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A class of Markov stochastic processes x. , suitable as models for random
traffic in connecting networks with blocked calls cleared, vs described and
analyzed. These models take into account the structure of the connecting
network, the set S of its permitled stales, the random epochs al which new
calls are attempted and calls in progress are ended, and the method used for
routing calls.

The probability of blocking, or the fraction of blocked attempts, is defined
in a rigorous way as the stochastic limst of a ratio of counter readings, and
a formula for it is given in terms of the stationary probability vector p of
x, . This formula 1s
e =P
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where (B: 18 the number of blocked idle inlet-oullet pairs in stale x, and
o, 18 the number of idle inlet-outlet pairs in state x. On the basis of this
Jormula, it is shown that in some cases a simple algebraic relationship
exists between the blocking probability b, the traffic parameter N (the calling
rale per idle inlet-outlet pair), the mean m of the load carried, and the
variance o of the load carried. For a one-sided connecting network of T
inlets (= outlels), this relation is

2m .
(T — 2m)? — (T — 2m) + 40’

1
1 b_i

Jor a two-sided network with N inlets on one side and M outlets on the other,
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The problem of calculating the vector p of stationary state probabilities
is fully resolved in principle by three explicit formulas for the components
of p: a delerminant formula, a sum of products along paths on S, and an
expansion in a power series around any point X = 0. The formulas all
indicate how these state probabilities depend on the structure of the connect-
ing network, the traffic parameter \, and the method of routing.
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I. INTRODUCTION

A connecting system is a physical communication system consisting of
(?) a set of terminals, (#%) a control unit which processes the information
needed to set up calls, and (77) a connecting network through which
calls are switched between terminals.

Connecting systems have been described heuristically and at length
in a previous paper.! Also, some of the algebraic and topological prop-
erties of connecting networks have been studied in another paper.
The models to be used here have been deseribed (but not studied) in
a third paper.? These papers are a source of background material for
reading the present one; familiarity with them is desirable, but is not
presupposed.

The principal problem treated here is the exact theoretical calculation
of the grade of service (as measured by the probability of blocking)
of a connecting network of given but arbitrary structure; the calcula-
tion is to be carried out in terms of a mathematical model for the opera-
tion of the network. The model used here is a Markov stochastic process
z, defined by some simple probabilistic and operational assumptions.
The problem is first reduced to caleulation of the stationary probability
vector p of z, from the “statistical equilibrium” equations. From the
form of this reduction it follows that in many cases of practical interest
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the probability of blocking is uniquely determined by the mean and
variance of the carried load, a fact heretofore known only for very simple
systems.

In the past, the application of A. K. Irlang’s very natural method of
statistical equilibrium has been visited by a curse of dimensionality,
that is, by the extremely large number of equations comprised in the
equilibrium condition. This difficulty has not only put explicit solutions
apparently out of the question; it has even made it effectively impossible
to reach a reliable qualitative idea of the dependence of the blocking
probability on the structure of the network, the method of routing, ete.

Three explicit formulas for the solution p of the equilibrium equations
will be given. One is based on purely algebraic considerations, and the
others largely on combinatory and probabilistic notions. Because of the
generality of the model with respect to network structure, these formulas
are of necessity rather complex. Iixcept in simple cases, they cannot be
regarded as giving a final (or even a working) solution to the problem
of caleulating equilibrium probabilities. Still, they expose the mathe-
matical character of the problem, and provide a badly needed starting
point for well grounded approximations. For only after one has studied
and understood this character can he seriously consider ignoring some
of it in approximations.

II. PRELIMINARY REMARKS AND DEFINITIONS

Various combinatory, algebraic, and topological features of the con-
necting network play important roles in the analysis of stochastic
models for network operation. Some of these features will now be de-
seribed, and terminology and notations for them introduced.

Let S be the set of permitted (i.e., physically meaningful) states of
the connecting network under study. It has been pointed out in earlier
work!? that these states are partially ordered by inclusion <, where

T =y

means that state x can be obtained from state ¥ by removing zero or
more calls. Also, these states can be arranged (in fact, partitioned) in an
intuitive manner in a state-diagram, the Hasse figure for the partial
ordering =. This figure is a graph constructed by partitioning the states
in horizontal rows according to the number of calls in progress, the kth
row consisting of all states with % calls in progress. The unique zero,
or empty, state of the network, in which no calls are in progress, is
placed at the bottom of the figure; above it comes the row consisting
of states with exactly one call in progress, and so on. The figure is com-
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pleted by drawing a graph with the states as nodes, and with adjacency
matrix determined by the condition that states differing by exactly
one call are adjacent. This means that in drawing the graph we place
lines between states (in successive rows) that differ in point of one call.
A mazxtmal state is one that forms a summit of the state-diagram, i.e.,
has no states above it in the partial ordering.

For most systems the state-diagram has the following heuristic de-
seription: there is a unique “point” at the hottom corresponding to the
zero state; there are usually many “points” at the top corresponding
to the maximal states; and the diagram is very “fat” in the middle,
because of the multitude of states with a moderate number of calls in
progress.

We mention at this point that usually the number of states, i.e., the
number of elements of S, is astronomically large. Indeed, this fact has
been a principal obstacle to theoretical progress on problems of con-
gestion in large connecting systems. For an illustration, in the network
of No. 5 Crossbar type, illustrated in Fig. 1, made for 1000 lines out of
square 10 X 10 switches, the number of maximal states alone is

(100 X 101)* = 1.734 X 10™.

The set of snlets of a connecting network is denoted by I, and the set

CROSSBAR
/,/ SWITCH

CUSTOMERS’ )
LINE. : NKS

L N g —
P — 1
LINE LINK FRAMES TRUNK LINK FRAMES

Fig. 1 — Structure of No. 5 Crossbar network.
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of outlets by Q. Tt is possible that 7 N Q = ¢, that / N Q = ¢, or even that
I = Q,i.e., that all inlets are also outlets, depending on the “‘community
of interest” aspects of the structure of the network. It is assumed that
every call or connection is made only between an inlet and an outlet.

If z is a state, the notation | x | (read “the norm of ") will denote
the number of calls in progress in state x. If X is a set, then |2 | will
denote the cardinality of X, i.e., the number of elements of X. We
define the levels

L= {ze8: x| = k), ."'ﬂ=0,],---,maéerc|,

as the sets of states in which a specified number of calls is in progress.
The { Ly} form a partition of S,

ULi=3S8
k

LkﬂLj=(), ke 9’5_7

The “neighbors” of a state x are just those states which ean be reached
from x by adding or removing one call. These neighbors y of x can be
divided into two sets according as y > x or y < x; so we are led to
define

A. = set of neighbors above x

set of states accessible from x by adding one call
set of neighbors below x

set of states accessible from v by removing one call.

B

Il

IIT. SUMMARY

The basic probabilistic assumptions that define the randomness in
the traffic models to be studied are given precise statement in Section
IV. They are, briefly, (z) the hang-up rate per eall in progress is unity, and
(72) the calling rate per idle inlet-outlet pair is a constant A > 0. Vari-
ous operational aspects, such as the disposition of lost calls, and the
method of routing, are specified and discussed in Section V. It is as-
sumed that lost calls are refused without a change in state, and that
routes for calls are chosen in a way that depends both on the call being
set up or processed and on the current state of the system. In Section
VI these probabilistic and operational assumptions are summarized in
a transition rate matrix, ¢. In Section VII, a Markov stochastic process
2, (the mathematical model for the operating system) is defined, and
the statistical equilibrium condition @p = 0 for the stationary proba-
bility vector p of x, is formulated.



2800 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1963

In Section VIII, the probability b of blocking is defined as the (prob-
ability one) limit of a ratio of counter readings, and a formula for b
is given in terms of the stationary vector p. From this formula it is
shown, in Section IX, that a simple algebraic relationship often exists
between the blocking probability b, the traffic parameter A, the mean
load carried, and the variance of the load carried.

The remainder of the paper is devoted to the study and calculation
of the vector p of stationary probabilities. Two explicit solutions, one
algebraic and one combinatory in character, are given in Section X.
In Section XI it is shown that the combinatory solution is a special
case of a general formula for the stationary measure of an ergodic
Markov process. The dependence of p = p()\) on the network structure
and the method of routing is analyzed in an elementary way in Section
XII. It is first shown that p(-)/po( - ) has components that are analytic
in a neighborhood of the nonnegative real axis, and so are expressible
in the form

p—x(&f) = S m |
polp + € Eu €"Cu ()

For g = 0 and ¢ = A sufficiently small, this gives an expansion of p
in powers of A. It is then shown that with | | the number of calls in
progress in state x, p. is of order A *lag A — 0. This result renders
possible a recursive calculation (Sections XII and XIV) of the coeffi-
cients ¢n(x,0) from the partial ordering <-of S and a matrix used to
specify the method of routing. Once p is developed as a power series in
A, a similar expansion is readily given (Section XIII) for the probability
b of blocking.

In Section XV, finally, we completely solve the problem of caleulating
the coefficients ¢,.(x,\) for arbitrary values of X > 0, giving each such
coefficient both a combinatory interpretation, and an explicit formula,
viz., a sum of products along paths through S which are trajectories
for x, permitted by the routing rule.

IV. PROBABILITY

To construct a Markov process for representing the random trajectory
of the operating network through the set S of states, we shall make two
simple probabilistic assumptions. The traffic models to be studied em-
body what has come to be known as a “finite-source effect,” that is,
a dependence of the instantaneous total calling-rate on the number of
idle inlets, and on that of idle outlets.

In an attempt to describe this dependence in a simple rational way,
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let us imagine a customer located at one of the inlets [outlets] of the
connecting network, and seek to assign him a calling-rate, assuming
that he is in an idle condition. We shall suppose that the traffic he offers
is homogeneous in the sense that he calls every outlet [inlet] at the same
rate, or with the same frequency. Indeed, we shall assume that all
customers offer homogeneous traffic. Now on most occasions when he
is making a call, a customer does not know whether the terminal he is
calling is busy or idle. Thus, if he is on an inlet [outlet] it seems reason-
able to suppose that there is a probability

M+ o(h) A>0

that he attempts a call to a particular outlet [inlet] (distinet from his
own) in the next interval of time of length A, as & — 0, whether that
outlet [inlet] is busy or not. The qualifying phrase ‘“distinct from his
own’’ is inserted to cover the case in which some inlets are also outlets,
and in which it is reasonable to suppose that an idle terminal that is
both an inlet and an outlet does not attempt to call itself.

We therefore make these two probabilistic assumptions:

(a) Holding-times of calls are mutually independent random varia-
bles, each with the negative exponential distribution of unit mean.

(b) If at time ¢ the network is in a state & in which at least one member
of the inlet-outlet pair (u,0) e I X Q is idle (that is, one of u or » is not
involved in a call in progress), the time elapsing from ¢ until a call
between w and v is attempted is a random variable having a negative
exponential distribution with a mean 1/x, X > 0. For different choices
(u,) and different oceasions {, these times are all mutually independent
and also independent of the call holding times.

These assumptions can be rendered in the informal terminology of
“rates” as follows:

() The hang-up rate per call in progress is unity.

(72) The calling-rate between an idle inlet u (outlet ») and an arbi-
trary outlet v (inlet u) with w # vis X > 0.

Assumptions (a) and (b) provide all the “randomness” needed to
construet our models. The choice of a unit hang-up rate merely means
that the mean holding-time is being used as the unit of time, so that
only the one parameter A need be specified.

V. OPERATION

To complete the description of the traffic models to be analyzed we
must indicate how the network is operated. Since in the present work
we are taking into account only the network configuration, and omitting
consideration of the control unit, it suffices to describe how calls to busy
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terminals are handled, how blocked calls are treated, and how routes
or paths through the network are chosen.

It will be assumed that attempted calls to busy terminals are rejected,
and have no effect on the state of the system; similarly, blocked attempts
to call an idle terminal are refused, with no change in the state of the
system. All successful attempts to place a call are completed instantly,
with some choice of route.

To describe how routes are assigned to calls, we introduce a routing
matriz R = (rs,), with the following properties: for each x let TI. be
the partition of A, induced by the equivalence relation of “having the
same calls up,” or satisfying the same ‘“‘assignment” (of inlets to out-
lets); then for each Y € II., 7, for y € Y is a probability distribution
over Y; in all other cases r, = 0.

The interpretation of the routing matrix R is this: any Y e II,; repre-
sents all the ways in which a particular call ¢ not blocked in x (between
an inlet idle in 2 and an outlet idle in =) could be completed when the
network is in state x; for y € Y, 75, is the chance that if this call ¢ is
attempted, it will be routed through the network so as to take the
system to state y. That is, we assume that if ¢ is attempted in z, then
a state y is drawn at random from Y with probability r., , independently
each time ¢ is attempted in 2; the state y so chosen indicates the route ¢
is assigned. The distribution or probability {rs, , y ¢ Y} thus indicates
how the calling-rate A due to the call ¢ is to be spread over the possible
ways of putting up the call c. It is apparent that

> 7z, = number of calls which can actually be put up in state x
yEAg

= s(z), (“successes” in x),

the second equality defining s(-) on S. This account of the method of
routing completes the description of the traffic models to be studied.

VI. TRANSITION RATES

For the purpose of defining a Markov stochastic process it is conveni-
ent and customary to collect the probabilistic and operational assump-

tions introduced above in a matrix Q = (gz,) of transition rates, here
given by
1 Yy € B,
A2y yeA,
Gzy =

—|x| — As(2) y =2

0 otherwise,
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The number ¢,,, for @ # ¥, has the usual interpretation that if the
system is in state 2, there is a chance
g=h + o(h)

that it will move to y in the next interval of time of length h, as h — 0.
Similarly

1 — quzh + o(h)
is the probability that the system will stay in x throughout the next
interval of time of length h, as h — 0
VII. MARKOV PROCESSES

In terms of the transition rate matrix ¢ it is possible to define a
stationary Markov stochastic process {z,, —% < { < + =} taking
values on the set S of states. The matrix P(!) of transition probabilities

prv(t) = PI'{;T: =Yy | Ty = :17}

of x, satisfies the equations of Kolmogorov
d
9P = QP@) = PG,

P(0) =1,
and is given formally by the formula
P(t) = exp Q.

Theorem 1: There exists a decomposilion of the sel S of states into a
transient set F' and a single ergodic set S — F containing the zero stale;
members of F have the property

lim pa(t) = 0 yel,zeS;
t—>0
on S — F there is a unigue stationary (or equilibrium) distribution
{pz, v e S — F} such that
limpzy(t)=py>0 yES'—F,SCGS
>0

2 papu(l) = py yeS—F, allt
zeS—F
2 gupz = 0 yeS—F.
zeS—F

Proof: The existence of the unique ergodic set S — F follows from
the fact that the zero state is accessible from every other state by hang-
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ups. The existence and character of the limit of p,(f) as t — « is a
consequence of exercise 19, p. 436 of Feller, i.e., of the fact that the
characteristic values r of @ satisfy » = 0 or Re(r) < 0. (See also Bell-
man,” p. 294.)

To prove the uniqueness of p, suppose that ¢ is a different probability
veetor on S — F that also satisfies the “equilibrium’ condition

> Gug=0 yeS—F.
zeS—F

Then by Kolmogorov’s equation

d
Z gzpmy(f) = Z ’h‘-qrzpzy(i) = 0.

IH TeS—F z,268—F

Integrating from 0 to ¢, and using (0) = 1, we find
> @pa(t) =, yeS—F.
zeS—F

Sinee S — F is the only ergodic set, the left-hand side approaches p, as
t— oo. Hence p = ¢.

It is convenient to extend the dimension of p to | S | by adding zero
components for states in F, so that p., (1) — p, = 0 for all 2,y € S.
The consideration of the transient set F' is not just a mathematical fillip,
since a “good” routing rule B may explicitly make certain ‘“bad”
states unreachable from the zero state, and thus place them in F to good
purpose.

In the notation of Halmos,® p. 65, the stationary probability vector
satisfies the equilibrium condition

Gp =

This is the elassical equation of state, or equation of statistical equilib-
rium, familiar in traffic theory. For our process x. it takes on the rather
simple form

x|+ As(x)]p Zpy-l—)\ > Purye s xe S,

yeBy

The left-hand side represents the average rate of exits from x, while
the right-hand side is the average rate of entrances into x, in equilibrium.
We define

= 2 p. = PriLi.

lz|=k

Lemma 1: For1 £ k < w = max |z |

zeS

o=\ 2 pas(a)

TeLp_ 1
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Proof: T'rom the statistical equilibrium equation for 2 = 0 we obtain

2 py = As(0)po,

yeAdp
which is Lemma 1 for & = 1. Assume that the lemma holds for a given
k = 1. Summing the statistical equilibrium equations over x e I we
find

kpe + N 20 s(2)pe = 22 py N 2 2 purys -

zely) TeLy yedy TeLy yeBy

The second sum on the right is the same as

A Z mzrm,

ueLg_y zedy,
and by definition,

Z ryz = s(y).

It.’ly
Hence (induction hypothesis) the second sum equals Ep, . It is easy to
see that in the first sum on the right each p, is counted exactly | y | times,
ie., (k+ 1) times, since for a given y € Ly, there are exactly (k + 1)
elements x e Ly, for which y e A, . Thus the first sum is

(k+1) 2 po=(k+ Dpen

Welp
and the Lemma follows by induction. This result could also be obtained
from the general observation that the statistical equilibrium equations
are equivalent to the prineiple that for any set X of states the average
rate of exits from X equals the average rate of entrances into X. (See
Morris and Wolman.”)

VIII. PROBABILITY OF BLOCKING

The fraction of calls that are refused because they are blocked, or the
probability of blocking, is a quantity of particular interest to traffic
engineers; they use it to assess the grade of service provided by an operat-
ing connecting network. The rigorous theoretical calculation of blocking
probabilities has long been an outstanding problem of traffic theory.
This problem is outstanding in both senses of the word: it is conspicuous,
and it is unsolved. In fact, not even the definition (let alone the ealcula-
tion) of the probability of blocking has received adequate treatment;
for example, the otherwise monumental treatise of R. Syski® does not
give a general account of blocking probability.

Sinece it is desirable to have a close connection between theoretical
quantities and their physical meanings in terms of measurements, we
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shall approach the study of blocking probabilities by asking how these
probabilities might be measured ““in the field.” The most natural method
of measuring the fraction of blocked attempts seems to be this: to the
control unit of the connecting system under consideration we attach
two counters; the first will count up one unit every time an attempted
call is blocked, and the second will register one unit every time a call
is attempted; the ratio of the reading of the first counter to that of the
second should, after a long time during which the system’s parameters
remain constant, be an approximate measure of the fraction of blocked
attempts. For mathematical convenience, one can then define the prob-
ability of blocking to be the limit (as time increases without end) of this
ratio of the counter readings. This mathematical definition was first
proposed by 8. P. Lloyd, although, of course, the ratio has been the
practical definition for 50 years, being the “peg count and overflow
ratio.”

A precise mathematical version of this measurement procedure can be
given as follows: on the same sample space as that of the process =,
that describes the operating network, we define two additional stochastic
processes {b(t), ¢ = 0} and {a(t), t = 0} by the (respective) conditions

b(t) = number of blocked attempted calls in (0,t],
a(t) = number of attempted ecalls in (0,t].

These stochastic processes are the mathematical analogs of the counter
readings. It is reasonable to use the limit

. b(b)

of the ratio of b(-) to a(-) as a mathematical definition of the prob-
ability of blocking, provided that the limit exists in a suitable sense.
We show that this limit exists and is constant with probability one,
and we give a formula for it.

Theorem 2: The probability of blocking b, defined by

L b(2)
b_lﬂat—),

exists and is constant with probability one; ils almost sure value is
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where p 1is the vector of stationary probabilities, and
B = number of idle inlet-outlet pairs that are blocked in stale x,
a, = number of idle inlet-outlet pairs in stale x.

Proof: 1t can be seen that a({) and b(¢) can be written as sums over
S,
a(t) = Z;, a:(t)
b(t) = ZS ba(t)

where

a:(1) = number of attempted calls made in (0,f] with the system
in state a,

bz(t) = number of blocked attempts made in (0,{] with the system
in state x.

Now a blocked attempt occuring at an epoch u such that x, = x does
not change the state of the system. Such an epoch w is a regeneration
point of the process x;. A successful attempt occurring at an epoch
at which @, = 2 does change the state of the system. The time interval
from w back to the last previous epoch v at which a suecessful attempt
occurred in state x, however, is independent of the behavior of a, for
{ > wu; it depends only on the fact that the system left x by adding a
new call, not on what new call it was, nor on where into A, x, went as
this new call was completed. This can be seen as follows: we have

H—v=r—v+u—r

where 7 is the epoch at which x was last entered prior to u. Now » — v
is independent of x, for t > 7 if 2.4 is known to be 2, because 2, is a
Markov process.

Let U be an event measurable on {x;, ¢ > u}. Then

PriUandu — 7 £ p| 2rp0 = 2}

= Pr{u —‘r§,u|;1'.,+o=1}z rru Pr{U | 2upo = y},

where
Priu — 7 < u|amo = ) = i ( x| )"—' As(a)
, = B T =0 = \| x| —|— As(x) [z] + as(x)

j [z | + As(a)]" ¢t ¢ tHiiRe@]
0 (n — 1)!

dt.
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Thus the time intervals 8, , 8z, - - - elapsing between successive blocked
attempts in state , and those a1, as, -+ - elapsing between successive
attempts in state x, both form sequences of mutually independent, and
except possibly for the first elements 8, and a1, identically distributed
random variables. That is, the elements of each sequence are mutually
independent, but the sequences are not independent since one consists
of partial sums over blocks of the other.

Both these sequences can be studied, then, in terms of a sequence

a1, 22, -+ of mutually independent random variables, all (except
possibly ;) identically distributed. We define for ¢ = O and k& = 0
Sn = 0

lgrz = Z Ti, ry = a; Or ﬁ,‘
i=1
n(t) = k ifand only if Sp =& < Siq,

n(t) = az{t) or bz(l).

I

It is now straightforward to show that {'n(t) approaches a limit with
probability one, and to find the limit. Let us put, for ¢ > S

n(t) _ n(:‘) _S,,(g)
t Sn(r) i )

The first factor converges to B '{xs} with probability one, by the law of
large numbers. The local suprema of

t— Saw
t

for ¢t > S, occur at the points
t—:qu ]‘::1‘)-..

1= ’
and have the values

Tk k =19

gy "

S: Se k
Again, the first factor converges to E7'{xs} with probability one by the
law of large numbers. Since Efx,] < =, and {a), k = 2} are identically
distributed,

8

Prize > ek} = 2 Prix. > ek} < =
=

bl

I
14
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and it follows from the Borel-Cantelli lemma that for any € > 0
Prix; > ek for infinitely many values of k = 2} =

Hence v, = o(k) as b — =, with probability one, and with the same
probability,

S’;“ —1 as t— o,
It follows that with probability one,
lim ¢ 'a.(t) = E '{time interval between successive attempted calls
{—>o0
in af,
lim ¢ 'b.(t) = £ '{time interval between successive blocked at-
]

tempted calls in x}.

Iurthermore (ef. Ref. 11, p. 247, equation (1.2) and p. 249)
T L'{b-l(l) I ro =y} = MNpu(t)fs — ApB: as t— w,

However, by I'eller’s renewal theorem (ef. Ref. 11, p. 246), we know
that
liin t_lE{b,(t)[ 2y =y} = B '|time interval between successive
o blocked attempted calls in a}.
Hence, with probability one,
'0a(t) — ApaB. as t— o,
A similar argument shows that with probability one

U'a(l) — Apear as {— =

and completes the proof of Theorem 2.

IX., A BASIC FORMULA

Engineers have recognized (at least) four quantities as significant
for the study and design of connecting networks carrying random traffic.
These are the calling rate, the average load carried, the variance of the
load carried, and the probability of blocking. In our model these quanti-
ties are given respectively by
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M = calling rate per idle inlet-outlet pair

li

m > | # | p- = average number of calls in progress
TeS

o = g (|z]| — m)°p:
b= (p.8)/(p,e).

Tt is natural to ask whether there exist any systematic relationships
between these quantities, or between these and (possibly) other simple
parameters of the network under study. Such relationships would be
particularly useful and significant if they were largely independent, of
the strueture or configuration of the connecting network, and were valid
either for all networks or for large classes of them. We shall show that
there often exists a simple algebraic relation among A, m, o, and b.
Its exact form depends on which inlets are also outlets. I'irst we prove

Theorem 3: The probability b of blocking can be written as

b= 1 — —em—— (1)
- A D pac

zelS
or, tn words, as
average load carried

b=1- (calling rate per idle) X (average number of idle pairs) '

Proof: In equilibrium, the average rate of successful attempts must
equal the average rate of hangups. Hence, intuitively,

N 2 pas(x) = 2w lp=m (2)

Since B; = a. — s(x), the result follows from Theorem 1. The actual
validity of the identity (2) can be inferred from Lemma 1, by summation
on k.

TFormula (1), rewritten in the form

average load carried

1—56 =
average rate of attempts’

should be viewed as a direct generalization of Erlang’s classical loss
formula for ¢ trunks, blocked calls cleared, and calls arising in a Poisson
process of intensity a > 0. In that case the probability of loss is

c

|
Ei(ea) = =
2

=07

c‘:|a

.,

'
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and it can be seen that

1 — Ey(ea) = =28

average number of busy trunks
total calling rate )

To exhibit useful special cases of the general formula (1) of Theorem
3, we introduce a partial classification of connecting networks. A net-
work is called one-sided if I = Q, i.e., if all inlets are also outlets; a net-
work is two-sided if I N Q = ¢, i.e., if no inlet is an outlet.

Corollary 1: For a one-sided network of T lerminals

_1 2m
AN(T —2m)? — (T — 2m) + 4a*°

Proof: I'or the one-sided network in question, we have I = @, [ I | =
[@| = T, and so

T -2z
ay; =
(1" —

2
> pacs = % (2T — 1)2m — T + 4m® + 447,

zeS

b =1

Corollary 2: For a two-sided network with M terminals on one side and
N on the other

_1 m
NM—m) (N —m) + &'

Proof: 1t is clear that in this case

ar= (M — |z (N = |z

b=1

so that
> peaz = (M — m)(N — m) + o

TeS

Each of the foregoing corollaries exhibits an explicit algebraic rela-
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tionship between X\, m, ¢, and b, based only on the one- or two-sidedness
of the network.

The preceding corollaries can be used to show that in a large system,
the numerical value of the constant A will be small—indeed, of the order
of the reciprocal of the number of inlets and outlets. This can be seen
by the following heuristic argument, carried out for a one-sided network
with 7' terminals: suppose that each terminal carries ¢ (0 = ¢ < 1)
erlangs and that the blocking probability b is so small that we can ignore
it and set

_1 2m —
AT — 2m)? — (T — 2m) + 4o°

Since the network is one-sided, any load carried by one terminal is
also carried by some other terminal, and so

b=1 0.

qT = 2m
whence
A= 1—1 g .
(1 —q)z—m—u(I;Q)-F;%
Because
o = 2 pal|z] = m)’
and
2
(el = m? s,

we have 0 < 4¢°/1° = 1, and so

with

q < o < q
e P § e, Epy g

X. SOLUTION OF THE EQUATIONS OF STATISTICAL EQUILIBRIUM

So far, we have shown that the theoretical determination of the
blocking probability b reduces to that of the stationary vector p or,
in many cases, to that of the mean m and variance o of the carried

A
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load. In either case, some knowledge of p is required. Most of the rest
of this paper, therefore, is devoted to the caleulation of p and to the
study of its properties.

In the past, the application of A. K. Erlang’s very natural method
of “statistical equilibrium” to congestion in connecting networks has
been visited by the curse of dimensionality, that is, by the extremely
large number | S | of equations comprised in the stationarity condition
Qp = 0. This difficulty has not only put explicit solutions apparently
out of the question; it has even made it effectively impossible to reach a
reliable qualitative idea of the dependence of the state probabilities
{ Pz, x € S} on the structure of the network and on the method of routing,.

To be sure, it has always been possible in principle to solve Qp = 0
by successive elimination of unknowns; however, when the dimension
of p is of order 10* or 50, this remark is hardly helpful. Since successive
elimination can be used to solve @p = 0 for any “‘ergodic” transition
rate matrix @, it neither elucidates nor uses any of the special features
of the matrices @ that arise in problems of congestion in networks.
Thus, even were it algebraically feasible, the method of successive
elimination treats our matrices @ as indistinguishable from other matrices
possessing a zero characteristic value.

We shall give several explicit solutions of the equilibrium equations.
One is based on purely algebraic considerations, and the others largely
on combinatory and probabilistic notions. Because of the generality
of our model with respect to network structure, the formulas appearing
in the solutions are necessarily rather complex. Except in simple cases,
they cannot be regarded as giving a final (or even a working) solution
to the problem of caleulating equilibrium probabilities. Nevertheless,
they expose the mathematical structure of the problem and provide a
badly needed starting point for well grounded approximations. For only
after one has studied and understood this structure can he seriously
think about throwing some of it away in approximations.

To describe the solutions in full detail, we need various preliminary
definitions and conventions.

It will be shown in a later paper’ that the minimum value of the
blocking probability b is achieved by a routing matrix R consisting
entirely of zeros and ones, i.e., by a deterministic rule. So it is assumed
henceforth that R has only zeros or ones for entries.

A path on S of length [ = 0 is any ordered sequence o, a1, -, x;
of (I + 1) elements of S. A lower case pi, m, will be used as a symbol
for a generic path on S, and we write

T = {xo, 21, , i, l=1I(x)



2814 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1963

to indicate that « is a path of length I(7) consisting of xo, 21, ++, =1
in that order. Note that paths of length zero are countenanced. A path
w is a loop if

Ty = -’Ei,
and also
Ty F X

whenever 0 < 7 < j < I(x). A loop of length zero is a path of length
zevo. If # = {29, 21, ~++, @} is a loop, each element zy, z,, - - etc.
will be spoken of as being on .

The elements = and 5 of S are called adjacent in the graph of (S,=),
i.e., in the state diagram, if one of the following equivalent conditions
holds:

() x covers y or y covers &
(i) ye Agorz e Ay
(73i) z and y differ by exactly one call in progress.

A path on S is called continuous if successive elements of the path are
adjacent.

In order that x, have positive probability of following a path , it is
not enough that = be continuous. For evidently the action of the routing
matrix B (assumed to consist solely of zeros and ones) is to prohibit
certain paths on S as (parts of) possible realizations of the process
z:. Here “possible’” of course means “having positive probability.”
There exists then a class of those paths that are permitted by R, definable
in several ways. One such way is as follows: A path = = {xp, a1, -+ x4}
on S is permitted by R if for each 7 in the range 1 = @ = [,

x;e By, or Tog_gzg = 1.

The set of paths permitted by R is denoted by P.
With X a subset of S,

perm(X)

will denote the set of all permutations of X, i.e., one-to-one maps of X
onto itself. We let

Yi, Y2y -0 Yisi

be an arbitrary simple ordering of S, and we define the ordinal number
w(z) of a state x € S by the condition

w(z) =n ifandonlyif z=y., =n=12--,|S]|
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For each m,n in the region 1 = mn = | S|, we define a funetion {,..(-)
on the domain 1 = ¢ = | S| by the condition

fz' 1 =7 < min(m,n)
) 0 1i=m or i1=mn
Ema(1) = ) .
1 —1 min(m,n) < 7 < max(m,n)
i— 2 max(mm) <1 = | S|

We observe that ¢,.(-) has an inverse for each m and n. Now let ¢(-)
be a permutation of the set of states with the mth and the nth removed;
then

i = Enfele(Yrnn )] 1=1,2--,|8| -2

defines the permutation a,.(¢) associated with ¢. Also, sgn a..(¢) is
+1 or —1 acecording as the permutation a..(¢) is even or odd.
The “hang-up” matrix H = (hz,) is defined by the condition

1 if yeB,
hay =
0 otherwise.
Let x and 2z be states, and suppose that # = {2, ---, a1} is a path

in P beginning at z and ending at x, so that 2y = z and 2; = x. Suppose
also that the trajectory represented by = contains m new calls, i.e.,
there are exactly m values of 7 in the range 1 = 7 = [ such that

&I € “41:'—1 .

Since 7 starts at z, in which | z | calls are in progress, and ends up at x,
in which there are | x | calls in progress, it is evident that

Hr) =2m+ |z| — ||

The set of paths which start at a state z, never return to 2z, and end
up at x # z, is denoted by

K...

Thus 7 belongs to K., if and only if vy = 2z, x; # zfor 0 < 7 = I(7),
and ¥; = .
Let # = {ag, a1, - -+, 2;} be a path on S, and let f(,-) be a function

defined for g, ay, - -+, 2; . In terms of f(,- ) and =, we define a product
along the path = by the expression

(=)

H f(?r, .’l',').

1=l
T={2g,21," - 1]
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It is convenient to abbreviate this product by the readily understand-
able expression

1 7(m).

In the special case that f(r,-) has the form
f(mx:) = h(zia, 25, i=1,---,1
we abbreviate the product by
11 A(px,x).

The notation p- is supposed to represent the predecessor of an element
in .

The first and simplest solution of the equilibrium equation @p = 0
to be given is based on an observation made by I. W. Sandberg, namely,
that det(Q), and hence det(f)’), are zero, so that Q'adj(@’) = 0, and
thus columns of the matrix of cofactors of @ should give solutions of
Qp = 0. The author has not succeeded in elucidating the probabilistic
significance of these simple algebraic facts. It will be seen later that the
other solutions to be given are, on the other hand, natural, plausible,
or even obvious from a probahilistic viewpoint, but are algebraically
involved.

Theorem /: Let m be an integer in the range 1 = m = | S|. An unnor-
malized nonnegative solution p of Qp = 0 is given by

_ 1)|S| —1+m+n

Pun = ( SEN Apn (i)

pe perm (S—[ymitn})

H (_ |2| - ?\'5(2)) H (hzw(z) + A7":@(.:))-

¢ (z)=2 CIEE]

Proof: Since det(Q) = 0, it follows that det(Q’) = 0, the prime indi-
cating the transposed matrix. Hence (Birkhoff and MacLane," p. 290)
no matter what ordering of S is used.

Q'adj(Q") = 0,
where ‘adj’ denotes the adjoint matrix, i.e., the transposed matrix of
cofactors. Let C' = (¢z;) be the matrix of cofactors of  corresponding

to the ordering 11, ¥2, - - - , ¥ s of 8, and suppose that the entries of Q
are also arranged according to this ordering. Then

C = adj(@Q")
and we find that

Z QexCzy = 0.

zeS
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Thus any eolumn of the matrix €' of cofactors of @ gives a solution of
the equilibrium equations. It follows from a result of W. Ledermann
(Bellman,” p. 294, exercise 10) that

(—1) %%, = 0.

We see that all the cofactors ¢, have the same sign, and each column of
the matrix (' yields a nonnegative solution of @p = 0. Hence all columns
are proportional, because there is only one nonnegative solution, up to
normalization. The theorem follows from the standard formula for a
cofactor as a determinant.

Theorem 5: If z € S 1s any slale, then an unnormalized solution of the
statistical equilibrium equations Qp = 0 is given by

p-=1
and for v # z,
Z t(m)+|z|—|z] 1
y = )\ 2 I T
P TP ver |y |+ As(y)

Proof: The formula given can be verified by direet substitution in the
equations

As(e) + |a|lp: = UZ; Py + A g Pul'yz reS.

Convergence of the infinite sum will follow from our Theorem 7 and
exercise 19, p. 378 of Ieller.!

XI. STATIONARY PROBABILITY MEASURES FOR ERGODIC MARKOV PROCESSES

In order to shed light on Theorem 5 (and also to prove it by a prob-
abilistic argument) we shall consider in this section the general problem
of caleulating the stationary probability measure of an ergodic contin-
uous parameter Markov process on a finite number of states. Our object
is to give an explicit formula for the measure in terms of the transition
rate matrix. Again, it is needless to mention that a formula of such
generality must be fairly complex. Applied to familiar Markov processes
whose stationary measures are well known, the formula to be given
yields some unexpected combinatory identities, not pursued here.

We shall now use the notations r,, S, @, and P(-) to describe an
arbitrary Markov stochastic process v, in continuous time, taking values
in a finite set S of states with transition rate matrix Q = (¢.,) and tran-
sition probability matrices ?(f) = (pz, (1)), t real. Tt is assumed that
there is a single ergodic class of states. Such a general interpretation of
notations already introduced (for specific processes deseribing traffic in
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connecting networks) is made to avoid defining new terminology; it is
made in this seetion only, and should cause no confusion.

If z is a state, a return to z is defined to be an epoch of time at which
x, reaches z, i.e., u is a return to z if for some ¢ > 0, a; # z for u — e
<t<wandx, = zforu <t < u 4+ e A departure from z is an epoch
of time at which z; leaves z, i.e., u is a departure from z if for some e
>0, 0, = zforu —e <t <uanda,#Zzforu<t<u-+eA
refurn time to z is a period of time elapsing between a departure from
z and the next return to z. We set, for t = 0,

H.(t) = E{number of returns to z in (0,f] |z, = 2}
.= Efreturn time to z}
¢:= —q.. = E '{length of a stay in 2}

The notation H,(-) has been chosen because the defined quantity has
an obvious resemblance to the classical renewal function. (See Smith.")
There is a simple relationship between the equilibrium probability of
a state x, and the quantities . and ¢.; this is expressed in the next
theorem which, though probably familiar, is included for completeness.
Theorem 6: For v € S, pr = | + qepa]
Proof: The transition probability p..(!) approaches p. as { — o=,
and is expressible as

t
peal) = 4 [ 10 dHL ().
0

Since stays in 2 and returns to 2 are all mutually independent, the stays
being identically distributed, and the returns also, the renewal theorem
[Smith," p. 247, formula (1.3)] implies that the right side approaches

? —qzt
fo e dt _ 1
B [interval between successive 1+ oo
1 returns to x

Thus p. can be calculated from . where

&
Yz = f u dPr{return time to z =< u}
0

= f Pr{return time to @ > u} du.
0

Ior our purposes it is convenient to approach the calculation of p.
in a slightly different way. Let z be any state, and let x be a state dis-

’i
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tinet from 2z, z # x. Define ¢..(t) in { = 0 to be the probability that if
the stochastic process start at z at time zero, it be at x at time { without
having returned to z. Thus

¢ez(t) = Pr{a, = @ and (epoch of first return to z) > ¢ |xy = 2}.

For convenience, we set ¢..(t) = 0in ¢ = 0.
Lemma 2: For z # x,t = 0,

pzz(t) = j: q=z(t - u) dHa(u)

Proof: Let t;, 4 = 1, 2, ....be the epoch of the ith return to z in
t > 0, and let A;({) be the event

{z, =2 and & =& < tipl.

Then
PrAD) o = 2) = [ gult — u) dPrlte S ulm = ).
However (cf. Ref. 11, p. 251, formula (1.7)),
H.(t) = :{; Prit; = t|x = 2}
and
pet) = 3 PHAD) | = 4.

The integration and the summation can be interchanged by the mono-
tone convergence theorem, and the lemma follows.
Lemma 3: For z # z,

=_qz_[°" (u) du.
Pe =T g o © )

Proof: The integral on the right exists, since
f ¢:z(u) du = E{time spent in x between successive returns to z} < p..
0

The lemma follows from Lemma 2 and the renewal theorem.
The matrix A is defined by the condition A = (a.,) with

Gy
gz

0 z = Y.

T FEY
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It can be verified that A is a stochastic matrix, indeed, the one-step
transition probability matrix of a Markov stochastic process {x., n an
integer} taking values on S; v, is a discrete-time analog of x, obtained
by ignoring the lengths of time spent in a state.

Lemma 4: For z # z,

f: (1) du =

1 £ number of arrivals at z between
g |successive returns to z ’

Proof: The integral is the expected time spent in x between suceessive
returns to z. Each stay in x has mean length 1/g¢., and the stays are
independent of the rest of the trajectory followed.

Lemma 6: For z # w,

/number of arrivals at @ between |
successive returns to z

Priz, = « and x; # 2z for | £j = n|a = 2.

Ms

n=1L

Proof: We remark that the expectation on the left is the same for
hoth 2, and x, . The lemma is then a special case of the theorem that if
[A;, 1 = 1,2, ...} are any events, then the expected number of 4;

that oeceur is
Z Pl'{fl ,] .
i=1
Lemma 6:
=2 f g () du.
z 0
Proof: This is an immediate consequence of ¢..(-) = 0 and

o0
f ¢--(u) = E{time spent in = between successive returns to z}.
0

for z # x.
Lemma 7: Let @ # z. Then
Priz, =2 and x2;# 2z for 1 £j =< n|x = 2}
=& Oovr

q: meK.z wem  (Qy
l(T)=n

Proof: The event in question can occur in as many ways as there are

rr
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paths of length n in K... The probability that {z;, 0 < j = n} follow a
path = from z to x is

g'z QPU-H

2
Qzuer Gy

the quotient in front correcting for the end points.

Combining Theorem 6 with Lemmas 4, 5, 6, and 7, we obtain the
following explicit formula for the stationary probabilities:

Theorem 7: If x # 2z, then

_ 1 Doy
P 1 + g.p. HZK;: ver  Qy
with
etz = Z Z H M:
T#z WeK g vem  (y

and

Py = 1

fol 4 g

We remark that Theorem 5 follows from the above if we choose 2 = () =
zero state, omit normalization, and observe that only produets along
permitted paths (x ¢ F?) are nonzero. Theorem 7 is an analog for con-
tinuous parameter processes of a theorem of Derman' for Markov
chains.

XII. EXPANSION OF THE STATIONARY VECTOR P IN POWERS OF A

We now turn to examining, in an elementary way, the analytical
dependence of the state probabilities {p:, x € S} on the calling rate A,
on the structure of the network, and on the routing matrix R. It will
be shown that the partial ordering < of the set S of states can be used
to calculate the elements of p by expanding the ratios

i x>0

Po
in powers of the traffic parameter X in a neighborhood of A = 0, and then
determining the coefficients of this expansion from the structure of the
network and the routing matrix by a recursive procedure. The solution
so obtained is later (Section XV) extended to arbitrary real positive
values of A by analytic continuation, and the coefficients are calculated.
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Our approach to studying the stationary probability vector p will be
guided by these intuitive remarks: it is known that in various simple
models (of connecting systems carrying random traffic with blocked
calls refused) the probability that % calls be in existence is proportional
to the kth power of a constant associated with the calling rate divided
by k factorial. For example, in Erlang’s model for ¢ trunks with blocked
calls cleared, the chance that k calls are in progress is proportional to

k
a

El’
where a is the calling rate. Note that the exponent of a is the number of
calls in progress, i.e., the current difference between the cumulative
number of new calls and that of hang-ups, assuming that the system
started in the zero state. The factorial in the denominator is the number
of orders in whieh the & ealls in progress could all hang up, or alterna-
tively, could all have arisen.

The situation in our model is very similar. Fach call still in progress
required an event oceurring at the rate A to put it in existence; for each
state x, there are exactly |z | ! orders in which the |z | calls in prog-
ress in @ could arise, or terminate. These circumstances suggest that for
& > 0, p, might be of order \' “'as A — 0, and that the coefficient, of A'*'
in p, might involve |z |!in the denominator. These conjectures are
true, and are the first step in the systematic calculation of p. by ex-
pansion in powers of A, to be carried out in this section.

We first record some analytical properties of p as preliminary results.
Some of these results could be obtained as consequences of the basic
solutions given in Section X. Most of the proofs to be given, however,
are independent of Section X, and proceed by simple arguments from
the equilibrium equation.

When we need to view p. as a function of the parameter A, we write
pz = p=(A), x € 8, or in vector form, p = p(\).

Lemma 8: 1111[)1 pz(N) = 8.

0k=c

Proof: Let x be a maximal state in the partial ordering < of the set

S of all states. Then s(z) = 0, and
I z l p=(N) = ?\ZB: pu()\)ryz .
yed g
Since 0 = py(A) = 1 forall A > 0 and all € S, the lemma is true for
maximal states. Assume, as a hypothesis of induction, that the lemma
is true for all y with |y | = k& + 1. Then for x € Ly, & > 0,
[z + M@0 = 25 p) + A 2 p(Mras,

yeBg
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and so p(A) — 0 as A — 0. The proof is completed by observing that
for each A > 0,

p(N) =1 =2 p(N).
>0

Lemma 9: For each x € S, pz is the restriction lo real positive argument
of a rational function p.(-) of a complex variable p. The function p.(-)
has no poles in a neighborhood of the half-line Re(up) = 0, Im(p) = 0,
and an expansion

o0

pz(# + E) _ m .

P rE P Rt
with real coefficients ¢,(x,\) is valid for Re(u) = 0, Im(u) = 0, and
| € | small enough.

Proof: The equation @p = 0 can be solved for a normalized (i.e.,
probability) vector p(\) by successive elimination or by use of Theorem
4, Kither procedure gives rise to an algebraic expression for p(\),
x e S. Let p.(n) be that rational funection of a complex variable u de-
fined by substituting u for A in this algebraic expression. Since 0 =
p:(A) = 1, p:(x) has no poles in a neighborhood of the nonnegative
real axis. To justify the expansion we show that p.(:)/po(-) is also
analytic in that neighborhood. But this is immediate because by Lemma
87

P2(X) — 8z as A —0,

and by Theorem 1, po(A) > 0 for A = 0 because the zero state belongs
to the ergodic class S — F.

Setting o = 0 and € = A in Lemma 9, we obtain an expansion of
Pz/Po in powers of the traffic parameter A,

PN & .
po(A) mzo Nen(2)0),

valid for A small enough.
Theorem 8: For k = 0 and x € Ly,

pe= 2 p. =00 as A —>0,

zeLy

and
p: = O(\) as X —0.
Proof: We prove both results simultaneously by induction. By Lem-

ma 8, the result is true for & = 0. Assume that it is true up through
k —1 = 0. From Lemma 1 and the induction hypothesis, we find
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pr = %”E p,s(y)

(377}
=00 as A—0.

By Lemma 9, for A small enough p. can be written as a power series
around A = 0

= 2 Neu(z,0).
m=0
Thus

o0

S Y em(z0) = pr = O(\") as A —0.
m=10 TeLp
The first nonvanishing coefficient in the expansion on the left must be
positive, else p. < 0 for X > 0 small enough, which is impossible since
p(A) = 0 for A > 0. Hence
E CO(:""}O) 2 0.

TeLy

However, the first nonvanishing coefficient in the expansion of p, must
also be positive, for the same reason as a.bove, namely, that p(A) = 0
for A = 0. Thusey(x,0) = 0. Hencep,, = O(N) as A — 0 implies ¢o(2,0) =

0. We apply the same argument successively to show that for v e Ly,

the coefficients ¢,(x,0), ..., ¢ 1(x,0) are all zero, and the theorem is
proven.
Theorem 9: For x > 0
Pz = Po T"";| e+ oA"Y as A— 0
where
re = (R™ )0

the 0,x entry of the | x| th power of the routing matriz K
the number of permitted sirictly ascending paths from 0 lo .

Il

Proof: The equation of statistical equilibrium that defines p is

[ ]+ As(x)]p EPy+7\Ezﬂmi z e S.
veB
Tor convenience, suppose that |x| = k. We divide the equation by

Po, use Lemma 9 to expand the components of p/po in powers of A, and
equate the coefficients of A“ on each side of the equation. This gives

kee(2,0) + s(x)ea(2,0) = 2 e(y,0) + 2 ca(y,0)rye -

vedx yeB ¢
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By Theorem 8, ¢i—i(2,0) = 0 and ¢(y,0) = 0 for y e A, . Therefore
kee(2,0) = 2 (4,072

veBz

or in general, with v the vector with components ¢, (,0),

¢z (2,0) = L 2 Cin(y,0)r4

| z I VeBz

Clyl (y,O)'ry:

Tterating this relation |z | times, we find

]- T
Clzl(x;o) = |$—|| (R™ )z
Now it is easily seen that the y,x entry of R* is zero unless k = |z | —
| 4 |, and in particular, if ¥ = |a |, this entry is zero unless y = 0. Thus
]- T
C|=|(.'U,O) = W (RI i)ﬂzcﬂ(oso)s

and it is obvious from the definition of the c.(y,0) that ¢(0,0) = 1.
Theorem 10: Let the sequences [ca(x,0), m = 0, x € S} be defined re-
curswely by

cm(O,O) = '5mn
cu(2,0) =0 for 0= m < |
and x> 0

Tz
z|!

[3: |Cm(m10) + s(x)ema(x0) = Z en(y,0) + ZB Cm1(4,0) bz

yedz

C]x;(:U,O) =

for m > |z| and x> 0.
If for x > 0
A< (lim sup | Cm(.’l‘,O) |l|'m) -1

m—>

then the component p, of p is given by

Pz = Mo Z_:u?\"‘cm(:c,o).
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j

A < min (lim sup | ea(z,0) | ™) 7,

z>0 m-—=+x

then the probability p, of the zero state is delermined by the normalization
condition Y, p, = 1 as
zeS

1
14+ i A"em(2,0)

z>0 m=0

Do =

Proof: This result follows immediately from Lemma 9 and Theorem 9,
using the standard formula for the radius of convergence of a power
series.

XI1I. EXPANSION OF THE PROBABILITY OF BLOCKING IN POWERS OF A

With a method of caleulating equilibrium state probabilities for small
» at hand (in principle, at least) we now show how the probability b of
blocking can be calculated, to any desired degree of accuracy, by an
expansion in powers of the traffic parameter A\, assumed sufficiently
small. In most connecting networks of practical interest, none of the
states near the bottom of the state-diagram has any blocked calls, so
that it is necessary for a state z to have certain minimum number of
calls in progress before it can have any blocked idle pairs. To take ad-
vantage of this situation in our caleulation, we let

n = least k such that some call is blocked in a state of Ly .

Theorem 11: The probability b of blocking can be expanded in a power
series in \ in a neighborhood of A = 0; only terms of order higher than or
equal to A" appear.

Proof: From Theorem 2 we have, since 8. = 0 for |2| < n, and
ex(z\) = 0fork < |z,

:u.im (3)
MEN T a8 apo

i=0 n=<|z|=nti

AR

Z 7\1' ) Cj(ﬂ?,O)a;
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Since the denominator is not zero in a neighborhood of A = 0, b = b())
is analytic there and can be expanded in powers of X. Up to terms of
order A" ** this expansion is
’ r
y— 3 BO) o AW0)B'(0) — 4'(0)B(0)
A(0) [4(0))
b ar(LOB0) - 4050
2[4 (0)1

_xmﬁmmm—w%wwo
[A(O)F

4+ o(A™H).

The coefficients in the first two terms can be obtained by the following
calculations:

‘4(0) = 2 CQ(IC,O)OZ::

lz| =0
= Cu(0,0)O[o
= C"O)
B(0) = I; ea(2,0) B,
zlzn
= IE eal2,0)8:
z|=n
1
= wl :;ﬁ 7Pz
A'(0) = e(2,0) e,
lz1=1
= > e(r0)a;
lzl=1
= Tozllz
zely
B’{D) = | IZ 1‘3u+1(.-1:0).3z
= 2 an(0+ 2 cualx,0)B.
ETT Zelp
1
BCES) MZEH rebe o+ 2 eon(@0)8.
The constants {e;1(x,0), |2 | = %} can be determined by the following

recurrence, obtained from Theorem 10:
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01(0,0) =

CR'H(;E’O) Z rz + E Gn(%o)?'w - S(:;,?Tx}.

1
{( + 1) ! Yedy yeBy
Our results can be put in a slightly more explicit form by expanding
log b rather than b, and using the fact that A(-) and B(-), as defined
by (3), are generaling functions. We have

log b = nlog A + log B(A) — log A(}M).
Except for the systematic absence of factorials, the coefficients in the
expansion of log B(\) are related to those in the expansion of B()\) as
cumulants are to moments. Set
b= 2, eapi(@0)Bs, J=0,1,...,

lz] 2 nti

| ci(x,0)az, i=01,...,

M IV\

a; =
isl=

so that

B(\) = i Nbj,

i=0

s -
Z 7\ij .
7=0

Then, by a standard formula, (Riordan,” p. 37),

AQ)

log BN = 3 Nz,(0),

log A(\) = 2?\%:'(0:),

where for ¥ = a or b (sequences)
wyb (ZDHE = 1)

“—n(u) = E (ul)h . Uﬂ )1 e (Ifn)! ]

with &k = k + %k + -+ + k., and the sum over all partitions of n,
i.e., all solutions in nonnegative integers of k + 2k, + -+« + nk, = n.

XIV. COMBINATORY INTERPRETATION AND CALCULATION OF THE CON-
STANTS {cn(z,0), x e S, m = 0}

‘We shall now evaluate the coefficients in the power series expansion of
p around A = 0 explicitly as sums of products on paths in S. Additional
combinatory notions that enter this calculation are discussed first.
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A path is said to contain a loop if it returns (one or more times) to a
place where it has been previously. Thus = = {2, -+, 2} has a loop
if there are integerstand j, 0 £ ¢ < j = [, such that

Ti= x;.

A cireuit is a path that ends where it begins. Thus the generic path
7 = {xp, ..., 2 is a circuit if 0 = a;. A cireuit is a loop if it contains
no subecireuits, i.e., 7 is a loop if ¥y = z; and 7 # j implies

T F T

forany0 <7 =land0 <j <L
A circuit of length two is of necessity a loop. Iurthermore, the ecir-
cuits of length two on S ean be partitioned into two classes according
to the direction in which they are traversed. Each such loop can be
thought of as obtained either by first adding a new eall and then re-
moving that same call, or by removing a call and then replacing that
same call, Thus if = = {xy, ¥1, 22} is a loop of length two on S, then
Lp = Ao

and either

= Xp € Bz[

or

Ta = Tg € AI[

and, of course, not both. In the first instance we say that = is of the
first kind. Thus a loop of the first kind is a path = of the form {x,y,a}
with y € A, i.e., it is a trajectory in S obtained by starting at a state z,
adding a new call to go to a state y, and then removing that very same
call to return to x.

Tor a path = = {ay, ..., @) and a state x we say that x is on = if 2
is one of @y, ¥, ..., r;. If xis on m, we say that a loop of the first
kind on = ends at x if for some 7 in the range 2 < 7 < [,

T;i = Xi2 =0T
and

Ti1 € Aa: )

that is, the subpath {z;», 2,1, 2 is a loop of the first kind, and x; is z.
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With = and = as above we define

|x|, if zis on = and a loop of the first
g(ma) = kind on 7 ends at z
1, otherwise,

and we denote by »(7) the total number of loops of the first kind con-

tained in .
With these combinatory preliminaries behind us, we are ready to

prove
Theorem 12: The coefficients {c.(x,0), x € S, m = 0} are given by

Cm(0,0) = 6m0,
and for x > 0,

en(z0) = 2 -1 IT g(':r,y) (4)

TeP N Kgz YeT
L(m)=2m—|z|

Before proving the theorem it is probably helpful to state it in words,
thus: To calculate ¢m{z,0), consider all the paths w that are permitted
by R, start at 0, never return to zero, end up at z, and have length
2m — || (i.e., consist of m new calls and m — |z | hangups); along
each such path = take the product of the reciprocals of the numbers of
calls in progress in the states traversed by m, omitting states at which a
loop of the first kind ends; weight the product positive or negative
according as = has an even or an odd number of loops of the first kind;
add up all the weighted produects.

Proof of Theorem 12: We already know that ¢.(z,0) = 6.0 and that
em(z,0) = 0forz > 0and m < |z | . The latter result is consistent with
Theorem 12 because no path from 0 can reach x in fewer than |z |

steps. Consider then the case m — |z | = 0. Any path = from 0 to z
of length 2m — | x| = m consists entirely of new calls, and for such
aw

I &me) _ 1

ver |yl [zl

The number of such paths, summed over in (4), is easily seen to be r.,
the number of permitted strictly ascending paths from 0 to z. Thus for
m = |z|, (4) states that

en(z0) =

il Py

as was proven in Theorem 9.
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The remainder of the proof is by upward induetion on m and finite
downward induction on x, using the recurrence formula

|2 | em(2,0) + s(x)ema(x,0) = ZA cn(y,0) + g Cn1(,0)7yz ,
yedg YeB g
given by Theorem 10. The starting step of the induction is the fact that
formula (4) holds for x ¢ S and m such that

0< |[z]=m=1.

This is a consequence of the [act, already proven, that (4) holds for
|z | = m.

Let us assume, as a hypothesis of induction, that the theorem holds
for all 2 € S and m such that

0< |e|=m=rh (5)

We shall prove from this, by downward induction on =z, that it also
holds for x € S and m such that

0< |[z|=m=1Fk+1.

This last condition exactly describes the new cases covered in extend-
ing (5) to k 4+ 1.

Where = is a path, we use the natural notation =x to denote the path
obtained from 7 by adding x to 7 as a new ultimate element, assuming
that x is adjacent to the last element of #. We now observe that if =z
is a path that does not end in a loop of the first kind, then g(wa,x) = 1,
and so

glrez) 1 g(mz)

vz | 2| [z]ze [2] (6)
v(zz) = »(r.)

A state x is mazrtmal in the partial ordering =< if no new calls can be
put up in @, for whatever reason. If x is maximal, then A, is empty and
s(x) = 0. A state x is maximal in (a set) X © Sifx = yforeveryy ¢ X,
and z € X.

Let 0 = |2| = m = k 4+ 1and suppose first that 2 is maximal. Then

C,,,(.’U,O) = —l—‘ Cmﬁl(?J,O)Tyz-

‘ xr ] yeBy

No path ending at a maximal state x can end in a loop of the first kind,
and any such path must have a y ¢ B; with r,, = 1 as a penultimate
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element if it is to be a permitted path. Then clearly
fr e PN Kop: l(7) = 2m — |z}
=Ulre:re PN Koy

yeBy
and I(x) =2m — |z|—1 and 7, = 1}.

Letnowy e B.,me P | Koy, l{x) = 2m — |z|— 1, and . = 1.
Then =z satisfies g(wx,2) = 1 and also formula (6). Thus formula (4)
holds for maximal x and 0 £ |2 | = m = k + 1, by the hypothesis of
induection.

Next, consider states x that are maximal in the set

(yeS:0= |a|=k+ 1]

These are just the elements of Ly , i.e., the states v with |2 | = k + 1.
Since we are assuming m = k + 1, the result (4) holds for these z by
Theorem 10.

Finally, assume as a hypothesis of downward induction (on |z |)
that the result is true for y ¢ S and m such that

1<j4+ 1= |yl=m=Fk+1,

and suppose that |2 | = j. Then

C’"(:EJO) = _1_ Z [Cm(yyo) - szcmfl(x,o)] + L Z Cm—l(y;o)ryz-
| T | vedy I T | yeBg

If = is a path on S the notation pe(r) denotes the penultimate ele-
ment of =, ie., pe(w) = ziy for m = |20, 2z, ..., z}. The notation
ape(r) denotes the antepenultimate element of =, ie., for # = (2, 21,
..oy 2, ape(w) = 2.

A path of length 2m — | | belonging to P N K. reaches = either
via A, or via B, . In the latter case the path cannot end in a loop of the
first kind. By the hypothesis of induction,

__1yrm
L‘ Z Cm—l(?fyo)r!ﬂ’ = Z Tyz Z ( 1) H g(ﬂ-,Z)
I -'E_[ yeBy yeB, . weP Koy ‘ | T ] Zew I 2 |
(m)=2(m—1)—|u|
(7)
— -1 ¥(m) g("r)z)
meP [ Kgz ( ) E |.z | ’
(x)=2m—|x| -
pe(r)eBy

the second equality following from (6).
Now consider a path =z of length 2m — | |, belonging to P N K.,
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reaching = via A, and not ending in a loop of the first kind, i.e., with
pe(m) # z. Using the hypothesis of downward induction, we find

1 »(x) g(mz)
— 2 2 (=" ]I 2]

Lo lic et e |
pe(r )=z
(r2) ®)
— -1 v(x) glmz
wef;}(qt ( ) 1:1 ’ F-4 l ’
pe(x)ed

ape(rw )=z

the second equality again following from (6).

Finally, we consider those paths of length 2m — |a | belonging to
P N K,. which do end in a loop of the first kind. Such a path is of the
form

YT
with # ¢ P N Ko, Ur) = 2m — |a| — 2, and r,, = 1, for some
y € A, . We observe that in this case |y | = |2 |+ 1 and that
(—l)"‘"’{ g(my,2) q(ﬂ)} (—1)""’{ 1 } g(mz)

{ 3 _ i ) — e 1 3
W T AT s e i YT
_ (=" g(re)
I Y J zerw l Z r
= (1) gi(f?ry-l',?/) (9)
' [y |

glryxx) 17 9(7z)
lz] == |z

= (—1)"™H 11 g9(myz,2)

Zewyzr [ 2 J

We note that »(wyxz) = »(r) + 1, and that »(7y) = »(7). By summing
formula (9) over paths of length 2m = |z | — 2 belonging to P N K,,
and over y e A, such that r,, = 1, we obtain

1 E E {(_l)v(rl) H Q(ﬂ'yiz)

l € I Vedz 7eP Koz zewy I F4
rey=l 1(x)=2m—|z|—2

, ) (10)
—(=1) () Hg(r,z)} _ E (=1) (x) H g(mz) )
zew | 4 l !::T—QJETﬂ zew | 4 |
pe(_r-)e-&y

ape(r )=z
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By the hypothesis of induetion

1 v(x) g('ir .2) 1
— —1 re == TayCm—1(2,0).
|£F| u;{_, " reP;Ku,l | ( ) !-eIr IZI |${1§, =0 I(L ) (11)
rry=1 x)=2m—2—|x

Also, it can be scen that for y e A,

{r e PN Ky:l(x) =2m — |z| —1 and pe(r) # g}
Uf{ry:r e PN Ky, 72 =1, and I(r) =2m — |z| — 2} (12)
— (r e PN Koy l(m) =2m — |y}

Combining (8) and (10), using (11) and (12), and applying the
hypothesis of downward induction, we find

S (—y®]] g(ﬂ',T)
| 2

TeP (| Kqz Zew
1(m)=2m—|z|
pe(r)edy
1 ver » 1
by oy vendt o LS @ (8)
I T { ved;, meP[1Kgy zew ‘ 2 | I X 1 yedy
I{m)—2m— 1yl
1

=— 2 fea(y,0) — rayen(z,0)}.

l-’ﬁ | veas

Together, (7) and (13) complete the inductive step.

XV. CALCULATION OF Cn(T,A)

In order to give an explieit formula for e.(x,\) for X > 0 we suppose
that, for each path = on S, all the upward (in =) transitions on = are
of two kinds, denoted by the symbols N and e. (The calculation we
present is more easily understood if the new calls labeled e are thought
of as due to the increment e in calling rate, while those labeled A are due
to the original calling rate A.) In other words, we consider the set of all
paths = on S as (partially) labeled by assigning either A or e to each
upward transition. Formally, we define a labeling \(-) of a path = =

{xo, 1, ..., 2} to be any function defined for x;, @, , ..., ; with the
property
_Je or N if z;covers i,
Ma:) = 10 otherwise.

The set of all possible labelings of a path = is denoted by A(w), and
membership therein by the notation A(-) e A(x). The functions \(-)
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should not be confused with the constant \. A path = together with a
labeling A(-) of = will be called a labeled path and denoted by (x,\(-)).
The index e(m,\(-)) of a labeled path is the number of times A(x) as-
sumes the value e for o e 7.

Let A(-) € A(w) be a labeling of # = {2, 21, ..., v)}. The function
h(w\(-),-) is defined by the condition

h(r () x) = |z| + As(px)
if 2 is on 7 and a loop of the first kind on 7 ends at x, with the first
(i.e., upward going) leg of the loop labeled € by A(-), i.e.,
AMpz) = ¢
and by
RN (+)x) =1

in all other cases.
For a path = and a labeling A\(-) e A{x), the function {(#\(-)) is
defined by

the number of loops of the first kind on =

fmA(-)) = {la.beled e on the upward leg by A(-).

Theorem 13: For X > 0and m = 0
co(ON) = dom
and for x > 0,

—m )tz e h(a (- )y)
) = A )\“( |z /2 -1 tlm A G)) § ’ )
en(a)) Py OIS aw

A(-)eA(r)
e(m,A(-))=m

Note that by Theorem 5, with z = 0, formula (14) for m = 0 reduces,
as it should, to

p=(N)
po(A)

Also, formula (14) agrees with formula (4), Theorem 12, as \ is allowed
to approach zero, since in this limit only (w,A(-)) which are full of €'s
contribute, with m = 3(l(x) + |z |).

Proof of Theorem 13: The values of ¢o(a,\) and ¢,,(0,\) are conse-
quences of the definition

S m _ pz()\ + E)
;"Y‘_;o "en(z\) = ST (15)

cola)) =
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The equilibrium condition Qp = 0 for traffic parameter A\ + ¢ comprises
exactly the equations

[la] 4+ (N4 e)s(z)]p(n + €)
=S a0+ + 0+ Xp\+ re, zebl

Wedg veBg
Dividing by pe(A + €) > 0, substituting the expansion (15), and col-
lecting coefficients of like powers of e, we find that c.(x,\) for ¥ e S
satisfies the equation
[ [ l 4+ Ns(e)]en(xN) = Z: lem(yN) = roCma(2N)]

WeAy

(16)
X rlena(5) + Aem(]
weBy
It can be verified, using the fact that for any labeling A(-) of a path
x the number of times A(x) has the value X for x e 7 is

Um) t12] _ n()),

)

&

that formula (14) gives a formal solution of equations (16).

To prove the theorem it suffices to show that the infinite sum over
e P N Ko in formula (14) is absolutely convergent, and that the
left-hand side of formula (15), with the ¢, (x,\) as given by the theorem
is absolutely convergent for e small enough.

We first observe that for each = and A(-) summed over in formula
the factors h{w (- ),y) in

h(?f,)\('),?l)
,,Il Ly |+ As(y)

are uniformly bounded, and that at most min(m,»(x)) of them are
greater than unity. Also, the number of upward transitions (new calls)
along a path = ¢ P N K, of length I() is just

r) + ||
l) -

4

(%1(«) +m; | 1)

ways of labeling the upward transitions on a path = e P N Ko, with
length /(7) and index m.

Thus there are exactly
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Hence for some constant @ > 0

I(r) + | x| )
len(zA) | < @™ > AUeHEDe o

ver |y |+ As(y)

7eP 1Koz m

By Lemma 7, with {x;, 7 an integer} of the lemma defined in terms of
the matrix ) appropriate to our congestion problem,

I x|+ As(a) ngxu NGFED2 H 1

=0 As(0) L(x )=k ver |y | + As(y)
=Prfe; 20 for 1 £¢=1k|a =0}

By ex. 19, p. 378 of Feller,’ there exists 0 < ¢ < 1 such that the proba-
bility on the right is at most ¢ forall & = | S| . Hence

> |en(x\) | £ const.a™ ) (i;)qk.

x>0 k=m

This proves that (14) converges absolutely, and that the left side of
(15) converges absolutely for | e | small enough.
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