation between s, and s2 can be written as s = ¢ 'y[s:] — ¢71s; , from
which it is evident that, provided | ¢ | is sufficiently large, the contraction-map-
ping fixed-point theorem is applicable with a small contraction constant even
when ¢ represents a highly nonlinear element.
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Inequality (17) follows from the fact that ¢ = Qe[f] is the fixed point
of the contraction-mapping N (with contraction constant p) defined by

Ng = Qf — QJQ gl
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