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The concentric interferometer with a limiting aperture in its mid-plane
18 analyzed for its mode-selective properties. Two of the lowest-order trans-
verse modes and their losses for the infinite-strip geometry are computed by
solving the associated integral equations by the method of successive approxi-
mations. The apertured concentric interferometer is found to be more mode-
selective than the apertureless concentric inlerferometer or the Fabry-Perol
interferometer with parallel plane mirrors. Computed results indicale that
the optimum aperture size for maximum mode seleclivily is approvimately
the size of the major lobe of the diffraction pattern of the dominant mode at
the aperture plane. However, the maximum selectivity attainable does not
exceed that of the “comparable” confocal system. The latter system is not
very practical because it requires etther very long resonator lengths or very
small marrors.

I. INTRODUCTION

Interferometer-type resonators that are used in optical masers are
inherently multimode devices. The resonant modes that can exist in
such devices may be classified as longitudinal and transverse modes.
The longitudinal mode order is determined by the number of field varia-
tions along the axis of the interferometer, while the transverse mode
order is determined by the number of field variations in the plane of
the mirrors. Ifor each longitudinal mode order, there exists a set of trans-
verse modes. The number of modes that can partake in the oscillations
of an optical maser is dependent on the geometry and the losses of the
resonator, the width of the atomic resonance of the active material and
the degree of population inversion. Practically, an optical maser will
oscillate in several modes simultaneously unless special steps are taken
to suppress the unwanted ones. For applications such as optical com-
munication it is desirable from the standpoint of noise, coherence, spec-
tral purity, ete. to suppress all but one mode in a maser oseillator. There-
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fore, mode-selection schemes are very important if the optical maser is
to be a useful source of coherent and monochromatic radiation.

Aside from losses of a random nature such as those due to inhomo-
geneities in the medium and mirror imperfections, the resonant modes
in a maser interferometer also suffer from losses due to diffraction around
the mirrors.! 2 The diffraction loss varies very little with longitudinal
mode order, but increases very rapidly with increasing transverse mode
order. Thus interferometer-type resonators are inherently mode-selec-
tive with respect to transverse modes. By using a long, thin configura-
tion (small mirrors and large mirror separation) it is possible to suppress
all but the dominant transverse mode.* Also, by operating just above
the osecillation threshold! or by using a short resonator?® it is possible to
restriet the oscillations to a single longitudinal mode. The output power
in these cases is somewhat limited.

Sinee it is desirable to pump the active medium strongly so as to ob-
tain as much power as possible from a maser oscillator, methods for
providing additional mode selection are important. In general, mode
selection involves the introduection of loss to the resonator in some pre-
seribed manner. Kleinman and Kisliuk® have proposed the use of an
additional Fabry-Perot interferometer to discriminate against unwanted
longitudinal modes. Kogelnik and Patel” obtained essentially a single-
frequency output from a gaseous maser using three concave mirrors.
Collins and White® used two tilted Fabry-Perot etalons within the reso-
nator of a ruby maser to select longitudinal as well as transverse modes.
Schemes for suppressing unwanted higher-order transverse modes by
employing a limiting aperture in the focal plane of a suitable optical
system within the resonator of a ruby maser were tried by Burch,? Baker
and Peters,'* and Skinner and Geusic.!* These latter schemes are essen-
tially equivalent to an interferometer system consisting of a pair of
spherical mirrors spaced concentrically and having a limiting aperture
in its mid-plane. Since the field distribution over the mid-plane of a
concentric system is essentially the far-field pattern (Fourier transform)
of the field over the mirrors, the higher-order transverse modes will
have a wider lateral spread than the lower-order ones. Therefore, a suita-
bly chosen aperture will introduce very little loss to the dominant mode
but will introduce appreciable loss to the higher-order modes, making
the apertured system quite mode-selective to transverse orders.

In order to study the mode-selective property of an apertured con-
centric system, we have set up the appropriate integral equations for
the infinite-strip geometry and solved them iteratively on a digital com-
puter for the intensity distributions and the losses of the two lowest-
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order transverse modes. The computed results indicate that there is an
optimum aperture for maximum mode selectivity,* but that this maxi-
mum never exceeds that of the “comparable” confocal system. In fact,
as the aperture is made smaller and smaller the behavior of the apertured
concentric system approaches that of the confoecal system. However,
the comparable confocal system is not very practical because it requires
either very small mirrors or very large mirror spacing.
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Fig. 1 — Geometry of the aperture-limited eoneentriec maser interferometer,
(a) Full-coneentrie system with aperture. (b) Equivalent half-coneentrie system.

II. INTEGRAL EQUATIONS OF THE SYSTEM

Since the full-coneentric system with a mid-plane aperture is equiva-
lent to a half-concentrie system with a plane mirror of the same size as
the aperture,’® it is convenient to use the half-concentrie model for the
formulation of the integral equations (Iig. 1). Also, it is convenient to
use the two-dimensional model of infinite-strip mirrors, since the three-
dimensional problem of rectangular mirrors can be reduced to a two-
dimensional one.! The behavior of systems with circular mirrors is ex-
pected to be similar to that of square-mirror systems.

Fig. 1(a) shows the geometry of anapertured concentrie interferometer.

* The loss of the higher-order mode relative to the loss of the dominant mode
may be regarded as a measure of mode selectivity.
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The infinite-strip concentric mirrors are of width 2a; and are separated
by b, which is twice the radius of curvature of the mirrors. The aperture
is of width 2a, and is in the mid:plane of the interferometer. Fig. 1(b)
shows the equivalent half-coneentric model which is to be used for the
analysis. The integral equations defining the modes can be derived from
our previous analysis on interferometers with curved mirrors by setting
g1 = 0 and g» = 1 in equations (11) and (12) of Ref. 12. The resulting
equations are

w4 as
y Py (@) = f/ﬁ [ exp [jk(2ew: — 22°) /20" WP () daa (1)
and
w4 ay
P (@) = \GT‘E[_ exp [k (2z@y — 22)/26' WP (21) dwn (2)

where the subscripts and superseripts one and two denote the curved
mirror and the plane mirror, respectively, as shown in Fig. 1(b). The
¥'s are the eigenfunctions that describe the relative field distributions
over the mirrors, and the ¥’s are the corresponding eigenvalues that
specify the loss and the phase shift the wave suffers during each transit.
The propagation constant k is equal to 2r/\, where A is the wavelength
in the medium. The mirror separation b’ is equal to b/2.

Equations (1) and (2) are single-transit equations which can be com-
bined to form two round-trip equations. They are

(@) = f i Kz, 209 (&) d& (3)

—a;

and

W) = [ Kolm, 2)9°(2) da (4)

—ay

where the kernels K; and K. are given by

Ki(z, &) = % f_uﬂ exp [jk{a(x + &) — a2} /b'] dae (5
Ka(as, 3) = )\Lbi exp [kl (e + &) — (2 + 5)/2) /] day (6)

and the eigenvalue v is equal to ¥ y®. Since one round trip in the
half-concentric system is equivalent to a single transit in the full-con-
centric system, (3) may be regarded as the integral equation defining
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the modes of the aperture-limited concentric interferometer while (4)
gives the field distribution across the aperture.

The kernels K, and K, as defined by (5) and (6) are symmetric; that
is, Ky(xy, &) = Ky(#, x) and Ku(2s, ) = K.(Z, x4). Therefore, the
eigenfunctions ¥, and ¢,® corresponding to distinet eigenvalues v,
are orthogonal® in the sense that

fal (@) (1) dey = 0, m = n (7)

f — ‘Pﬂm(w?)\bm(ﬂ)(ﬂ’z) dxy = 0, m #= n. (8)
—aq

As in the general case of curved mirrors,'? the eigenfunctions are com-
plex and are orthogonal in the non-Hermitian sense.

The integral equations can be solved numerically using iterative tech-
niques. However, it is possible to extract the asymptotic behavior of
the solutions from these equations for very small apertures. Thus for
(as/a;) < 1 and a.*/b\ < 1, the terms involving a»* and #.* can be neg-
lected and the integral equations reduce to those for the asymmetric
confocal configuration (with unequal mirrors). It has been shown by
Boyd and Kogelnik' that the modes and the corresponding losses of an
asymmetric confocal system are the same as those of a symmetric sys-
tem with equal mirrors of width 2a where a = A/aja; . Therefore, the
behavior of the aperture-limited concentric system approaches asymp-
totically that of the confocal system as the aperture is made smaller
and smaller. We designate the confocal system with Fresnel number
N. = aas/b'\ as the comparable confocal system.

III. COMPUTED RESULTS AND DISCUSSION

The two lowest-order modes and their eigenvalues for an aperture-
limited infinite-strip concentric interferometer were computed using the
method of successive approximations' on an IBM 7090 computer. One
hundred increments were used in the numerical integration of (1) and
(2). Curves for power loss per transit for the two lowest-order modes
and for different values of Fresnel number (N = a,%/b\) are given in
Fig. 2. The abscissa is the half width of the aperture normalized to a,/N,
where both a; and N should be regarded as constants. The dashed curves
give the loss of the comparable confocal interferometer as functions of
its half Fresnel number, which is equal to aas/bA. The losses for the
limiting case of infinitely wide aperture are given on the column on the
right side of the figure.
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Fig. 2 — Power loss per transit for the two lowest-order modes of an aperture-
limited concentric interferometer. The abscissa is the half width of the aperture
normalized to a,/N. (Both e; and N should be regarded as constants.) The dashed

curves are for the “comparable” confocal interferometer.
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Figs. 3 and 4 show the relative amplitude and phase distributions of
the field intensity for the two lowest-order modes. Curves A and B are
for the aperture-limited concentric interferometer with N = 10 and
as/a, = 0.0325; A is the field distribution over the mirror while B is the
field distribution over the aperture. Curve C is for the comparable con-
focal interferometer with a Fresnel number (N.) of 0.65. Curve D is for
an apertureless (a; — =) concentrie interferometer with N = 10 and
is the same as for the parallel plane configuration except for the reversal
of sign in the phase distribution.!-2

The ratio of the loss of TEM, mode to the loss of TEM, mode, which
is a measure of mode selectivity, is plotted in Fig. 5 as a function of the
normalized aperture half width. The dotted curve represents the same
ratio for the comparable confoeal system plotted as a function of its
half Iresnel number, which is equal to aas/bx. The short slant lines
represent segments of the loei of constant loss for the TEM, mode. The
ratio of the losses for the limiting case of infinitely wide aperture is ap-
proximately four* for large N (N > 1) and is given on the column on
the right side of the figure.

That a suitably chosen limiting aperture placed in the mid-plane of
a concentric interferometer should be mode-selective can be surmised
by considering the field distribution over its mid-plane. This field dis-
tribution, as given by (2), is, exeept for a quadratic phase factor, the
Fourier transform of the mode pattern over the mirrors. It resembles
very closely the far-field pattern of the equivalent parallel plane sys-
tem' ' and therefore has a lateral spread which inereases with mode
order. Consequently, a limiting aperture having the width of the major
lobe of the dominant mode would have a small effect on that mode but
would increase quite significantly the losses of the higher-order modes.
The optimum aperture width (for a given N) corresponding to maxi-
mum mode selectivity as shown in Fig. 5 is approximately equal to the
major-lobe width. As the aperture is made larger, more and more of the
minor lobes are uncovered and they interfere either constructively or
destructively at the mirrors, producing the oscillations in the loss curves
in Fig. 2 and in the relative loss curves in Fig. 5.

Fig. 5 shows that a suitably chosen aperture can increase the relative
loss of the TEM, mode several times its apertureless value. The effect
of the aperture on other higher-order modes is expected to be even
greater. By observing the number of iterations required to produce a

* For large Fresnel numbers (N > 1) the ratio (loss of TEM, maode)/(loss of
TEM, mode) is approximately (1 4 »)? for parallel plane or coneentric configura-
tions.
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Tig. 3 — Relative amplitude and phase distributions of the lowest-order
(TEM,) mode. Both A and B are for an aperture-limited concentric interferometer
with N = 10 and as/a; = 0.0325; A is the field distribution over the mirror and B
is the field distribution over the aperture. C is for the ‘‘comparable” confocal
interferometer with a Fresnel number of 0.65. D is for a concentrie interferometer
with N = 10 and a2 — .
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Fig. 4 — Relative amplitude and phase distributions of the second lowest-
order (TIEM,) mode. The notation for the eurves is the same as for Fig. 3.

steady-state solution from an arbitrary initial trial function, it is possi-
ble to infer the relative loss of other higher-order modes. For example,
the number of iterations required for the dominant (TEM,) mode of
an apertureless concentric (or parallel plane) system with N = 10 is
about 800, whereas with an aperture such that as/a; = 0.0325 the num-
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ber required reduces to about 25, which indicates that the relative losses
of the higher-order even-symmetric modes are now very much higher.
The behavior of the apertured concentric system was found analyt-
ically to approach that of the confocal system in the limit of very small
apertures. The computed results confirm this and show further that the
mode selectivity (in terms of relative loss) of the apertured concentric
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Fig. 5 — Ratio of the losses of the two lowest-order modes versus normalized
aperture half width. The dashed curve is the ratio for the ‘‘comparable” confocal
interferometer. The short slant lines are segments of the loei of constant loss for
TEM, mode.
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system can never be greater than that of the confocal system. However,
the effective suppression of unwanted higher-order modes in a maser
oscillator requires not only that the relative losses of the higher-order
modes be high but also that their absolute losses be greater than the
gain of the active medium. To satisfy the second condition a confocal
system would have to operate with a very small I'resnel number, whereas
a reasonably large I'resnel number can be used for the apertured con-
centric system. For example, if a maser having a gain of 20 per cent per
pass is required to produce a single transverse-mode output, an apertured
concentric configuration (with square mirrors) having N = 20 and
a/ar = 0.018 can be used, but a confocal configuration would need
an N, of about 0.7, which means either very long resonator lengths or
very small mirrors. Such configurations are generally undesirable be-
cause lengthening the resonator tends to increase the number of longi-
tudinal modes that can oscillate and decreasing the size of the mirrors
tends to diminish the power output capability.
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