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It is proved that the inlegral equation

[ 6@PaH@IW) dy = M)

has at least one nonzero etgenvalue if F is any inlegral function of finite
order, G and H are any bounded functions on [—1,1], and the trace of the
kernel G(x)F(ay)H (y) does not vanish. I'n particular, this theorem furnishes
the first rigorous proof that the kernel exp [th(zx — ¥)?], which arises in the
theory of the gas laser, has an eigenvalue for arbitrary complex k.

I. INTRODUCTION AND SUMMARY

In an idealized model of the gas laser or optical maser, as studied by
Fox and Li'-? and others, electromagnetic radiation is reflected back and
forth between two infinitely long metal strips which are mirror images of
each other. A typiecal field quantity, such as the current density, at the
surface of each reflector satisfies the integral equation

f..: explilk(z — y)° — h(z) — h(y)]} 7(y) dy = M(z), (1)

where k& is a dimensionless real parameter which depends on the width
and spacing of the reflectors and the wavelength, and h(z) is a real fune-
tion specifying the departure of the reflecting surfaces from parallel
planes.

The eigenfunctions of (1) represent the field distributions at the re-
flectors of the possible modes of oscillation of the laser, and the eigen-
value A corresponding to a particular mode represents the complex factor
by which the field strength is multiplied as a result of one reflection and
transit between the reflectors. I'rom the magnitude of A one can deduce
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the amount of amplification which would have to be provided by an ac-
tive medium between the reflectors in order just to sustain oscillations
in the given mode, while the phase of A determines admissible reflector
spacings for oscillations at a particular frequency.

The mathematical interest of (1) centers around the fact that its
kernel K (z,y) is complex symmetric but not Hermitian;* that is,

K(zy) = K(y,) but  K(zx,u) # K(yx). (2)

The ordinary theory of Hermitian kernels does not even suffice to prove
the existence of eigenvalues of complex symmetric kernels. Fox and Li'
have made extensive calculations of the eigenvalues and eigenfunctions
of (1) for h(z) = 0 by iterative numerical techniques up to about k = 60
(in applications k may be as large as a few hundred) ; but heretofore there
has been no formal mathematical proof of the existence of solutions
exceptt for | k | < 1, which is not a case of physical interest.

This paper contains a proof of the following

Theorem: Lel G(z) and H(z) be any bounded functions on the interval
—1 £ 2 £ 1, and let F(2) be any integral function of finite order such that

1
[ 6@Fa)HE) dx = 0. (3)
Then the integral equation

1
[ 6@ rapr@I) dy = \f@) (4)
—1
has al least one nonzero eigenvalue.

As a corollary, it follows that the integral equation (1) has at least one
eigenvalue for arbitrary complex k, provided only that

1
[ e a0 ®)

Furthermore if 2(z) is an even function of x, then (1) has at least two
eigenvalues for all but certain exceptional values of /, a particular excep-
tional value being & = 0.

The idea of the proof is quite simple. The assumption that F(zy) in
(4) is an integral function of finite order means that ultimately the coeffi-
cients of its Taylor series in powers of zy fall off with extreme rapidity.

* The kernel is normal in the special case h(z) = kz?. The eigenfunctions of

exp (—2ikzy) are prolate spheroidal wave functions, as pointed out in connection

with lasers by Boyd and Gordon.? .
tIf | k | < 1 then exp [ik(z — y)?] is nearly unity, and the existence of at least
one eigenvalue follows from perturbation theory; see Sz.-Nagy.!
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If we truncate the Taylor series after a finite number of terms, (4) is
replaced by an integral equation with a kernel of finite rank. The eigen-
values of such a kernel are merely the latent roots of a finite matrix, and
these are not all zero if their sum, which is the trace of the matrix, does
not vanish. The limiting value of the trace is just the left side of (3),
and does not vanish by hypothesis. By taking more and more terms of
the series for Fizy), we obtain a sequence of larger and larger matrices,
whose clements ultimately vanish very rapidly with distance from the
upper left corner. We show that it is possible to pick one eigenvalue from
the set of eigenvalues of each suceeeding matrix in such a way that the
resulting sequence of numbers has a nonzero limit point. This limit point
is an eigenvalue of the infinite matrix, and hence an eigenvalue of the orig-
inal integral equation.

Details of the argument just sketched are given in a series of lemmas
in the next section, followed by the proof of the main theorem. Since the
existence proof makes heavy use of asymptotic inequalities, it does not
generally provide a practical technique for obtaining numerieal results.
The important practical question of finding approximate expressions,
valid for large k, for the eigenfunctions and eigenvalues of equations such
as (1) is a separate problem, as is also the question whether any particular
equation has a finite or infinite number of eigenvalues.

For a gas laser with finite (not strip) mirrors of arbitrary, dissimilar
shape and size, the integral equation still has a complex symmetric
kernel,? although the domain of integration is two-dimensional and the
kernel is more complicated than that of (1). The existence of eigenvalues
in the most general case still remains to be settled.

II. MATHEMATICAL DETAILS

We shall use the following notation referring to an n X n matrix:

.4(") — ((Iij); i = ], 2: R [ I' = 1» 2} o,
.“(ul(i) — Z]Jﬂ-ijls i = 1,2, -+ n; (6)
i=

7

S‘{.‘l“n.] — Z:l(nl(,ij — .

n
) | aij|.
i=1 i=1 j=1

If the superseript is omitted, » is understood to be infinite.
Lemma 1:

ldet A | = TTA™G) (7)

=k
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Proof: Using Hadamard’s inequality,

n n 1/2
|det A™ | = E I:E | ai; |2:l

j=1

/o s a (8)
H[(E )] - Mo
Lemma 2:
| det(A™ 4+ B™) — det A™ |
éﬁMWﬂ+F%n—ﬁMW&(m

Proof: Thelemma is obviously true for n = 1. To proceed by induction,
assume it is true for all determinants of order n — 1, and expand the
determinants in (9) by minors of the first row. Let Cy; be the algebraic
complement of a,; + by;in A + B™, and let 4, be the algebraic com-
plement of a;; in A™. Then

det(A™ + B"™) = 21 (a1; + b1;)Ch;
=

n n (10)
= det A" + Z a;(C1; — Ay} + E b1,Cyj .
=1 =1
By Lemma 1,
[ Cy| 11 [; | @i + b |]
e (11)
g H [A(”)('l:) + B(ﬂ)(i)}.
i—2

1=

By the induetive hypothesis,

l%—Aﬂéﬁw“m+EWm—ﬁ#Wﬁ (12)

1=2

where we have used the fact that the right-hand side is increasing as a
function of the A (z) and B (4). Hence (10) gives
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Idet(A(n) + B(n)) _ det A{n)l
gAWUﬁhfﬂﬁ+W%n—HmWﬁ
iz i=g
+ B™ (1) [T (A" (1) + B (4)] (13)
1=2

— 114" 6) + B )] — TLA™G),
i=1 i=1

and the induction is complete.
Now let & be the Banach space* whose elements are all bounded se-
quences of complex numbers, e.g.,

= (2, @0, iy ) (14)
with norm

[zl = sup |zl (15)
Let A be a linear matrix operator on the space ®, defined by
(Az); = Za”:r,,, i=1,2, . (16)

Az will be an element of & provided that sup A (%) is finite. The norm of
A is defined by

Al =sup{[Az]; || =1}, (17)

and it is easy to show that
| Al = sup A(2). (18)

Henceforth we shall restriet our attention to matrix operators for
which

S(4) = S AG) < . (19)

Such operators are completely continuous, because they can be ap-
proximated by the sequence {4} of completely continuous operators
which converges in norm to 4. Here 4" is a matrix whose elements co-

* The standard definitions and theorems which we shall require from functional
analysis may be found in Kolmogorov and Fomin.5
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incide with those of A for 1 £ 7 £ nand 1 £ j = n, and are zero other-
wise.

A complex number X is said to be in the spectrum of an operator A if
the operator A — A has no inverse. An eigenvalue of A is any value of
\ for which there exists a nonzero z satisfying the homogeneous equation

Az — xx = 0. (20)

If A is completely continuous and if A (# 0) lies in the spectrum of A,
then X\ is an eigenvalue of A. In finite-dimensional space the eigenvalues
are the latent roots of the matrix A ; that is, they are the roots of the
characteristic equation

det (A™ — ™) = 0. (21)

Lemma 3: If A™ has \ as an eigenvalue, then A + B has X/,
where

[A =N IH [A™ () + B™(HE) + | A ]]

I/n (22)
—HMW +M@.
Proof: Denote the eigenvalues of A™ 4+ B™ by M, ey 0, A
Then
A=A =) - (N = M) |
| 1 2 (28)

— |det (A(n) + B(n) _ ?\I(n)) — det, (A(n) _ M—(m) E,

the second determinant being equal to zero because X is an eigenvalue of
A" Let

D{n) — A\'ﬂ) _ RI(H), (24)
so that

A

D™ (1) = -lea” — A6 | =A@ +IN. (25)
=

Then, using Lemma 2,

Hu—m|<HDWw+N%n—ﬁUWﬂ

égMWﬁ+WWHﬂW (26)

—ITU”6 + I,
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since the right side of the first line is an increasing function of D™ (%).
It follows from (26) that for at least one of the factors |A — A¢| the
inequality (22) holds.

Lemma 4: Let A be an infinite matric with S(A) < o«o. Suppose that
from the eigenvalues of the sequence of finite matrices {A'™} we can pick a
sequence {\"'} such that \'" does not approach zero as n—> = . Then A has
a nonzero ergenvalue.

Proof: The A are bounded, since in fact

AP < A% | = max A7(0) S S(4), (27)

Also for sufficiently large n we can pick a subsequence which is bounded
away from zero, and which therefore has at least one nonzero limit point.
Suppose that the subsequence ' converges to the limit point A > 0,
as p runs through some increasing sequence of integers. We assert that
X is an eigenvalue of A. If it were not so, then (4 — AJ )™ would exist
and therefore be bounded. Suppose (4 — A)™" were bounded, and let
«™ be the characteristic vector of A" corresponding to A”’. Then we
would have

a? = (A = N)THA = M)
= (A — N)7TAP® — NP
+ (A — APy (x — P\(m)x(m]
= (4 = ADT[A = AT — (n = A,

(28)

where in the last equation A"’ represents an infinite matrix which coin-
cides with A in a square of side p in the upper left corner, and has zeros
elsewhere. Taking norms, we have

[ 2 (A =ADT ] lA — AP — (x = A |
A =)A= A7+ Ix =27 2", (29)
or
1
[A — A® || 4 | XA — A@ |~
But since both | A — A™ || and [ A — A’ | go to zero as p — =, we
derive a contradiction.

Theorem: Let A be an infinite matriz with S(A) < o« and with Tr(A)
= 0. If

(4 =AD" = (30)

S(4) — S(A™) < (e/n9)7, (31)

for some ¢, ¢ > 0, then A has a nonzero exgenvaluc.
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Proof: Since Tr(4) # 0 and Tr(A™) — Tr(A), it follows that for
n = m, (say) and some 8 > 0, we have | Tr(A)| = 5. Since the trace
is the sum of the eigenvalues, 4™ must have at least one eigenvalue
A" such that

N[ = é/n. (32)
We shall in fact show that if »; is a sufficiently large fixed integer, and if
=27, j=1,2,3 - (33)

then for each j there exists an eigenvalue which is uniformly bounded
away from zero, i.e..

A = 5/2n, . (34)

Then by Lemma 4 the theorem will be proved.
We substitute into Lemma 3 as follows:

n = Nju,
N[ = A" =1t
A(ﬂ) — A(n,-) (35)

(n) __ (njp1) (nj)
B = A _ g0

where it is understood that A‘"? now represents the original matrix
A" augmented below and to the right with enough zeros to give it
dimensions #;4.1 X 741 . Then (22) becomes

lh(ni) _ -A(nﬁ_l) |

njt1 nj Unj4q
= {ﬁ (A2 + o — e LA™ G + ﬂ} C e
i=1

i=1

nit1 nj Unjya
{H [A(i) + 1 — e LA™ (@) + ﬂ} R

=1 i=1
Since
AP = AT 2 — N (37)

we can rearrange (36) to get

|>\(w|zz—{n [A®G) + ] — ¢+ H[A‘"’(z)+t]} SRNET)

i=1 i=1

Hence
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[N _{"ﬁ‘ [1 + Aﬁ”] “ 10 [1 + A‘";’u)]}”"m

| A | i=1 i=1

"{H[‘ n,‘m)} H[ n,-A‘;:"(i):l}”"m, )

since we already know that ¢ = 6/n, .
Now consider

I [1 + ”'%(”] II ex [”’A(”] < exp ["qb@] (40)

=1

Also
! n;A(7) N — .
II |1+ Sexp|—2 > A®D)
i=n;+1 & é i=nj+1
Mg (nj) .
=< exp 5 [S(A4) — S(A™)] (41)

1A

ni ¢ \" 2n; "
w35 1515 G5

provided that »; and hence n; are sufficiently large, where in the next
to last step we have used (31) and in the last step we have used &”
= 14+ 2xfor0 £ x = 1, say. Finally,

i [r + 245
H[ ”’A“ %{A(i)—A‘"”(i)}]

U [1 . ?L,A(z):|
_ % ; {[44(1;) — AT ()] g [1 + “‘f";(i)]} (42)
> ﬁl:l +?1,‘:’1(?:):|

—’LJ [S(4) — S(A™? )]H[l +

SO

nJ-A(z'):I
8

v
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Substituting (40), (41), and (42) into (39) yields
(nj) . nj . 1Unju
[ A | | — {n,(2 + n,;) (i) exp n,S(A)} +
n;* é

| IEA
| ABi) | = b (43)
—1 _[nf(z + n,-)]”“" o
é n;z’
where in the last step we have used the fact that n;;, = 2n; and have
set
e = ¢ exp [S(A4)/28). (44)
If we assume in advance that
8 =<2 ny = max (2, 4/¢€), (45)
then
I:n_,-(2 + n,—)]m”" a . [2?1,-2 UEn o
8 n? = L 8 n;?
) (46)
C1 Ca i—1
= anA | QUeDe e’
where
2c e
CZHSK:H, T'=2M<1. (4:7)
Henee (43) and (46) imply
A .
and by induction
! R(M) | J—1
th)iggl—”l- (49)

But if ¢2 = 14, say, then

]j 1 — e’ ) = exp I:Z og (1 — e’ 1)]

j=1

= exp [—2 > L'Q,Tj_l] = expl: 24 r] > 14,

i=1

8

(50)

where the last step requires
<141 —r)log2 = 24(1 — 27" log 2, (51)
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and by (47) this inequality can always be satisfied for large enough #, .
But (49) and (50) imply

AT = 1" = 5/(20) > 0 (52)

for all , and so the theorem follows from Lemma 4. Q.E.D.

An integral function of finite order p is a function F(z) which has no
singularities in any finite region of the z-plane, and whose maximum
modulus M () on the circle | z | = r satisfies

log M(r) < r* (53)

for all sufficiently large » when & > p, but not when k& < p. Such a fune-
tion may be expanded in a Taylor series,

F(z) = 3 a2, (54)
=0
which converges for all z, and whose coefficients satisfy®

[a. | < 1/n™ (55)

for all sufficiently large n, where e is any fixed number less than 1/p.
Alternatively, for any fixed ¢ < 1/p, there exists a constant ¢ such that
forallm > 0

ol = [t ] (56)

We are now ready to prove the result stated in Section I.
Theorem: Let G(z) and H(z) be any bounded functions on the interval
—1 = o =1, and let F(2) be any integral function of finite order such that

f_: G()F (") H (x)dz 5 0, (57)
Then the integral equation
[ 6ran s = M) (58)
has at least one nonzero eigenvalue.

Proof: Expand F(ay) in a Taylor series, so that the integral equation
becomes

[ Z ot "G N PH ) )by = M) (59)

Let
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fz) = G(z) i;lf,.aﬂ_lx"—', (60)

where {f.} is a bounded sequence of complex numbers; the a,’s tend to
zero fast enough so that f(z)/G(z) will be an integral function of finite
order.

Since the powers of x are linearly independent, (59) is equivalent to
the matrix equation

Af =M, (61)
where
1
i = ay = (i)™ f GO H (1), (62)
-1
i=1,2 ;5 j=12
Since G(x) and H(x) are bounded in —1 = 2 = 1 and the Taylor co-

efficients of IF(z) satisfy (56), it is clear that

M ¢ /2 (C)J.’E
L < e | = —
| Qij | = i +J —1 (Z:E) je - (63)

In preparation for an apphcatlon of the preceding theorem, consider

8S(A) — 8(4™) = 2 E §“ ; +; A (a)’“ (_(_,-)m

i=n+1 j=1 .‘]‘

oM Z+ [( )‘I2 ; W—I—T (JE)JM:I

Now (¢/7°)"" is bounded as j — o, and
: 1 f“*‘ dx [2;‘ — 1]
b < ar _
D e e Al [P (65)

which is bounded for i = n + 1 = 2. Hence with a new bounding con-
stant we have

(64)

0 1/2y 1
S(A) — S(A™) = My 2 (jt,z) - (66)

i=n-+

Choose logn = (2 + log ¢)/e, so that n* = ce’; then
o 172\ © w / 1/2\ 2 1/2\
5, () = [ () s [ () o

i=n+1 ¢/ — Ja e/ = ne2

(67)
(C/n )n|'2 < ( 1.'2)n
(log ¢ —elogn)/2 = \n?/ "’




EXISTENCE OF EIGENVALUES 125

and so from (66)

S(A) — 8(4™) = (ﬂ:‘) (68)

where ¢; is a new bounding constant and e = ¢/2.
Finally we have

Tr(4) = i @iz = i @iy fi GOH ()" dt
P (69)
- [ ewnwee) a,
=1

and this does not vanish by hypothesis. Hence all the conditions of the
previous theorem are satisfied, and the integral equation has a nonzero
eigenvalue. Q.E.D.

Since exp (—2¢kz) is an integral function of finite order 1, it is an obvi-
ous corollary that the kernel exp i[k(x — 9)*— h(zx) — Rh(y)] has a non-
zero eigenvalue for arbitrary complex k, provided only that R(z) is
bounded and that

1
f eﬁﬁﬂi(r) dx = 0. (70)
—1

Furthermore if A(z) is an even function of x and if f(x) is an even func-
tion which satisfies

1
f exp [i[k(2* + ) — hix) — h(y)]} cos (2kxy)f(y)dy = LoMf(z), (71)
0
then f(x) also satisfies (1). But the theorem just proved obviously holds
for arbitrary finite limits of integration and applies to the kernel of (71),
so (71) has at least one nonzero eigenvalue if
1
f exp {2i[ka* — h(x)]} cos (2kz’)dz #= 0. (72)
0
Similarly if h(z) is even and if f(x) is an odd funetion which satisfies

fu 1 exp {ilk(2" + ") — h(x) — h(y)]} sin (2kxy)f(y)dy = Lsirf(z), (73)

then f(z) also satisfies (1), and (73) has at least one nonzero eigenvalue

if

fl exp {2i[ka® — h(x)]} sin (2k2")dz = 0. (74)
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At least one of (72) and (74) will be satisfied whenever (70) holds. Except
for certain particular values of k, one of which is evidently k = 0, both
(72) and (74) will be satisfied, and (1) will have at least two distinct
eigenfunctions corresponding to nonzero eigenvalues.
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