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This paper is concerned with general circuits of linear, lime-varying,
positive, two-terminal components. It describes methods of manipulating
corresponding matriz (vector) differential equations. It uses the manipula-
tions to derive equalions for power and bounds on stability. The bounds
apply to the exponential factors associaied with the basis functions of
periodically varying circuits.

I. INTRODUCTION

Linear time-varying circuits of special kinds have been designed and
analyzed with notable success. On the other hand, theoretical techniques
suitable for more general linear time-varying circuits have been develop-
ing much more slowly. The development of more general techniques can
be approached in various ways. One can seek to specialize the pure
mathematics of linear differential equations, in order to discover the
properties of those equations which can actually correspond to physical
circuits. Alternatively, one can seek to apply the classical analysis of
general dynamical systems. As still another alternative, one can seek to
generalize, for time-varying circuits, concepts, principles, and techniques
which have long been applied to fixed circuits.

This paper illustrates the circuit theory approach. After formulating
matrix (vector) differential equations corresponding to circuits of linear,
time-varying, two-terminal components, it describes some general meth-
ods of manipulation. These apply to combinations of time-varying
matrices and the differentiation operator, and are time-varying counter-
parts of manipulations applied to constant matrices in the theory of
fixed circuits. Thereafter, the paper uses the manipulations to derive
formulas for power, and some bounds on stability.

The power equations are conventional and reflect the well known fact
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that time-varying capacitors and inductors can supply energy to a
circuit. However, they can be derived in a way which illustrates manipu-
lation of time-varying matrices in particularly simple terms. Further-
more, the form of the power equations suggests a starting point which
leads eventually to the bounds on stability.

It is assumed throughout the paper that all eircuit components (fixed
or varying) are positive. The stability bounds (as derived) assume that
the circuits vary in a periodic manner. Then the basis functions can be
arranged as a set of exponentials, each multiplied by a periodically vary-
ing coefficient (except in singular cases which are the time-varying
counterparts of fixed circuits whose frequency functions have multiple
poles). The basis functions are the counterparts of the “natural modes”
of fixed networks, and they play an equally important role.

The signs of the real parts of the exponents, in the basis functions,
determine whether the funections grow indefinitely, or die out. The sta-
bility bounds derived herein are upper and lower bounds on the real parts
of the exponents. The specific bounds depend on the composition of
the circuit — whether it is composed exclusively of resistors and ca-
pacitors, resistors and inductors, or capacitors and inductors, or in-
cludes all three kinds of components. For each composition, there are
two pairs of bounds, corresponding respectively to the node equation
and mesh equation (which will be defined in Section II).

The form of the bounds is illustrated by the following: Let ¢ and ('
be the node matrices of the conductances and capacitances of a period-
ically varying cireuit of resistors and capacitors. Consider the zeros in
terms of the scalar variable X of the determinant of (G + 3C + AC).
If the capacitances are positive at all times, the matrices can be so
defined that €' is positive definite. Then the zeros of the determinant are
real, and they vary periodically with time. It will be shown that the
time averages of the instantaneous maximum and minimum over the
set, of zeros are upper and lower bounds on the real parts of the exponents
in the basis functions.

The mesh equations lead to similar bounds in terms of the zeros of the
determinant of (K — 1R + AR), in which K and R are the mesh mat-
rices of the stiffnesses and resistances of the capacitors and resistors. It
is well known, on energy grounds, that a circuit of varying positive
resistors and fixed positive capacitors cannot be unstable. These bounds
show that, likewise, a ecircuit of fixed resistors and varying capacitors
cannot be unstable. It is true even though the varying capacitors can
give power gain.
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Simiiar bounds ean be obtained for circuits of resistors and inductors
only, by a simple transformation of current and voltage variables.

The bounds for “RC” and “RL” circuits are at least reminiscent of
known bounds on the characteristic roots of a dissymmetrical constant
matrix. Let A be a real matrix. The largest and the smallest of the char-
acteristic roots of (A 4 A') are upper and lower bounds on the real
parts of the characteristic roots of A itself.

Tor a ecircuit of inductors and capacitors only, let S be the node
matrix of the reciprocals of the inductances, and let C' be again the node
matrix of the capacitances. Consider the zeros of the determinants of
the two matrices (€ + AC) and (— 18 4+ \S). Treat the two sets of
zeros as a single set of numbers. Then the time average of the maximum
over the set is an upper bound on the real parts of the exponents in the
basis functions, and the time average of the minimum over the set is a
lower bound. The mesh analysis leads to similar bounds, except that the
pertinent matrices are now (3L + AL) and (—3K + \K), where L and
K are the mesh matrices of inductances and stiffnesses.

In some ways, the bounds for cireuits of inductors and capacitors are
less satisfactory than those for cireuits of resistors and capacitors. When
the inductors and capacitors are fixed (and positive) the damping is
necessarily zero. When they are varying the damping may or may not
be zero. The bounds derived here generally bracket zero damping. Thus
they do not say whether or not a time-varying cireuit of inductors and
capacitors has any basis functions with damping different from zero.
They merely say that if the damping is different from zero it is at least
within the bounds.

Similar bounds are easily established for circuits of all three kinds of
components. However, they tend to be weaker than the bounds for
cireuits of two kinds of components only, in ways which will be explained.

Some of the derivations have not been completed to the extent of
proving validity for all singular, as well as normal, situations. What is
reported here is the result of exploratory studies of time-varying circuits,
which still leave some details to be filled in.

The author is indebted to I. W. Sandberg, whom he has consulted
freely concerning properties of matrices in general and of positive definite
and semidefinite matrices in particular. The circuit and power equations
are formulated more carefully by C. A. Desoer and A. Paige.! However,
their analysis tends more to pure mathematics and less to the theory of
fixed cireuits. They do not include the eircuit theory type of manipula-
tions or the stability bounds, which are the primary concerns of this
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paper. H. E. Meadows has noted somewhat similar, but weaker bounds.>
R. A. Rohrer® has derived independently the same stability bounds.
However, he has done so in terms of classical dynamics (generalization
of the equations of Hamilton and Lagrange) rather than in the circuit
theory terms used here.

The material in this paper is organized as follows: All aspects of eircuits
of resistors and capacitors are considered first — formulation of circuit
equations, power relations, and stability conditions. Then the same
analysis is shown to apply to circuits of resistors and inductors, by
changes of variables. Thereafter, circuits including both inductors and
capacitors are analyzed in a similar way. This appears to be less con-
fusing than trying to develop the properties of all the kinds of eircuits
simultaneously.

II. CIRCUITS OF RESISTORS AND CAPACITORS

2.1 Formulation of Circuit Kquations

Circuit equations can be formulated for linear time-varying com-
ponents in almost exactly the same way as for fixed components. Basi-
cally, there are two parts to the formulation. The first defines the be-
havior of individual components; the second applies rules for combining
the effects of the various components in a circuit.

The components with which we are concerned are of the two-terminal
or one-port type. I'ig. 1 represents a typical component, with terminals
J and k. Voltages E; and £, are associated with the terminals. Current
I; enters the component through terminal &k and leaves it through
terminal 7. (Then I = —14;.)

The role of the component is to perform an operation which inter-
relates the voltage difference E; — E; and the current I;;. The com-
ponents with which we are concerned here perform only linear opera-
tions. We shall be interested sometimes in the operation which transforms
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Fig. 1 — A two-terminal component,.
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(B, — E;) into I,; and sometimes in the inverse operation. Thus we
may write

Ivi = Api(E — Ej) (1)

Ik, — E; = 1\“_11“ l

in which A;is a linear operation and A;; " is its inverse.

Sometimes it is more convenient to consider the charge @;, which is

of course related to the current by I; = Q.;. We shall make extensive
use of the symbol p to indicate differentiation:

P
== 2
P = (2)
Then the charge-current relation hecomes
Ij = pQr; (3)
or, inversely
Qu = [ L. (4)

The operations performed by linear resistors and capacitors are dis-
played in Table I. I'or each of the two kinds of components, the opera-
tions are stated in the two inversely related forms, and in terms of both
I.jand Q; . In a time-varying circuit, the resistance I ; and conductance
(7); of the resistor and the capacitance Cy; and stiffness Ki; of the ca-
pacitor may be functions of time.

When the coefficients vary with time they must be written in proper

TapLe I —LiNneEar OPERATIONS PERFORMED BY RESISTORS AND
CAPACITORS

Notation: E, — E; = voltage across component

I; = eurrent through component
Qr; = charge delivered to component
Iij = pQ:,
Resistors: Gy; = conductance, Ify; = resistance
Rl‘f = Gh‘—l
Iij = Gi(Ex — Ej), Qi = S Gij(Er — Ej)dt
(B, — Ej) = Riily; (£, — Ej) = RkiPQﬁ'I
Capacitors: ('r; = capacitance, K;; = stiffness
‘:‘1.-, = I}
Qi = Cii(Ex — E)), Ly = pCi(Ee — E))
By — E; = KijQu E, — B = Ki; S Lydt
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relationship to the differentiation operation p. For example
g \ T i 1] ] Al
Py (B — 1) = 5 1Cu(Hy — E)] # Cop(By — By). (5)

Throughout the paper we shall be critically concerned with the ‘“non-
commutability of p and time-varying coefficients.”

A circuit is formed by interconneeting a number of components, for
example as illustrated in Fig. 2(a). The interconnections may be repre-
sented by the corresponding linear graph, as in Fig. 2(b). The interac-
tions between the various components are determined by Kirchoff’s two
laws. The voltage law says that the same voltage i can be assigned to
each node (graph vertex) k, in forming the voltage differences for all
components connected to k. Then the sum of the voltage differences
around any mesh (graph cycle) must be zero. The current law states
that the sum of the currents into any node must be zero. These remarks
are exactly the same whether or not the components vary with time.

We shall consider separately the two different forms of ecircuit equa-

(a)

(b)

Fig. 2 — A typieal circuit: (a) circuit diagram; (b) linear graph.
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tions which are eommonly used — the node equations and the mesh
equations. For the node equations one node is chosen as datum, and the
excitation (forcing function) is deseribed as currents fed into other nodes
as in Fig. 3(a). Then the node voltages (relative to the datum) are

(a)

NODE 0 = DATUM (Iyg = - E Ink, Eo=0)

Em ("-’)
|

Tig. 3 — Node and mesh currents and voltages: (a) node analysis; (b) mesh
analysis.

related to the currents by a vector differential equation. The procedure
is exactly the same for time-varying circuits as for fixed circuits, pro-
vided omne is eareful to preserve the correct order of the differentiation
operator p and time-varying coefficients.

The veetor equation may be written

Iy = (G + pCYEy . (6)
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Here Ey and [y are column matrices, or vectors, whose elements are
the voltages and excitation currents associated with the various nodes.
If only certain of the nodes are externally accessible, for excitation cur-
rents, the elements of I corresponding to the other (“internal’”) nodes
are simply constrained to be zero.

G and C are square matrices defining the specific relation between [y
and Ky . Their elements are easily determined from the instantaneous
conductances and capacitances of the resistors and capacitors of the
circuit, and the usual relations of elementary circuit theory apply even
though the conductances and eapacitances vary with time.

It follows that &' and C, at each instant of time, have the properties
of the matrices usually associated with fixed networks. Thus ¢ and ¢
are symmelrical, and if the conductances and capacitances of the com-
ponents are nonnegative, (¢ and C' are positive definile or semidefinite.
The symmetry and the nonnegative character of the matrices, together,
lead to an important part of the specialization in ecircuit theory, rela-
tive to the usual pure mathematies of differential equations.

When the differentiation operator p appears in front of a matrix, it
signifies differentiation of each element of the matrix. When it is fol-
lowed by a matrix produect, it signifies differentiation of each element in
the single matrix equal to the product of matrices. Thus (6) is merely
a compact way of writing

d
Iy = GEy + i Qx
QN = CEJ! = (q'x]) (7)

d d
7 Qnr = (cﬁ Q’ﬁ)-

For the mesh equations, meshes are chosen in a somewhat arbitrary
way, and the excitation is described as voltage generators inserted in
the meshes as in Fig. 3(b). The meshes correspond to cycles in the linear
graph, and the number of meshes is the maximum number of independ-
ent cyeles permitted by the topology of the graph. The mesh currents
are related to the excitation voltages by a vector differential equation.
As before, the procedure is the same for time-varying as for fixed cir-
cuits, provided p and time-varying coefficients are written in the proper
order.

For a network of resistors and ecapacitors, it is more convenient to
use charges in place of currents. Then
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Ex (K + Rp)Qu
Iv = pQn.

Here Eu, Qu, Iu are column matrices or vectors. I/ and I are not
the same as Ey and Iy, although they are related to them in a quite
complicated way.

R and K are square matrices defining the specific relation between
Eaw and Qu . Their elements are determined from the instantaneous
resistances and stiffnesses of the resistors and capacitors of the cireuit,
and the usual relations of elementary circuit theory again apply. R and
K are related to ¢ and (' of (6), but in a quite complicated way. The
elements of B and K are not simply reciprocals of elements of  and ('
nor are matrices B and K the inverses of (7 and C.

Like (7 and C, R and K have properties of matrices usually associated
with fixed networks. They are symmelrical, and if the resistances and
stiffnesses of the components are nonnegative, the matrices are positive
definite or semidefinite.

A further point should be mentioned. If (8) is to be valid for all
circuits, the constants of integration implicit in the Qk;, as defined in
(4), must be consistent in the following sense: They must be such that
the indefinite integral in (4) can be replaced by a definite integral, say

[2
f I,\;_,' (U,
ty

with {, the same for all kj. This is the same as requiring that all @,; must
be zero at some one time §; .

When the eondition is not met, the superposition theorem can be
invoked to express the complete circuit relations in two parts. The first
assumes that all capacitors are ecompletely discharged at time f,, and
relates the charges accumulated at ¢ > {; to the generator (mesh) voltages
at t > t,. The second starts with the actual charges at { = # and deter-
mines their later values in the absence of generator voltages. When the
capacitances vary with time, the initial charges may have a much more
important effect than is possible in a fixed circuit. This will be discussed
in physical terms in Section 2.4.1.

(8)

2.2 An Algebra of p and Matriz Coefficients

This seetion introduces manipulations of a sort which we shall use
extensively in this and later papers. In the manipulations it is convenient
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to use both p and a doft over a symbol to indicate differentiation with
respect to time:

. d
pr =& = (9)
Generally (but not quite always) the dot will be used for rates of change
of coefficients and p for differentiation of primary variables (such as
voltages or currents) or products of coefficients and primary variables.
By way of introduction, consider the following scalar expression:

pax = ;—i (az) = ax + apx = (d + ap)z. (10)

Suppose r is a principal variable and a is a time-varying coefficient.
Then @ may be regarded as a linear operator which multiplies = by a
function of time. In the same way, p is an operator which differentiates
x, pa is an operator which multiplies « by @ and differentiates the prod-
uet, and ap is an operator which differentiates @ and multiplies the
derivative by a.

Equation (10) may be said to state a commutation rule, which may
may also be stated as an “operator identity’ (both sides of which are
operators):

pa = d+ ap. (11)

Thus p and @ eommute without change if and only if a is constant, so
that ¢ = 0.

The concept is easily extended to more complicated combinations, for
example

la+p)b+p) =ab+b+ (a+b)p+ p. (12)

An algebra of this sort, in p and scalar coefficients, is useful for the
manipulation of scalar differential equations. It is a prineipal tool in,
for example, Ref. 4.

For present purposes we need to extend the concept to an algebra of
p and mairiz coefficients, as a tool for manipulating vector differential
equations. Suppose X is a matrix variable and A is a matrix coeflicient.
As a first example, it is easily established that

pAX = AX + ApX = (A + Ap)X. (13)

The relation follows at once from the fact that each element of AX is a
sum of terms, each of which is a product of one element from A and one
from X. Equation (11) ean be applied term by term and the results can
then be sorted into contributions to AX and ApX.
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Corresponding to (13) is the “operator identity”
pA = A + Ap. (14)

The concept is quickly extended to more complicated operations. Some
“operators equations” are collected in Table II, together with some
familiar algebraic matrix identities. In the table

A" = transpose of 4
A7' = inverse of A (15)
U = unit or identity matrix.

Constant scalar and matrix coefficients commute with p without
change. Time-varying coefficients do not. (But of course matrix factors,
constant or not, generally do not commute with each other.) This may
be regarded as the most important distinetion between the theories of
linear time-varying and fixed circuits. If it were not for the difference
in the commutation rules, most of the familiar techniques applied to
fixed ecireuits would apply directly to time-varying circuits. As it is in
fact, the more complicated commutation rules lead to numerous com-
plications, as we shall see.

2.2.1 Matrices of Order One

Much of this paper is concerned with scalar quantities (for example,
net input power) derived from vector ecircuit equations. I'or some pur-

TABLE IT —SomME MATRIX RELATIONS

A, B, X, Y = matrices, ¢ = a scalar

In relations which involve inverses, pertinent matrices are assumed to be square
and nonsingular.

SOME ALGEBRAIC IDENTITIES
X(4 + B)Y = XAY 4 XBY
,a\} eV = XYo
(XT) = Yixr, (XT)! = Yoax-1

SOME OPERATOR IDENTITIES
pd = A 4+ Ap, pA = A+ 24p + Ap?

pAp = Ap + Ap* = —pA + p2A
ple = ¢4 + opd, pAes = e?(¢A + pA)

DERIVATIVES OF SOME MATRIX FUNCTIONS
pX? = XX + XX = 2XX
pXYZ = XYZ + XYZ + XYZ _
Xp(X-1) = —XX1,  pX'= XXX = (X)X
pXt = (p-X)‘
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poses, scalars may be represented by matrices of order one, and the
sealars in question will be derived in that form. Certain operations will
be used repeatedly in this connection.

Suppose W and V are n X 1 column matrices and Y is an n X n

square matrix. Then

YV = a column matrix (16)
1
W'YV = a matrix of order one.

A matrix of order one is always symmetrical, for there are no off-diago-
nal terms to interchange in forming the transpose. Thus, using a trans-
pose rule from Table II,

W'YV = (W'yv)' = V'Y'W. (17)
Certain gpecial cases are particularly important.
If Y' = Y and W, V are column matrices,
W'yv = V'Yyw. (1R)
The differentiation rules in Table II require
p(V'YV) = V'YV 4+ VYV + VYV, (19)
Applying (18) gives
if Y'= Y and V is a column matrix
VYV = V'YV = 3 p(V'YV) — 3 VYV (20)

Finally, suppose the transpose of 1V is the negative of Y. Then (17)
requires

if ¥* = —Y and V is a column matrix
VYV = V'YV = — V'YV =0. (21)
(If a quantity is equal to its negative it must be zero.)

2.3 Power and Slability in Terms of the Node Equation

2.3.1 Instantaneous and Average Powers
We return now to the cireuit equation of the nodal analysis:
In = (G + pC)Ew. (22)

The power P supplied to the circuit by the excitation currents is
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- t
P = Z Exidw, = ExIy. (23)
k

Multiplying the circuit equation by E,
P = Ey (G + pC)Ey. (24)
Expanding in terms of identities in Table IT gives

P = EJVOEy + EVCEy + Ey'CEy . (25)

Applyving (20) to the last term leaves
P = Ex' (G + 3C)Ex + 2p(EN'CEy). (26)

The power relation confirms, in eircuit equation terms, what must be
expected on physical arguments. Thus $p(Ex'CEy) is the rate at which
energy is being stored electrically in the capacitors. Then Ey'GEy is the
rate at which energy is being dissipated in the resistors, and 1Ey'CEy
is the rate at which energy is being removed from the circuit by what-
ever means are used to vary the capacitances. (Recall that increasing a.
capacitance decreases the stored energy per unit charge.)

The average power P is frequently of interest as well as the instan-
taneous power . For the average over a finile interval, say & to fs,
integration of (26) gives

Al '! K :rr ta
Ave P = Ave [E (G + LOHVEN) + M.

Ly tot) Eotot) 2(l: — 1)

(27)
When E,'C'Iy is bounded at all times, the last term approaches zero
as (to — ;) approaches infinity. Thus, for long time averages,

it 1y'CEy is bounded at all times

P = Ave [Ey'(( + 1C) 1y . (28)

2.3.2 Lincar Transformations on Ey and [y

The power equation suggests rearranging the current equation so as
to emphasize the matrix (¢ + 3C). Operator identities in Table II
yield

Iy = [(G+1C) + 2(pC 4+ Cp)|Ey . (29)

It is now time to introduce a linear transformation of a sort which
will be used extensively in this and later papers. In particular, let

Ey = NE

I =N'y.

(30)
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Linear transformations of this sort are of course standard means for
diagonalizing matrices. They are also well known as means for generat-
ing equivalent circuits, when components are fixed." Their appropriate-
ness for time-varying circuits is by no means obvious, and they do in
fact lead to serious complications not encountered in connection with
fixed circuits. As usual, the complications stem from the commutation
rules.
Multiplying (29) by N' and using (30) gives

I = IN'(G + 3C)N + 3(pN'CN + N'CNp)

+ }(N'CN — N'CN)IE. 1)
Note that
(N'CN — N'CN)' = —(N'CN — N'CN). (32)
When € is positive definite, there is a transformation N such that:
N'CN= U
(33)

NYG + 3C)N = —D.

Here {/ is the unit matrix of suitable order and D is a diagonal matrix.
Defining D with negative sign simplifies the later discussion. The exist-
ence of a suitable transformation matrix, at each instant, follows from
elementary circuit and matrix theory (for positive components). When
(' is only positive semidefinite, (6) can be transformed into a new equa-
tion, in fewer dimensions, with a positive definite C. One such procedure
is outlined in the Appendix.

With the negative sign in the second equation of (33), the (diagonal)
elements di of D are identical with the zeros M. of the determinant of
matrix (G + 3C + \C).

die = M
det (G + 3C + nC) = 0.

In our applications, because ¢ and €' are functions of time, the A are
functions of time. If the circuit components are always nonnegative,

the A\ are all real.
When the transformation N is fixed by (33), (31) and (32) become

(34)

Il

I=(-D+pU+ HE
J = 3NN — (N'N)1 (35)
Jt= —J.
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The power equation (26) becomes
P =E'TI=FEN'T=EI= —-EDE+ pE'E). (36)

(The product £'JE = 0because J' = — J and £ is a column matrix.) The
power equation could have been transformed directly, but we shall find
it informative to have also the transformed current equation (35).

2.3.3 Some Bounds on the Basis Funclions

Carrying the analysis only a little further establishes some interesting
bounds on the basis functions of circuits which vary periodically. This
subsection outlines a derivation, but simplifies the argument by means
of some somewhat restrictive assumptions. The next subsection reviews
the derivation and removes most of the restrictions.

The basis functions are eounterparts, for time-varying circuits, of the
familiar natural modes of fixed circuits. In node terms, they are a set of
linearly independent solutions of (22) for £y with Iy = 0. Thus, if F, is
a vector bhasis funection,

0= (G+ pC)E,. (37)
When 7y = 0, P = 0 and (26) becomes
0 = E'(G + 3C)E, + 3p(E,'CE,). (38)

0, I = 0 and the transformed equations (35) and

Also, when Iy
(36) become

0= (=D+ Up+ NE,
0 = B,'DE, + ip(E,'E,) (39)
E, = NE, .

If the circuit has n degrees of freedom there are n basis functions in
the set. They may be chosen in many different ways, but each choice is
a linear transformation on every other choice.

If the cireuit varies periodically, ¢ and € in (37) and (38) vary peri-
odically [and also D and J in (39)]. It is well known that the basis
funetions of a linear differential equation with periodically varying co-
efficients can usually be so chosen that they are exponentials with
periodic coefficients.* Any exceptions are singular cases which we can
best take care of in the next subsection.

* See the discussion of the Flogquet-Poinearé theorem in a text on differential
equations, such as pages 78-81 in Coddington and Levinson.®
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Thus for a periodically varying network, we ecan use
E, = H, exp (sid). (40)

Here s, is a constant, the exponential is a sealar factor, and H, is a
periodically varying vector. I'or the purposes of this subsection, we can
hest restriet ourselves to circuits for which s, and H, are real. The re-
striction will be removed in the next subsection.

We shall find it convenient to replace H, by another periodic vector
I, , related to I, by

H, = I, (41)

in which # is an arbitrary periodic real function of ¢ (with the same
period as the time-varying circuit components). In terms of F,,

E, = F,exp (st + 6). (42)

Because the exponential is simply a scalar factor, (42) and the last
equation of (39) require

E, I, exp (st + 6)
F, = NF,.

(43)

Ifor any matrix A,
pAet? = [exp (s + 0)][(s, + 6)A + pA]. (44)

Using this relation in (39) and then cancelling out the exponential
factor gives

0= [(ss + U — D+ JIF, + pF, 5
0= Pl(s + U — DIFy 4 2p(R'Fy). 7

Now £, does not remain bounded over an infinite time interval. Hence
averaging the second equation of (39) does not eliminate the second
term. On the other hand, 7, 7s bounded at all times, and thus the second

equation of (45) implies:
0 = Ave /,'[(s, + 6)U — DIF. . (46)
Sinee /7, , D and 6 are all periodie, while &, is constant, the long time aver-

age is the same as the average over any one period.
The matrix (se + 6)U — D is diagonal. That is, all its elements are

zero except on the main diagonal, where the typical element is
ar = 8%+ 80— N

Det (G + 1€ 4+ MC) = 0.

(47)
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Then multiplying out the matrix product in (46) gives

0 = Ave kZ (ss + 6 — M) (48)
in which F’,k is the kth element in the column matrix F, .

When all the quantities are real (as assumed), condition (48) cannot
be true if all the coefficients (s, + 6 — i) are positive at all times, or
if all are negative at all times. We can use this circumstance to set bounds
on the exponent s, of the basis funection. The arbitrary function # has
been introduced as a means of strengthening these bounds, as explained
below.

Let us assume temporarily that the A: are at all times distinet. Fig,
4(a) illustrates a plot of the \; over one period of their periodic varia-
tions. Let Ay be the largest A, , and let 8, be a choice of 6 such that

Ay — By = constant. (49)

Tig. 4(b) illustrates a plot of the corresponding A\, — 8. Every coef-
ficient (s, + 6 — A\:) in (48) will now be positive unless s, is no greater
than Ay — fa .

Now 8y is actually determined uniquely by (49). Because 0 is
periodie, the average of 6 over any period is zero, and hence also the
long-time average. Then, when Ay — 6 is constant

AVB (RM - BM) = AM — B-M = AVB )\M
(50)
Oy = Ay — Ave Ay .
Thus all terms in (48) will have positive coefficients (s, + 8y — M)
unless

S¢ g Ave Nar . (51)

Exactly the same sort of procedure leads also to a lower bound on s, .
Let A\, be the smallest A\;, and 6, a choice of # which makes A,, — 6, a

constant. Fig. 4(¢) illustrates the eorresponding Az — 6., . The bound on
s, can be written

S = Ave Ay, . (52)

2.3.4 Recapitulation, Discussion, and Removal of Restriclions

This subsection reviews the derivation of the stability bounds, and
removes most of the restrictions.

Our diagonalization of the matrices G 4+ 1C and C assumed that C is
positive definite. The Appendix deseribes how an equation with a posi-
tive semidefinite C' can be transformed into one of lower dimensionality
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A/\/Ak\

A

An— (A -AVG Ay) = AVG Ay

(a)

(b)

Ak - (Am-Aave Ay)

A=(Ay-AvG Ay)

(c)

A-(Am-ave Am)

~Ak —(Am-Ave Am)

Am-(Am-avG Am) =AavG Am

TIME —>

Fig. 4 — Characteristic roots: (a) x; (b) X — 8, with 8 to make maximum = con-
stant; (c) A — 8, with @ to make minimum = constant.
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with a positive definite C. More exactly, the transformation is such that
the components of the transformed current and voltage vectors may be
divided into two autonomous parts. If n and m are the order and rank
of the original matrix ', m components of the transformed current and
voltage vectors are related by a differential equation of our standard
form, in m dimensions, with a positive definite ¢ matrix, and m linearly
independent basis function subject to our stability bounds. The remain-
ing » — m components of the current and voltage vectors are related by a
purely algebraic equation, which raises no questions of stability.

In our derivation of the bounds on s., we restricted ourselves to
periodieally varying ecircuits such that all the basis functions (corre-
sponding to a particular choice) are exponentials with periodic coeffi-
cients. In singular instances such a choice is not possible. However, for
periodically varying circuits, the basis funetions ean all be exponentials
with coefficients which are at most polynomials in ¢ with periodie coef-
ficients. Furthermore, the coefficients are polynomials in ¢ only when
more than one basis funetion has the same coefficient s, in the exponential
factor exp (sit). Out of the set of basis functions corresponding to a
single s , one can always be assigned a periodic coefficient H . This is
sufficient to establish our bound on s, , without regard for the possible
existence of other basis function with the same s .

We also assumed that the constant s, and the periodic function I,
are real. The assumption is not actually necessary. With real circuit
components, complex basis functions ean be chosen in conjugate pairs.
Then equally valid choices are the real and imaginary parts of the eom-
plex functions. Thus we can write, for a complex exponential basis
function,

(.1,‘" + ?-Ya)p(a,-h'u,)f = Zw exp (S,,t) + 12 exp (ng)
Zie = Xo cos wd — Y, sin w.ld (563)
Zoe = NXosin wd + Y, cos w,l.

We can now use either Z;, exp (s,t) or Zs, exp (s,4) as a basis function,
in place of H, exp (st). The only difference is that the Z,’s are not pe-
riodie, as is H, . However, the Z,’s are bounded at all times, and so are
F,and F, , which are now defined by

9
Zlﬂ or Zy = Fee
F, = NF,.
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TFurthermore, the boundedness of F, is all that is required, for passing
from (45) to (46), provided the average in (46) is a long-time average.
Thus the real part s,, of a complex coefficient s, + 7w, , also obeys our
bounds.

An alternate proof uses the complex basis function itself, replaces E,
by its conjugate in (38) and (39) and sorts out real and imaginary parts
of the equations.

The exponents corresponding to circuits of constant resistors and
capacitors are necessarily real. However, when both the resistors and
capacitors vary with time, the exponents may be complex. A number of
specific examples are known, including examples cited by Desoer and
Paige' and by Meadows.”

Finally, we assumed that the zeros M. of the determinant of (G +
1 + AC) were distinet at all times. This is not necessary, provided we
make a simple change in the statement of our bounds on s, . Suppose
the various A\4's crisscross, as in Fig. 5 (which may be contrasted with
Iig. 4a). The variables Ay and A, are now defined as the instantaneous
maxima and minima over the set of variables Ay, ---, A, . Otherwise
the bounds are the same as before.

Thus, for general circuits of periodically varying positive resistors and
capacitors, if s, is the real part of the coefficient in the exponential factor
associated with a basis function,

Ak

- hM OR A‘m

TIME —>

Fig. 5 — Ay and A, when A\i's crisseross.
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Ave A, = 5, = Ave Ay (55)
A, Ay = Instantaneous min. and max.
over the set Ay, -+, s .
Det [ 4+ 31C + NC] = 0.

When the circuit components are constants, the A are constant, and also
each s, is exactly equal to one of the A\, . Why do the averages of the \;
only furnish bounds when the components vary with time?

The answer lies in the joint implications of the vector and sealar
equations

= [(ss + 6)U — D + JIFs + pF,
Ave [F,'[(s, + 6)U — D|F,)

= N'N — (N'N)*

J' = —J

[equations (45) and (46) of Section 2.3.3]. It will be sufficient to con-
sider only the second-order case, for which (56) represents the following
collection of equations

0= (504 0 — M)+ Py + Jroi

(56)

~ o o
Il

0= (84 0 — No)Por 4 Foo — JusFl (57)
0= Ave [(se + 6 — M)+ (80 + 6 — M) 0]
(Jyy = Juw = 0and Joy = —Jp0 because J' = —J.)

With constant coefficients, Jy, = 0, F, is constant, and one suitable
solution is
(ss + 6 — A1) =0, to satisfy the 1st eq.
P =0, to satisfy the 2nd eq. (58)
(s, + 6 — \y) and Fs

With time-varying components, making (s, + 6§ — X\;) zero in (57)
leaves

0, to satisfy the 3rd eq.

= F.\'al + ‘[l'.'prr!.’.
(M — MNP + P — Tyl (59)
Ave [(N — Ao ) Fos').

Il
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These equations are (at least usually) incompatible when Ji» # 0. Thus
the nondiagonal matrix J, which appears only when components are
time-varying, is what destroys the identity of the exponents s, and the
determinant zeros Ax (as here defined). Recall that J stems from the
commutation rules applied to combinations of £ ‘' p, C,and E.

When the resistors are time-varying but the capacitors are fixed, ¢ =
0 and (G + 3C + \C) becomes (G + AC), which has been studied
extensively in connection with fixed networks. When C is positive
definite and G is positive definite or semidefinite, none of the zeros A
can be positive, and the same is true of their averages when they are time-
varying. Then our bounds exclude any positive s; in the exponential
factors exp (s,4) associated with our basis functions. But an unstable
basis function (defined as one which grows indefinitely) requires a posi-
tive s, . Thus our bounds confirm the stability of eireuits in which only
the resistors vary.

2.3.5 Comparison with a Known Property of Constant Malrices

The bounds on s, are at least reminiscent of known bounds on the
characteristic roots of a dissymmetrical constant matrix. Consider the
roots s, of

Det (A 4+ s,U) =0 (60)
in which A is a dissymmetrical matrix. For the closest parallel to our

analysis assume that the characteristic roots are all real. The equation
may be rewritten as follows:

Det (S+J +sU)=0

S =3A+ AY, S8'==5 (61)

J=31A — A", J = —J.
When the determinant is zero, there are nonzero vectors X such that:
(S+ J 4+ sU)X =0. (62)

Because J' = —.J, this implies the scalar equation
X(8+ U)X =0. (63)

Diagonalizing S leaves

Z (.S‘,, - )\k)Xk,z 0
’ (64)

Det (S + MUY = 0.

The J term in (62) excludes (in general) an X in which all elements
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are zero except one. Then s, # A;, but the largest and smallest A; are
upper and lower bounds on s, . Simple changes in the analysis establish
the same bounds for the real parts of complex characteristic roots.

2.4 Stability in Terms of the Mesh Equation

Section 2.3 dealt exclusively with the node equation. However, the
mesh equation can be manipulated in almost exactly the same way.
Recall the mesh equation [(8) of Section 2.1],

Eyv=(K+ Rp)Qux . (65)

Note the order of operations Rp here, and contrast it with pC' in the
node equation.
Define a scalar M by

M= ; QurE s = Qu'E . (66)

While M does not have the dimensions of power, it has many of the
mathematical properties of the power function P which we associated
with the node equations. Multiplying £, by Q' and applying operator
identities gives

M = Qzuf(]’ - %R)QM + %’P(QMtRQM)- (67)

Compare this with the power equation (26) in Section 2.3. The appear-
ance of —3R in M, as opposed to +1C in P, reflects the difference of the
order of operations in Rp and pC. The quantity 3(Qx'RQx) does not
represent stored energy, but it is mathematically similar to the stored
energy function 3£y'CE, . Both these quantities may be regarded as
Lyaponov functions.

Proceeding from here exactly as in the analysis of the node equations
leads eventually to similar, but not identical, bounds. The basis fune-
tions are now mesh charges ), instead of node voltages F, . When circuits
vary periodically they can be chosen as exponentials with periodic
coefficients:

Q. = H, exp (sit). (68)
The bounds on the s, (or the real parts when complex) may be written

Aver, £ s, £ Ave Ay

Am, Ay = instantaneous min. and max.
(69)
over the set Ay, «-+ , X\,

Det [K — 3R + MR) = 0.
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Now the coefficients s, must be identical in the exponentials associated
with the node and mesh analyses. This is because the ratios of charges
and voltages remain bounded. Thus the two sets of bounds apply to the
same set of s, . Then one can form a single pair of bounds by choosing
the lesser of the two upper bounds and the greater of the two lower
bounds.

When the capacitors are time varying but the resistors are fixed, R=0
and (K — 3R + MR) becomes the familiar (K + MR) of the theory of
fixed eircuits. Then the bounds require that such a circuit cannot be
unstable (with positive cireuit components) even though the time-vary-
ing capacitors give power gain.

2.4.1 A Complication in Degenerate Special Cases

In the discussion of the mesh formulation we have ignored a degener-
ate special situation, which complicates a more nearly general analysis.
The complications arise when there is a node within the network to which
two or more capacitors are connected, but no resistors.

Consider first the simplest example, as illustrated in Fig. 6(a). Here,
two capacitors are connected in series between nodes j and k, and no
other components are connected to their common node c. If the capaci-
tances are constant, one can simply replace the two capacitors by a single
equivalent. When they are time varying, the substitution may have to
be more complicated.

The reason is briefly as follows: Suppose there is a positive charge on

’
S /
n Yl e [td /s
D
sy T —-Qz (AN
/ \ 'oN
/ \ \
(a)
’
< /
\\ ]/‘ f—\ I’
kK | "
R—A )
FaR (AN
\ (Y
/ \ \
(b)

_Fig. 6 — Illustration of a degenerate special case: (a) time-varying capacitors
;wth a common node to which no resistors are connected; (b) the Thevenin equiva-
ent.
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one capacitor and a negative charge on the other. Then there will be a
ratio of charges (at any one time) which will produce a zero voltage dif-
ference between terminals j and k. If the ratio of capacitances varies
with time, the required ratio of charges varies with time. Conversely, the
only combination of constant charges which yields zero voltage difference
(Ex — I;) at all times is zero charge on each capaeitor. Furthermore, if
there is initially a positive charge on one and a negative charge on the
other, hoth charges cannot be reduced to zero through nodes j and %
alone. On the other hand, when the capacitances vary periodieally there
is a ratio of constant charges such that the voltage difference varies
periodically and with zero average.

TFor the mesh analysis one can invoke Thevenin’s theorem, and replace
the two capacitors by an equivalent capacitor and a periodie, zero aver-
age voltage source, as illustrated in Fig. 6(b). When there are several
capacitors and no resistors to a single node, or a combination of resistor-
less nodes, several Thevenin voltage generators are called for. A general
characteristic of circuits which can lead to this sort of complication is a
resistance matrix £ which is singular (positive semidefinite instead of
positive definite).

1t follows that the initial charges may be much more important in
time-varying than in fixed eircuits. I'or example, suppose there is only
one resistorless node and only two ecapacitors conneeted thereto. In a
fixed cireuit, the effects of initial charges will eventually die out except
for the voltage at the single resistorless node. In a time-varying cireuit,
however, the varying Thevenin voltage may produce voltages at all
nodes forever.

Tor the node analysis, one can ignore these complications by simply
not eliminating the resistorless nodes. When there are resistorless nodes,
the conductance matrix G is positive semidefinite. When @ has order n
and rank m (and C is positive definite), » — m of the basis functions have
zero damping. This can be proved by applying to (7, with only minor
alterations, the analysis applied to a semidefinite (' as outlined in the
Appendix. The Thevenin voltages of the mesh analysis set up undamped
oscillations within the cireuit (s, = 0) and correspond to the undamped
modes of the node analysis. The validity of the derivation of our stability
bounds, which does not preclude a singular ¢ matrix, implies that the
bounds will include zero when ' is positive semidefinite.

One way to avoid these complications is to avoid ideal capacitors. If
a resistor is connected across each capacitor, to represent the leakage
through any actual component, there are no resistorless nodes.
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III. CIRCUITS OF RESISTORS AND INDUCTORS

The theory of circuits of resistors and capacitors can be applied to
circuits of resistors and inductors by interchanging currents and voltages
and also the mesh and node formulations. Since currents and voltages
are interchanged, one needs variables which are related to voltages in
the same way that charges are related to currents. Corresponding to node
voltage Ej , let

By = & (70)

or, inversely
o = [ Bea (71)

If an inductor is connected between nodes j and k, K, — E; is the
voltage across the inductor, and & — ®; is proportional to the flux
linkages within it. The fact that the definition of & in (70) or (71) leaves
undetermined a constant of integration reflects the fact that constant
flux linkages produce no voltage across an inductor.

Table 111 states the linear operations performed by inductors, in two
inversely related forms, and in terms of both E, — I; and &, — ®;.
The inductance L and its reciprocal Sy, can vary with time, provided
the order of the differentiation symbol p and the coefficients is preserved.

I'or resistors and inductors, the mesh equation corresponds to the
node equation (G) of our previous cireuits, and is

Ey= (R + pL)x. (72)

The mesh voltage and current vectors £y and 1, are defined as before,
and also the matrix R of the mesh resistances. Then L is the mesh matrix
of the inductances of the inductors. If one properly chooses constants of
integration stemming from (71), the node equation is

TaBLE III — LiNgAR OPERATIONS PERFORMED BY INDUCTORS

It; = current through component
E, — E; = voltage across component,
&, — &; = variable related to flux
e = PP
Ly; = inductance, Si; = reciproeal inductance
Sk = Lij !
P — B; = I‘ki‘lki s E. — E; = ]ULHIH

ki = S — ), Iyj = 8y S (B — Ejdi
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(S + Gp)®y
By = pby

~
ES
Il

(73)

and corresponds to the old mesh equation (8). Here vector Iy represents
the node currents as before, and (7 is again the matrix of node conduct-
ances. The elements of vector ®y are the ®. and S is the node matrix of
the reciprocals of the induetances.

The formulation of (73) requires an assumption regarding constants
of integration, implicit in the definition of the @, , exactly like the as-
sumptions regarding the Qi; in the formulation of (8).

One can now proceed exactly as before to obtain power equations
and bounds on the exponential factors associated with the basis fune-
tions of periodically varying circuits.

Section 2.4.1 described degeneracies which oceur in the mesh analysis
of eireuits of resistors and capacitors which have resistorless nodes. The
counterparts for circuits of resistors and inductors oceur in the node
analysis of circuits with resistorless meshes.

IV. CIRCUITS WHICH CONTAIN BOTH CAPACITORS AND INDUCTORS

4.1 Cireuits of Capacitors and Inductors Only

IFor circuits which contain both capacitors and inductors, but no re-
sistors, the node equation contains the capacitor and inductor terms
from our previous ecquations (6) and (73). Thus

]N = S‘I’N + pC‘E,\'
, (74)
Ex = pdy
or, replacing Ey by pby ,
Iy = (S + pCp)dy . (75)

As before, S is the node matrix of the reciprocals of the inductances, and
(! is the node matrix of the capacitances.

To obtain the input power P from the excitation, multiply by £y’
which is the same as &'

P = @&y (8 + pCp)by . (76)

Manipulating in terms of operator identities, again identifying &y with
Ey , and using the symmetry of matrices S and (' gives
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P = —1&y'Sey + 'é-'['f‘NJCHN + ip(dy'Sby) + p(EN'CEy). (77)

The first two terms are the rates at which energy is removed from the
system by the means used to vary the inductances and capacitances.
The last two terms are the rates of increase of the electrical energy stored
in the inductors and capacitors.

The basis functions @, are solutions of

0= (S+ pCp)d, . (78)
The corresponding power equation is
0 = —30,'S8, + 3E,'CE, + yp(/Sb) + jp(E/CE,)
E, = pd, .

If the circuit components vary periodically, we can define a bounded
funetion F, by

(79)

&, = Frexp (st + 6). (80)
There will be a corresponding function F,” defined by

E, = F/ exp (st + 0). (81)
Because F, = p®, , . is related to I, by

F) = (s, + 0)F, + F,. (82)

Under reasonable cireuit conditions (which exclude, for example, dis-
continuous changes in inductances), F,' is bounded, as well as F, . Using
(80) and (81) in (79), eliminating the exponentials and averaging gives

0 = Ave F.[(s, + 8)S — 3SIF, + Ave F/t[(s, + 6)C + 3CIF,. (83)

If both S and € are positive definite, all matrices can be diagonalized.
This merely requires a different transformation on F, and F,’. Thus let
F, = NJF,, F' =N/F (84)
and choose N, and N, in such a way that
N,'SN, = U, N/'CN,/ = U
N.SN, = 2D., N/'CN,/ = —2D/. (8%)

Here U is again the unit matrix and D, and D," are diagonal matrices.
After transformation, (83) can be written

0 = Ave ; {(se + 6 — M)E* + (s + 6 — NP}, (86)
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Here, F,;, and ;' are elements of the column matrices F, and 7., and
M and A, are the corresponding (like-rowed) diagonal elements of D,
and D,’. As before, all quantities can be made real (provided F, , F..'
are only required to be bounded, not necessarily periodic). Then s, ean-
not be so large that all terms in the sum are positive, or so small that
all terms in the sum are negative.

If one makes no use of the implicit relation between F, and ﬁ,", one
can consider the two sets of constants M. and A’ as simply two parts of a
single set. Then bounds on s, can be obtained exactly as before. Since
the X\, depend only on €' and the A" only on S, while (" and S represent
different circuit eomponents, the two sets of bounds are likely to criss-
cross as in I'ig. 7. Thus, ineluding also the relation of M and A\ to S and
(! [defined by (83)], the bounds may he written

Ave (min. over ) £ s, £ Ave (max. over \)
set A = Asand \,s
Det (=18 4+ MS) =0
Det (3C + \/C) = 0.

The mesh analysis differs only in the specific quantities involved. The
mesh circuit equation is

]f:'," = {I( + ?}IJP)Q.‘!
Iy = PQJr .

As before, K is the mesh matrix of stiffnesses and L is the mesh matrix
of inductances.
The input power from the excitation is

P = _%(J.IIfItQ.’lf + %I.uff.lur.u -+ "ljp{QM!I\’QM) + %p(]M,L‘[M)- (89)

(87)

(88)

The bounds on s, may be written
Ave (min. over A) = s, = Ave (max. over \)
set A = As and \’s

0

(90)

Det (—iK + MK)
Det (3L + ML) = 0.
4.2 Circuits of all Three Kinds of Components

I'or cireuits which contain capacitors, inductors and resistors, the
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Fig. 7 — Characteristic roots of (— % 8 4+ A8) and & € + A0).

node equation may be written

[

(91)
EN = p‘IJN .

The corresponding power equation may be written
P = —13,y'Sdy + 1EN'GEy + 3EN'CEy

(92)
+ p(@y'SEy) + 3p(En'CEy)
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in which the new term, 1Ey'GEy , represents the power dissipated in the
resistors.
The stability bounds may be written

Ave (min. over A) = s, < Ave (max. over A\)

set A
Det, (—%S + M,S) =0
Det (G + 3C + N/C) = 0.
Note that A’ is the same as A,/ for a circuit of capacitors and resistors
only [see (553)]. On the other hand, the present A: do not depend at all
on the resistors.
The corresponding mesh equation is

Ly = (K + Rp + pLp)Qu
Iy = PQM-

A’s and A’s
(93)

(94)

Then the power equation may be written
P = —1Qu'KQu + 3 'Rl + 31 s'LI
+ %p(QMtKQM) + %p(IMiLIJI!).

I'inally, the stability conditions may be written

(95)

Ave (min. over \) = s, = Ave (max. over \)
set A
Det (—=3K + MK) =0

Ms and A's

(96)

Det (R + AL + ML) = 0.

4.3 Discussion

Let us return temporarily to eireuits of capacitors and inductors only.
Suppose all the components are constant (and positive). Then it is well
known that the basis funetions (natural modes) are undamped. Since
S and € = 0, etc., when the components are constant, all A and \" in
(88) or (90) are zero. Then the upper and lower bounds must be zero.
Thus, in the special case of fixed components, our bounds collapse onto
the actual s, .

Suppose the inductors are fixed but the capacitors are time-varying.
Then, for example, in the bounds (88), Ay = 0 but generally N’ # 0.
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The zero coefficients A, will affect the maximum or minimum of the com-
bined set A at any times when all A" have the same sign.

When components vary periodically, €' and 8, ete., vary periodically
and ¢ and S, etc., have zero averages. Then any nonzero elements in
¢ and 8, ete., must be positive some of the time and negative some of
the time. This suggests (but does not prove) that the bounds on s, in-
clude zero. It is confirmed by some quite different analysis, which is
outlined in a short paper in this issue of the B.S.T.J.” The paper points
out that the s,’s of nondissipative circuits occur in pairs of the form
+8,, —8 . Thus when any s, has a nonzero real part, another s, will
have the negative of that real part, and any true bounds are consistent
therewith. It also follows that the bounds described above can be
tightened (for nondissipative networks) by using the bound closer to
zero and its negative.

The bagis functions of a circuit of capacitors and inductors may all
have zero damping even though the components are periodically time-
varying. This remark is supported by well known properties of the
Mathieu-Hill equation, which corresponds to the one-dimensional special
case of our vector equations. A weakness of our bounds is that they do
not give meaningful sufficient conditions for basis functions with (posi-
tive or negative) damping different from zero. The bounds will (at least
almost) always be different from zero, but by hracketing zero they will
not exclude it.

Suppose now the circuit includes resistors as well as inductors and
capacitors. Consider first the bounds (93) derived from the node equa-
tion. If the node conductances (represented by matrix (+) are sufficiently
large, every characteristic root ) will be more negative than every
characteristic oot A, (which does not involve G). Then the lower (more
negative) bound on & will be set by the )" and the upper bound by the
A: . If the conductances are further increased, the lower bound will be-
come more negative, but the upper bound will remain unchanged. On the
other hand, increasing the conductances will usually increase the damp-
ing of all the basis functions.

The same remarks apply to the bounds derived from the mesh equa-
tion except that mesh resistances replace node conductances. Thus when
resistors add substantial damping in circuits containing both capacitors
and inductors, our upper (more positive) bounds may be too weak to
have much significance.

Our node analysis assumes that both S and (' are positive definite,
although the initial formulation may make one or both positive semi-
definite. As before, however, the procedure can easily be modified for
positive semidefinite matrices. Recall that two different transformations
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are used to diagonalize S and (', in the derivation of our bounds. When
both are positive semidefinite, they can be separately transformed to
positive definite submatrices bordered by zeros. Because constant transfor-
mations can be used (in accordance with the Appendix), the transformed
S and C retain the derivative relationship to the transformed S and C.
Then the number of characteristic roots A; , A’ depends on the ranks of
S and C. When only capacitors are connected to some nodes, the mesh
analysig will involve some zero damped Thevenin voltages; when only
inductors appear in some meshes, the node analysis will involve some
Thevenin currents.

APPENDIX
Positive Semidefinite Capacitance M alrices

When (' is only positive semidefinite, one can transform equation (6)
as follows: The rank m of €' is now less than the order n. There exist
transformation matrices N, such that

0 0

0o C|- (97)

H,'CN, = l

The zeros represent submatrices of zero elements, bordering the com-
plete matrix with n — m rows and n — m columns of zeros. Then € is
an m X m positive definite submatrix.

These remarks apply to time-varying as well as to fixed circuits.
Furthermore, the matrix N; ean be so chosen that it is constant, provided
the time-varying ecapacitances are always positive (>0, not =0). In
fact, Ny can be chosen as a matrix of 0’s and 1’s only. A detailed demon-
stration is beyond the scope of this paper; briefly it derives from the fact
that the rank of €' is determined by the topology of the capacitor part
of the cireuit, without regard to the values of the capacitances (provided
they remain >0, so that the topology cannot be a function of time).

Because Ny = 0, Ny'p = pN/, and (6) can be transformed (as for
fixed ecircuits) into

» - 0 0|7,
I‘=[°‘+p[0 C’Hﬁl (98)
E=NE, I=N'T

A further transformation, N, , is now easily found, of the form:

U 0||lallU Ne| |G, 0
Nyt U Glly © _’0 G (99)
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Here U represents a unit, or identity submatrix of appropriate order,
and Ny is an m X (n — m) submatrix. Because of the zero submatrix
in the upper right-hand corner of the complete matrix,

U 0|0 0[|U Nu|_|0 O
No' Ull0o C[{0 0] |0 C
Thus the capacitance matrix is unaffected by the second transformation.

The elements of the N, portion of N, may be time-varying. However,

because the time-varying elements combine with no nonzero elements of
¢, N.'pC = pN.'C. Thus the second transformation yields

- Tla, o 0 0[] 4
[l 0 I o

0o cC
We can now divide the components of the transformed current and
voltage veetors into two parts, as follows:

. (100)

+p

1, =GL,, in n — m dimensions A
! (102)

I = (G+ pC)E,  inmdimensions.

The first equation is algebraic, and its diagonalization is routine. The
second equation is in our standard form (6), with C positive definite,
and it may be transformed further in accordance with (29) to (36).

We arrived at this formulation by starting with a one-to-one cor-
respondence between modes and components of the current and voltage
vectors, and then transformed the corresponding differential equation.
Desoer and Paige! arrive at the same conclusion by starting with more
general choices of the current and voltage components, taking account
of the circuit topology.
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