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Long-dislance, high-capacily lransmission via the TEy mode in circular
waveguide ts an allractive goal because the theoretical attenualion caused by
heat loss decreases monolonically as the frequency of operalion increases.
However, conlinuous random mode conversion caused by the manufacturing
or the laying of the waveguide causes severe random fluctuations with fre-
quency in the transfer function of preseni-day waveguide, a fact which
apparently eliminates all but the “loughest” modulation schemes, such as
pulse code modulation and angle modulation.

In this paper, we present the derivation of a technique for analyzing the
effects of continuous random mode conversion on an angle-modulated wave.
The random coupling cocfficient is assumed lo have a Gaussian probability
density. The modulating signal is assumed to be a single-sideband frequency
division multiplex which may be stimulated by a band of random Gaussian
noise. The quantily of interest is the expected value of the interchannel
interference noise which appears at baseband. A self-contained section on
principal resulls and evamples ts presenled. The examples use lypical
state-of-the-art data and are significant in that they demonstrate that FM
appears lo be an allractive modulation scheme. They are, however, mot
meant to be an exhaustive study of the problem. Copper waveguide (with
and withoul mode filters) and helix waveguide are considered.

The Fourier series, multiple-echo representation of a stochastic transfer
Sunction presented in this paper should prove useful in handling other
modulation schemes as well as other random channels.

I. INTRODUCTION

Long-distance, high-capacity transmission via the TEy mode in the
millimeter-wave circular-electric waveguide is an attractive goal be-
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cause the theoretical attenuation caused by heat loss decreases mono-
tonically as the frequency of operation increases. However, in order to
obtain sufficiently small heat loss attenuation and delay distortion, the
operating frequency must be well above the TEy cutoff frequency and
far into the multimode region. For example, a two-inch I.D. perfect
copper circular guide will have a theoretical TEo heat loss of 1.54 db
per mile at 55 kme and will propagate 223 additional (spurious) modes.!
Real waveguides are never perfect right-circular cylinders but have
continuous random imperfections arising from the manufacturing or the
laying of the waveguide. These random imperfections cause conversion
of the TEy signal mode to spurious modes.? We call the attenuation
produced by this energy loss ‘“‘conversion attenuation.” Usually more
important, the imperfections also cause converted energy in the spurious
modes to be reconverted into the TEy signal mode. Since the group
velocities of the various modes will be different, the reconverted energy
from each mode will be delayed or advanced in time with respect to the
energy which has remained in the TEq signal mode. Thus we have a
signal plus a continuum of echoes. The effect causes the amplitude and
phase of the TEq, wave to fluctuate randomly with frequency. A transfer
function which is a random variable can be defined to take this fluctua-
tion into account in a statistical sense. We call it the “reconversion
transfer function.”

The fluctuations in the reconversion transfer function distort any
signal which might be transmitted through the waveguide. A “tough”
modulation scheme is required in order to overcome this effect. In this -
paper we consider the use of large-index frequency modulation (FM).
The recent work of Rowe and Warters? provides us with a sound and
tractable mathematical analysis of continuous random mode conversion.
We shall use the results of their work as our starting point. The base-
band signal used to frequency or phase modulate the carrier wave is
assumed to consist of a single-sideband frequency division multiplex
of telephone channels. For analysis purposes we can approximate this
baseband signal by a band of random Gaussian noise.? When such an
angle-modulated wave is passed through a network whose attenuation
and phase are nonlinear functions of frequency, interchannel interference
appears in the demodulated signal. In way of explanation, imagine that
the energy in the baseband modulating signal corresponding to some
particular telephone channel is removed. When such a signal is impressed
on a frequency modulator and the resulting wave is transmitted through
the network in question, detected, and finally demodulated, the received
output in the originally clear channel represents interchannel interfer-
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ence. Measurements of this type have been discussed by Albersheim
and Schafer.!

To the author’s knowledge, there is only one tractable technique for
determining interchannel interference in angle-modulated systems which
does not require that the fluctuation rate of the attenuation and phase
functions be slow over the bandwidth occupied by the signal. This
exception is the method of equivalent echoes.?:® Since the phase and
attenuation of the reconversion transfer function fluctuates rapidly
across the bandwidths of interest, we are necessarily confined to this
technique or variations thereof. We see that some sort of multiple-echo
approximation to the reconversion transfer function is required if any
accuracy in our results is to be expected. How many echoes are required,
and how should they be distributed and weighted? The answer is clear
when we recall that a small echo produces or is equivalent to a sinusoidal
variation with frequency in the transfer function, i.e., the Fourier trans-
form of the echo. We simply expand the reconversion transfer function
in a Fourier series over a frequency interval which we know to be suffi-
ciently large to contain all of the significant energy in the 'M wave. The
Fourier transform of this series is the desired train of echoes and is an
exact representation over the bandwidth under consideration. The echoes
are regularly spaced, and their amplitudes are proportional to the magni-
tude of the coeflicients of the FFourier series. The problem is now reduced
to obtaining the Fourier series coefficients, and until recently this would
have been a major stumbling block. Fortunately, however, Rowe,
Warters, and Young have recently made important contributions?”® to
the understanding of continuous random mode conversion. They have
demonstrated that over the moderate percentage bandwidths in which
we are interested, the effects of random mode conversion give rise to a
transfer function which is a random function of frequency much as a
noise wave is a random function of time. Using their results, we can
evaluate the statisties of the Fourier series coefficients, i.e., echo ampli-
tudes, which are, of course, random variables. Moreover, if the cross-
correlation between coefficients is negligible, we can determine the ex-
pected value of the interchannel interference for each echo individually
and then add the results to obtain the total expected value of the inter-
channel interference. The random coupling coefficient is assumed to
have a Gaussian probability density. The effects of delay distortion
caused by waveguide cutoff dispersion are not included in this paper.
The system is assumed to be equalized.

Section II presents the principal results of this paper and contains
examples demonstrating their use. The examples use typical state-of-
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the-art data obtained from S. E. Miller® and are significant in that they
demonstrate that FM appears to be an attractive modulation scheme
for use on the millimeter-wave circular-electric waveguide as far as
continuous random mode conversion is concerned. Both helix waveguide
and copper waveguide with mode filters are considered. The helix wave-
guide has superior performance, of course, but copper waveguide with
periodically placed mode filters may be useful in some situations.
Section ITI presents the mathematical development of the results.

II. PRINCIPAL RESULTS

The present section contains a statement and discussion of the princi-
pal results of this paper. We will restrict the discussion to the case of a
single spurious mode and a single polarization. If other polarizations are
present, they can be considered individually and the results added on a
power basis.* The same is true for our purposes for different spurious
modes. It is certainly true when the spurious modes arise because of
different and uncorrelated physical imperfections in the waveguide. For
instance, the TEy. spurious mode is caused primarily by random diam-
eter variations. Its reconversion transfer function would be uncorre-
lated with that of the TE, spurious mode, which is caused primarily
by random straightness variations, if the diameter variations are un-
correlated with the straightness variations. Even when the spurious
modes arise because of the same physical imperfections, it can be shown{
that the cross-correlation in the same frequency interval is negligible.

There are two cases of interest. In the first, the difference between the
heat loss attenuation constant of the TEqy and the spurious mode, i.e.,
the differential attenuation constant A4, is uniform. An example would
be the TEy, family on both the helix waveguide and copper waveguide
with helix mode filters. The second case of interest is when the differen-
tial attenuation is effectively zero, except at periodically located points
along the waveguide where a total differential attenuation of k is in-
troduced. An example of this type of behavior would be the TE;, family
on a waveguide having periodically placed helix mode filters.

2.1 Uniform Differential Attenuation Constani

Consider a length L of waveguide having a differential attenuation
constant of AA for the spurious mode of interest. Assume that the ran-
dom coupling coefficient between the TEy and spurious mode is Gauss-

* See Ref. 2, Section 4.3.2.
1 See Ref. 2, Appendix G.
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ian, pure real or pure imaginary, and has a white power spectrum of
density S, . If the differential attenuation of the total length of wave-
guide is much larger than one, i.e., | A4 | L >> 1, then the mean-square
value of the equivalent echoes r,?, normalized by the signal power, is
given by the expression

rd = (T/m) (Pof Py)e "1 (1)
if P./Py << 1, where

P./P, = reconversion echo-to-signal power ratio (2)
= S’L/2 | aA | (2).
o = |8 — i | /4c| AA | (3)

and

n = positive integer designating the nth echo. (The echoes lag the
signal if 3" > % and lead if %’ > 7.  Because the interchannel
interference is independent of this, we use the absolute value | 3," — 7’ |
in (3) and require n to be positive.)

P: = reconversion echo power, i.e., the power in that portion of the
signal which has been converted and reconverted once and only once.

Py = signal power which has suffered no conversion. This will hence-
forth be considered the signal power.

%, %: = mode cutoff factors* of the TE, and spurious modes at
the band center frequency. This give rise to the differential phase shift.

¢ = velocity of light in free space.

T = 1/Af = time delay between successive echoes.

Equation (2) has also been derived independently by Miller,’ using a
different approach. Equation (1) was developed from a Fourier series
expansion of the reconversion transfer function over the frequency
interval Af. Hence, Af must satisfy certain conditions if meaningful
answers are to be obtained. First, all of the significant energy in the
angle-modulated signal must be contained within the bandwidth Af.
Thus we require a bandwidth of

Af 2 2(fy + 40) (4)

where f; is the baseband bandwidth and ¢ is the root-mean-square fre-
quency deviation of the angle-modulated wave. This is simply a state-
ment of the familiar Carson bandwidth. fecond, the mathematical

* See Ref. 2, Appendix A.
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derivation of (1) requires the differential phase constant to be approxi-
mately proportional to frequency over the bandwidth used in the Fourier
series expansion. This sets an upper limit on Af. In order to satisfy this
requirement we require that the percentage bandwidth and the square
of the mode eutoff factors of the modes involved be small compared to
unity, i.e.

Af/2fo € 1,5 <1 and @, < 1. (5)

This will usually be true for the bandwidth and modes of interest, but
it should always be checked as a safeguard. Third, the Fourier series
coefficients must be uncorrelated with one another. It is well known that
Fourier series coefficients become uncorrelated as the expansion interval
approaches infinity. In a practical case, “infinity” is a number which
is much larger than the correlation interval of the random variable in
question. In the present case the autocorrelation function of the recon-
version transfer function varies as 1/[1 + (2rrof’)’], where f’ is meas-
ured about the band center frequency. Thus in order for the cross-cor-
relation between coefficients to be negligible we require that

(wroldf)* > 1. (6)

Lastly, the expression (1) for ro. is limited by the accuracy of the per-
turbation theory from which it was developed. It should be good, how-
ever, as long as Py/P. >> 1 as calculated from (2). A plot of the equiva-
lent echo train is shown in Fig. 1. We see that 7, is the “time constant”
associated with the envelope of the echo train, i.e., it is the value of
time delay where the envelope of the echo train caused by reconversion
has dropped to the relative value 1/e.

If the cross-correlation between Fourier series coefficients, and hence
echoes, is negligible, we may substitute the expression (1) directly

N
. T e
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Fig. 1 — A plot of the reconversion echo train for uniform differential attenua-
tion.
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into the formulas given by Bennett et al.” and sum the results to deter-
mine the total baseband interchannel interference in the top channel.

As an illustration, for a two-inch I.D. helix waveguide at 55 kme, the
dominant spurious mode is the TEy, , as far as reconversion echoes are
concerned. Typical data are’

| AA | = 4.3 db/mile = 0.495 neper/mile
S. = 0.01 db/mile = 0.00115 neper/mile
7 = 0.0172 < 1

7. = 0.058 < 1
105.8 X 1077 sec.

=
Il

For a waveguide length of 4000 miles, we have from (2)
Po/P, = 22,6 db > 1.

Let us assume that a signal is applied to this waveguide which has been
frequency modulated by a rectangular band of Gaussian noise. Let the
baseband width be f, = 10 me, and the rms frequency deviation be
o = 2fy = 20 me. The significant energy in this wave would be contained
in & bandwidth of Af = 10¢ = 20f, = 200 me. Thus, if we pick Af =
200 me we also satisfy (5) and (6), i.e.

Af/2fo = 0.002 < 1, (wroAf)? = 4,450 > 1.

From Fig. 5.7 of Bennett et al.’ we can read off the factor s(nf,T'),
which multiplies the mean-square value of each echo to give the inter-
channel interference-to-signal power ratio for that particular echo.
s(nfyT) takes into account the noise suppressing property of M as
well as the variation caused by the magnitude of the delay. A plot of
s(nfyT) is shown in Fig. 2 for ¢/fy = 2 and 3. The total interchannel
interference-to-signal power ratio is given by the sum

00

1/8 = 3 s(nfyT)72 @)

n=1

if P./Py < 1. We see that since s(nf,T') is essentially constant at — 15
db for nfyT' > 1/10, i.e., n > 1, we have to a good approximation

I/8 = s(nfyT) iﬁ

s(nfeT)(Pa/Py).

(8)

In decibels

1/8S = —15 — 22,6 = —37.6 db.
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Fig. 2 — Weighting function s(nfyT") whieh multiplies individual echoes to
give interchannel interference in top baseband ehannel for FM.

This corresponds to 27.4 dba at zero level. Thus, other things neglected,
continuoug random mode conversion does not preclude a 4000-mile
two-inch L.D. helix system.

If this interchannel interference noise-to-signal ratio were too large,
one could decrease it still further simply by increasing the modulation
index. In other words, for the conditions of this example we are able to
obtain FM improvement against reconversion echoes as well as additive
thermal noise. However, from Fig. 2 we see that for nf,T < 1/10 we
would not be able to obtain this improvement. In fact, increasing the
modulation index degrades the situation in that case.

2.2 Mode Filters

Mode filters may be placed at periodic intervals along the waveguide
to provide large attenuation to the spurious modes. We assume here
that each filter contributes & nepers of differential attenuation and that
the waveguide between filters contributes essentially none. Let the
spacing between mode filters be Lo and the length of each mode filter
be negligible in comparison. In the previous section, for uniform differen-
tial attenuation we found that the envelope of the equivalent echoes,
when plotted versus delay, was an exponential. In the present case we
find that the envelope consists of a piecewise approximation to an
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exponential using straight line segments (see I'ig. 3). The exponential
is € ”" and the straight line segments connect the points defined by
letting 2 = 0, 1, 2, --- , ete. Let us number the trapezoids represented
by the area under each straight line segment according to the value of 1
at the beginning of each trapezoid. The equation for the straight line
in the 4th trapezoid, i.e., between ¢ ** and ¢ *“*"* on the ordinate, is

yi(r/n) = €4+ [1 = ¥ = (7/m)]] (9)

where 7; is the length of the hase of each trapezoid. The expression for
the individual echoes is
2 ) Y,;2LL|J —2
= —ae——— ¢

Tng = S N | | P (nT/71)]] (10)

n
T1

where 7 is chosen from the inequality ¢ = (nT/r) =< ¢ + 1. Here
Ly is the length of waveguide between mode filters, L is the total length
of waveguide and , = | 5. — @ | Lo/2¢. All other quantities are as
defined in the previous section. As in the previous section, we require

that
By K1, &K1, Af/2f<<1 and Af = 2(f, + 40). (11)

The requirement on Af to ensure negligible eross-correlation between
the Fourier coeflicients of the reconversion transfer function, i.e., be-
tween individual echoes, is changed, however. The autocorrelation
function is given by (42). The series converges quite rapidly for large

1.0

= /(TS% LLo)
ni_ ﬁ

L,7/n

Tig. 3 — For periodieally placed mode filters of k nepers differential attenua-
tion each, the envelope of the equivalent echoes consists of a straight-line ap-
proximation y; (r/m1) to the exponential & 2.
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differential attenuation per mode filter k. In most cases of interest only
the first term or two is required. In order for Af to be much larger than
the correlation interval we require

(wriAf/2)" > 1 (12)

since| { | Lo = fr1 .

Equation (10) requires the number of mode filters N to be large,
ie., N > 1, and that the square of the fotal differential loss of the N
filters be large, i.e., € **" < 1, Under these conditions, the reconversion
echo-to-signal power ratio is given by

P./Py = (LLyS./2) coth k (13)

which must be small compared to unity in order for (10) to be accurate.
As a check, notice that if & < 1, we have

P./Py = LS./2| A4 | (14)

where | AA | = k/Lo . This is precisely the expression presented in the
previous section for a constant differential attenuation.

It is frequently necessary to determine the ratio of the power in the
ith trapezoid to the total. From simple geometric considerations this is
given by

Po/P. = €™ [1 — ™ (15)

Equations (13) and (15) have also been derived independently by S. E.
Miller® using a different approach.

As an illustration, consider a two-inch I.D. copper waveguide system
at 55 kme having 15-db mode filters every 200 feet. The TEy, TE;:,
and TMy spurious modes would all contribute significantly because of
random straightness deviations. The energy in all of these modes will
be lumped together and considered as if it were in the TEy, mode. This
mode has the largest delay and consequently would produce the most
interchannel interference. Thus we are assured that our calculations
will be pessimistic. Numerical values were obtained from Miller’

o
I

= 15 db = 1.73 nepers

Ly = 200 feet = 1/26.4 miles

S. = 2 db/mile = 0.23 neper/mile
B’ = 00172 < 1

5. = 0.0334 < 1

71 = 16.08 X 107V sec.



INTERCHANNEL INTERFERENCE 2775

Equation (10) requires that the signal-to-echo ratio be large compared
to unity. If we arbitrarily select P,/P, = 17 db, we find from (13) that
the permissible length of waveguide is L = 18.7 miles. If we now de-
modulate and pass the resultant signal through a baseband filter of
bandwidth f, to obtain the I'M advantage, we obtain a new baseband
signal not unlike the original. Thus we ean remodulate and proceed
for another 18.7 miles without analytical complications, as long as the
baseband signal-to-interchannel interference ratio remains large. It
should be emphasized that placing a demodulate-remodulate repeater
every 18.7 miles is done to keep out of analytical difficulties. We have
not shown and are not implying that performance requires this erutch.

As in the previous section, assume an FM system with f, = 10 me and
a/fy = 2. We choose Af to satisfy the inequalities (11) and (12). Pick-
ing Af = 2 kme yields Af/2f, = 0.018 < 1, Af > 2 (f; + 40) = 200 me
and (7mAf/2)* = 25> 1. In order to calculate interchannel interference,
we might again multiply each echo by the factor s(nf,T') given by Fig.
5.7 of Bennett et al.” and sum the result. However, that paper gives the
analytical expression

s(1) = 2(a/fy)’ (wfor)" (16)

which is valid for the small delays of this illustration, i.e., 2rfinT << 1
and (2xf,nT)® (a/fs)* < 1. We can integrate rather than sum. Thus in
(10) we replace nT by 7 and T by dr. For the interchannel interference-
to-signal ratio contributed by the 7th trapezoid, we have

I{/S N [MJ 5—251.- f“+1)’1

T1

T
ity

{14+ — ) — («/m)]) dr

_ [QLLO( Seafs) et
30

— {6+ (1 =™},

It turns out, in this example, that the 7 = 0, 1 and 2 trapezoids all con-
tribute significantly, with the 7 = 1 trapezoid producing the most inter-
channel interference. In physical terms, the value of 7 tells us how many
mode filter spacings the converted energy traveled in the spurious mode
before reconverting. The ith trapezoid represents energy which traveled
a distance larger than 7 mode filters spacings but less than ¢ + 1 spac-
ings. In this example the 7 = 1 trapezoid has substantially less power
in it than the 7 = 0 trapezoid, but its larger delay more than makes up

]nﬁ b= 51— ™)) (1 +4)°
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for this difference (see Iig. 2). The total signal-to-interchannel inter-
ference ratio in the top channel is S/I = 66.4 db. For a total system
length of 4000 miles, we would need 4000/18.7 = 214 repeaters and
would obtain a signal-to-interchannel interference ratio of 66.4 — 10
logio 214 = 43.1 db if the only contribution were due to continuous
random mode conversion. This corresponds to 22 dba at zero level.

This is only part of the story. The TE,y, spurious modes are not
damped by helix mode filters. If it is conjectured? that the coupling
coefficients, differential attenuation, ete., for these modes are the same
for copper and helix waveguides, then the calculations and results of
the previous section apply directly. The interchannel interference pro-
duced by the TEos spurious mode predominates over that from all other
modes. Consequently, it looks as though the performance of this copper
waveguide with mode filters is comparable with that of the helix wave-
guide. The imposed requirement of demodulate-remodulate repeaters,
however, is certainly a disadvantage. One must determine whether or
not they are really necessary before any definite comparison can be
made.

IIT. MATHEMATICAL DEVELOPMENT

Our approach is to represent the effects of continuous random mode
conversion by an infinite number of uncorrelated echoes. These echoes
follow directly from the expansion of the reconversion transfer function
in a Tourier series over the frequency interval of interest. The ecoupled
line equations serve as our starting point. They are

dlo(2)/dz = —Telo(z) + je(2)12(2)
dl.(2)/dz = +je(2)Io(z) — T:l:(2)

Il

where

Io(2), I.(z) = complex wave amplitude of the TEy mode and spuri-
ous mode, respectively,

Ty, I'. = deterministic propagation constants of the TEy and spuri-
ous modes, respectively,

¢(z) = random coupling coefficient, assumed Gaussian and pure real
or pure imaginary, and

z = distance along the waveguide.

If one imposes the initial conditions Io(0) = 1 and 7.(0) = 0, then
Iy(z) is the transfer function of the waveguide. This may be factored
into two components. One component, ¢ ' is deterministic and repre-
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sents the attenuation and phase which would be present in the absence
of random mode conversion. Since in theory it is completely predictable
and equalizable, we shall not consider this component further. The other
component is a random variable and represents the attenuation and
phase which is contributed by random mode conversion. This is by defi-
nition the reconversion transfer function and is given by

Go(2) = €' Ty(2). (19)

Rowe’ shows that it may be approximated directly by use of Picard’s
method of successive approximations, or with improved accuracy it
may be obtained from the reconversion propagation function A(z)
defined by the relation Go(z) = ¢ **, where A(z) is approximated by
Picard’s method. We use Rowe’s second approximation throughout this
paper

AG) = fo e()e" 4™ ds fo (1) d.

The reconversion propagation function A(z) may be written as
Az & AA), where £ = A3/27 = (By — B.)/2m, AA = Ay — A, and
Iy = Ao + jBo, I': = A, + jB. . Notice that A4 will always be negative
since A, is positive and larger than A4,. A is nonstationary when con-
sidered as a function of z. Under certain conditions, however, A is ap-
proximately stationary, when considered as a function of £ over the
small percentage bandwidths of interest.” The requirement is that the
random coupling coefficient ¢(z) have a white power spectrum; that is,
the autocorrelation function R.(u) = c(z)e(z + u) be an impulse fune-
tion or a close approximation thereof. The bar denotes an ensemble
average. This seems to be true or at least approximately true for good
waveguides over the moderate bandwidths required in our problem.
Fortunately, it also is true that over the small percentage bandwidths
in which we are interested, £ is approximately proportional to frequency ;*
that is,

t=fh+E=m -1 (20)

where & and f, are measured at the band center, and § = & 4+ £ and
f=fH+f. m= (5" — 5’)/2 where %, and #, are the mode cutoff
factors of the TEy and spurious modes, respectively, evaluated at the
band center frequency fo, and ¢ is the velocity of light in free space.

* From Ref. 2, Appendix A, £ = (f/2c)[(1 — vt — (1 — v.2)}] = (f/de)(vs2 —
vo?) = constant/f if ve* < 1 and v,* &« 1. Letting f = fo 4+ f' and £ = £ + & we
have £ + & = (constant/fo) (1 — f'/fo) = m (fo — f).
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Thus we may determine the mean-square value of the coefficients of
the Fourier series expansion of the reconversion propagation function A,
when A is considered as a function of frequeney, as a limiting case of
the power spectrum of A, when A is considered as a function of £ The
functional form of A depends upon whether £ or f is the variable. For
this reason we shall use a subscript 1 when £ is the variable, and a sub-
seript 2 when f is the variable.

Tormulas for the power spectrum S;(u) of the random va,nable
A(£) are developed for the ca.se of A4 = 0 by Rowe and Warters,”
for AA = constant by Young,® and for the case of periodically placed
mode filters later in this paper.

3.1 Transfer Function and Equivalent Echoes

The complex reconversion propagation function A.(f) may be ex-
panded in a Fourier series over the interval Af centered at fo

+oo
An(f) = X ane™™T (21)

where An(f) = As(f) for fo — Af/2 £ f < fo+ Af/2. T = 1/Af and
the subseript s reminds us that we have a periodic series approximation.
If all of the significant energy in the FM wave, or any other wave for
that matter, lies within Af, then the periodic series (21) may be used
for caleculations. The n # 0 terms represent fluctuation components.
If their sum is always small compared to unity with large probability,
then the reconversion transfer function Go(f) = exp [—A:(f)] can be
approximated by the series

+c0
GUn(f) — exp[ Z A, € JﬂwfnT] = € ap |:1 _ EJ‘ an EJ"ErfnT] (22)

70 =—00 n=—o

where the prime on the summation indicates that the n = 0 term is
omitted. The impulse response of this periodic transfer function, ie.,
its inverse IFourier transform, is

o0
heo(t) = € [a(z) — Y as(t + nT):l. (23)

Thus we have an undistorted signal plus a series of small echoes.
The coefficients a, are given by

fot+AS12

= (1/4f) As( )= gy (24)
Fo—Afi2
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Replacing f by f + fo we have

+Af[2
@ = (/AN [ RS g A (25)
Now, over the small percentage bandwidths in which we are interested,
the differential phase constant is proportional to frequency:ie., £ = ¢’ +
& = m(fo — f). Since As(f) = Ai(£), we may rewrite (25) as

1 [Emari
—i2rnfolAS {__

M(E + go) e 1m0 g

n = ¢ MAS J_masie (26)

E—ﬂr nfaTb(“sgn -)n
where b, is the coefficient of the nth term of the Fourier series expansion
of Ai(¢ + &) over the interval —A¢/2 < ¢ = +A§/2. For Af much
larger than the correlation interval of A;(£), we may approximate the
expected value of | b, |, and hence | a,’ |, in terms of the power spectrum
of A;(£). The result is

| a2 | = (T/|m])Ss,(—nT/m). (27)

The imaginary part of the complex random variable A;(£) is the
Hilbert transform®® of the real part, so the power spectrum Sy, (u)
vanishes for negative u. Thus, the coefficients a, are nonzero only when
the sign of n opposes that of m. Negative n indicates that the echoes lag
the signal and vice versa. Since the interchannel interference is inde-
pendent of whether the echoes lead or lag, we may drop the minus sign
in (27), use the absolute value of m, and restrict n to positive values.

3.2 Uniform Differential Attenuation

The power spectrum of the real part of the reconversion propagation
constant A;(£) is given by Rowe and Warters,” for the case of zero dif-
ferential attenuation and a Gaussian random coupling coefficient, as

(D) LS 4+ SHL — |u ], |w| = L

S(u) =1 _ | (28)
0, otherwise.

Since the real and imaginary parts of A;(£) are Hilbert transforms, the

power spectrum of A,(¢) itself is given by*

(OIS (u) + SJL —u], (0=)=u=L

Sh,(u) = (29)

0, otherwise.

* Discussions of the autocorrelation function and power spectrum of complex
random variables, whose real and imaginary parts are Hilbert transforms, are
given by Dugundji,'® Zakai,'* and Deutseh.!?
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Young® demonstrates that if the differential attenuation is nonzero
but is a constant equal to AA, the real and imaginary parts of Ai(¢)
are again Hilbert transforms and its power spectrum is found by multi-
plying that for A4 = 0 by € *'“*“I If | AA [ L >> 1 we have

(SILY/4)s(w) + SLe™ ™, (0-) Su < =
Sy, (w) = (30)
0, otherwise.
Equation (30) can also be obtained as a limiting case of the results of
the next section.

It is often convenient to work in terms of the reconversion echo-to-
signal ratio P./P,, defined as the ratio of the power in the echoes in
(23) to that in the signal. This is given by

PPy = 3 Tal] = 3 (T/|m)Se(nT/ | m])

n=1 n=l1

—afui(l/l?nl)sh(r/1m|) dr (31)

Il

SAL/2|AA .

3.3 Mode Fillers

Consider a long section of waveguide of length L. Assume ideal mode
filters are placed at Lo, 2Ly, - -+, NLy = L. Let each mode filter be of
zero length and produce k nepers of differential attenuation and a
constant differential phase shift of # radians, with no other side effects.
If the differential attenuation of the length of waveguide L, between
each mode filter is negligible in comparison with that produced by a
mode filter, we may approximate the differential propagation function
of the waveguide by the relation

N
AT (z) = j2nt + (—k + jO) 216(2 — nly) (32)
where 2rf = A8 = differential phase constant of the waveguide aulone.
In the coupled line equations (18) the propagation factors I'y and
T, are constants. In the present case, however, they are funetions of
position along the waveguide, i.e., functions of z. Rowe has shown in
unpublished work that in (18) we may replace

Te by ml(z) = f 14(S) dS
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and
Iz by v.(2) =f I.(S) dS,
0

and use Picard’s method of successive approximations to obtain the
approximate solution

L t
AL) = f () dy f e(8) A1 4g (33)
0 0

The derivation and result are exactly the same as Rowe’s published
derivation” for constant I's with the exception of the substitution men-
tioned. Substituting (32) into (33) we have

A(N L)
= fn“n c(t) exp |:j2'n-5t — (k — 78) gl w(t — nLo)] dt (34)

.fo‘ ¢(S) exp |:'—j21r$S + (k — j6) Iéu(&’ - an):I ds,

1, 0=2Ezr = w

where u(z) = {0 otherwise.

Simplifying and rearranging, we have

N—1 n—1

. (n+1)Ly "
ANL) = & 3 eominemm [0 e g
nl

n=0 l=( L0

(I+1) Ly .
. f c(S)e "™ ds (35)
I

Lg

N—1 (rn+1)Lg i ¢ .
+ > f e(D)e™™ di f e(8)e ™ ds
n nky

n=0 Ly

which after more rearranging and simplification reduces to

A(NLy)

N—1 n—1

) Lo
_ Z Z E(_'l+t)(k_187J?rEI‘D)f C(l + ﬂLo)Eﬂ'H dl

n=0 l=0 ]

Lo
. f e(S + 1Ly)e ™ g8 (36)
0

N—1 Lg ¢
+ 2 f e(t + nLy)e™™ d!f (S + nLo)e ™ dS.
n=0 v0 0
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If the random coupling coefficient ¢(z) has a white power spectrum,
the reconversion propagation function A is an approximately stationary
random variable® when considered as a function of the differential phase
variable £&. We shall now calculate the autocorrelation function Ry, (£)
of A. Since ¢(z) has a white power spectrum of density S., it has an
autocorrelation function which is an impulse, i.e.

R.(§) = S4(¢). (37)

Thus, each term in the series (36) is uncorrelated with all others. The
autocorrelation function of the sum is the sum of the autocorrelation
functions of each individual term.

The autocorrelation function of a typical term

L
fo "ot + nLe)e™ dt (38)
is
_ sin WLQE
R(§) = 8.Ly (TIE) (39)

In view of the fact that I < m in the double series of (36), the two
integrals in each term are uncorrelated. The autocorrelation function
of the double series is then

N—1 n—1 1 .
E Z E‘-‘(l’n)(i‘—j?ELu) R2(E) — (N _ n)é—En(k—JrELg) RE(E) (40)

n=0 l=0 n=1

N—

since we have N — 1,n — [ = 1 terms; N — 2, n — [ = 2 terms; - -+ ;
I,n — =N — 1 terms.

The autocorrelation function of each term in the single series of (36)
is the same as the autocorrelation function for a single piece of waveguide
of length L . Thus, for ¢(z) Gaussian, it is the inverse Fourier transform
of the power spectrum given by (29), i.e., it is

L RY0) + B RY(E) + JR(E)] (41)

where R is still defined by (39) and the circumflex stands for the Hilbert
transform. Keeping in mind the fact that the de terms, i.e., R(0) terms,
add in phase, we conclude

Ba() = (NY/ARHO) + (N/2)[BXE) + JR(8)]

N1 . (42)
+ R¥(¥) z=:1 (N = n)etntimto
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In order to find the reconversion echo-to-signal ratio, we could inte-
grate over the power spectrum of A,(£) as in (31). However, the al-
ternative method of letting £ = 0 in the autocorrelation function is
easier. Note that the 0+ limit on the integral in (31) corresponds to
dropping the constant term, i.e., the (1)R*(0) term in (42). Thus
the reconversion echo-to-signal ratio becomes

P./Py = (N/R0) + 3, (N = ;™™ F(0).

If N > 1and ¢ ** « 1, then

2
P./Py = LL;S‘ coth k (43)

where L = NI,.
The power spectrum of A;(£) is the inverse Fourier transform of
(42) and is given by

Sp,(w) = (L)N'Ly'S. 8 (u)
N—1 N _ (44)
+ 82 Z[, (N — )™ ((Ly — |u — iLo|))
for v = (0—), where
zifxz>0
0ifz < 0.

If N> 1 and € ** « 1, then the terms diminish quite rapidly. Thus,
for ¢ << N we have the simpler expression
Say(w) = (1)N'Le"S8(w)

+ NLSZE"™ 1+ (1 — €)1 — (u/Lo))]
where (—0) = ¢ £ u/Ly = 7 + 1. A rough sketch of this function is
shown in Fig. 3. The sketch consists of an impulse at the origin plus a

straight-line approximation to an exponential.
It is often convenient to have an expression for the ratio of the re-

((®)) =

(45)

conversion echoes under the 7th straight line, i.e., from u = iL¢ to
u = (1 4+ 1)L, to the total. This is given by
P./P. = (Ps/Po)/(P:/Py) = (1 — &™) ™™, (46)

If we allow the differential attenuation & per mode filter and the spac-
ing Ly between mode filters both to decrease without limit such that
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their ratio remains finite, (43) reduces to (31), and (45) reduces to
(30), where | AA | = k/Lq.
3.4 Interchannel Interference
Let the angle-modulated wave
ei(t) = &Y (47)

be applied to a filter having an impulse response given by (23), i.e., by

o0
hoo(t) = € “[3(2) — 2" and(t + nT)]. (48)

i =—00

o(1) is assumed to represent stationary random Gaussian noise. The
output wave is found by convolution and is

-]
— jwol+Je(t i je(t
EO(t) = ¢ ﬂn[Eon +iel) __ zf ane.rwu(=+n1'}+w{ +nT)]_ (49)
N =—00
. .
From (26) we have a, = € 77 by, = & inweTy  where r, and 6,

are real. If there are a large number of sample points® contained in the
small percentage bandwidths of interest, then to a very good approxi-
mation the 6,’s will be uniformly distributed in the interval (0, 2m)
and the b,’s will be uncorrelated. Substituting, (49) reduces to

o0

€ﬂ(t) — E—bo[ejwn!-FJ'qﬂ(l) _ Zf Ta Ejmnt+jﬂ,;'|':fi°(¢-l-n'1')]. (50)

n=—00

The output consists of the original signal plus an infinite number of
small, uncorrelated echoes. If the total power contained in the echoes
is much smaller than that contained in the signal, we may follow a
procedure identical to that of Bennett et al’ to determine the haseband
interchannel interference in the top channel as a function of time which
results from each of the above echoes. We then determine the autocor-
relation function of the interference and average over r, and 6, . Since
the 6,’s are uniformly distributed, the interference caused by each
echo adds on a power or mean-square basis. In their work, Bennett
et al. carried along a deterministic term p7' which would be replaced by
g, in our case. This term appears in the final result as cos 6, , which has
an average value of zero. The curves of I'ig. 5.7 of Ref. 5 are for
cos pT = 0 and so apply to our case directly.
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IV. CONCLUSIONS

We have presented an analysis of the effects of continuous random
mode conversion on an angle modulated wave. The modulating signal
was assumed to be a band of random Gaussian noise which is used to
simulate a single sideband frequency division multiplex. A technique
was presented for determining the expected value of the interchannel
interference noise which appears in the top channel at baseband. Ex-
amples using typical state-of-the-art data demonstrated that FM ap-
pears to be an attractive modulation scheme. Copper waveguide, with
and without mode filters, and helix waveguide were considered.

It should be pointed out that the techniques and the results presented
here should be applicable to other multimode and multipath situations
virtually unchanged. The Fourier series characterization of the trans-
mission channel should also be of use in the study of other modulation
schemes.

Our work contains two key, but reasonable, assumptions which one
must keep in mind:

(7) The perturbation technique upon which our work is based re-
quires that the reconverted energy consist primarily of energy which
has been converted and reconverted once and only once.?”?

(77) The random coupling coefficient is assumed to be Gaussian and to
have a power spectrum which is white, or uniform, over a bandwidth
which is large compared to the bandwidth “oecupied” by our signal.
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