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In tropospheric scatier transmission beyond the horizon, the amplitude,
phase and frequency of a received sine wave exhibit random fluctuations
owing to variable multipath transmission and noise. The probability of
errors in digital transmission over such random multipath media has been
dealt with in the lileralure on the premise of flat Rayleigh fading over the
band occupied by the spectrum of transmitted pulses. This is a legitimate
approximation at low transmission rales, such that the pulse spectrum is
adequately narrow, but not al high digital lransmission rates. The proba-
bility of errors 1s determined here also for high lransmission rates, such that
selective fading over the pulse spectrum band must be considered. Such
seleciive fading gives rise lo pulse distortion and resultant intersymbol
interference that may cause errors even in the absenece of noise.

Troposealler transmission can be approximaled by an idealized multi-
path model in which the amplitudes of signal wave components recetved
over different paths vary at random and in which there is a linear variation
in transmission delay with a maximum departure A from the mean
delay. Various statistical transmission paramelers are delermined on this
premise, among them the probability distribution of amplitude and phase
Muctuations and of derivatives thereof with respect to time and with respect
to frequency. The probability of errors in the absence of noise owing to such
Sluctuations is determined together with the probability of errors owing lo
notse, for digital transmission by binary PM and FM. Charls are pre-
sented, from which can be determined the combined probability of errors from
vartous sources, as related to the transmission rate and certain basic param-
elers of troposcatter links.
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INTRODUCTION

In tropospheric transmission beyond the horizon, narrow-beam
transmitting and receiving antennas are used in a frequency range from
about 400 to 10,000 megacycles. The received wave can be considered
the sum of a large number of components of varying amplitudes, re-
sulting from a multiplicity of reflections within the common volume at
the intersection of the antenna beams. These various components arrive
with different transmission delays owing to path-length differences,
and each will exhibit a wvariation in amplitude owing to structural
changes within the common volume, caused largely by winds. When a
steady-state sine wave is transmitted, the received wave will conse-
quently exhibit variations in its envelope and phase, commonly referred
to as fading. When a signal wave is transmitted, its various frequency
components will suffer unwanted amplitude and phase variations with
resultant transmission impairments that depend on the particular
carrier modulation method. These impairments are discussed herein
for digital transmission by carrier phase and frequency modulation.

Various properties of the transmittance of troposcatter channels
have been dealt with in several publications.!234 These properties
include the expected average path loss and systematic seasonal varia-
tions from the average, together with the probability distributions of
slow and rapid fading or fluctuations from the mean. Other important
properties from the standpoint of systems design and performance are
the distribution of duration of fades and the fading rapidity or rate.

The above various properties relate to transmittance variations with
time at a particular frequency. Of basic importance is also the variation
in transmittance with frequency at any instant, i.e., the amplitude and
phase characteristics of trophospheric channels. These will be highly
variable quantities, as illustrated in Fig. 1. At a fixed instant the
characteristics may be as indicated in Fig. 1(a) and at a later instant
as in Fig. 1(b). Such fluctuations will give rise to a distortion of the
spectrum of received signals, with resultant transmission impairments
of various kinds, depending on the modulation method. In addition,
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random noise at the receiver input must be considered as in conventional
stable channels. Owing to the above random fluctuations, diversity
transmission is ordinarily required to insure adequate performance.

At present, frequency modulation is used for transmission of multi-
plexed voice channels over troposcatter links. With this method, pro-
nounced intermodulation noise is encountereds:® owing to the types of
transmittance variations with frequency indicated in Fig. 1. With digi-
tal transmission, these variations will give rise to pulse distortion and
resultant intersymbol interference that may severely limit the trans-
mission rate.

In evaluation of error probabilities in digital transmission, it is neces-
sary to consider variations in the average path loss over a convenient
period, such as an hour, relative to the average over a much longer
period, say a month. These slow fluctuations in loss are closely approxi-
mated by the log-normal law; i.e., the loss in db follows the normal
law.! In addition, consideration must be given to rapid fluctuations in
loss relative to the above hourly averages. These are closely approxi-
mated by the Rayleigh law, which also applies for the envelope of
narrow-band random noise. They are ordinarily more important than
slow fluctuations, particularly in digital transmission, in that they cannot
be fully compensated for by automatic gain control. Nearly all theoreti-
cal analyses of error probabilities in digital transmission over fading
channels are based on a Rayleigh distribution together with various
other simplifying assumptions, as outlined below.

The simplest assumption is flat or nonselective Rayleigh fading over
the channel band, in conjunction with a sufficiently slow fading rate
such that changes over a few pulse intervals can be disregarded. These

(a) (b)
ATTENUATION / ATTENUATION
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Fig. 1 — I]]ustr.ative variations in attenuation and phase characteristics with
frequency at two instants ¢ and ¢. .
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are legitimate premises in transmission over line-of-sight radio links,
where fading is much slower than on tropospherie links and is virtually
nonselective over rather wide bands. With these simplifying assumptions
Turin” has determined error probabilities in binary transmission over
noisy channels with ideal synchronous (coherent) detection and envelope
fnoncoherent) detection. His analysis includes the effect of correlation
between successive pulses and also postulates a nonfading signal com-
ponent, such that the results in one limit also apply for nonfading chan-
nels.

On the same premise of slow, flat Rayleigh fading, Pierce® has deter-
mined the optimum theoretical diversity improvement for frequency
shift keying with dual filter reception employing coherent and non-
coherent detection of the filter outputs. Dual filter detection is ordi-
narily assumed in place of the usual method of frequency discriminator
detection that does not lend itself as readily to theoretical analysis.

The error probability with two-phase and four-phase modulation
with differential phase detection has been determined by Voelcker? on
the premise of flat Rayleigh fading at such a rate that the change in
phase over a pulse interval must be considered. Moreover, he considers
the probability of both single and double digital errors, with both single
and dual diversity transmission.

Voelcker’s analysis is applicable to transmission at a sufficiently slow
rate such that amplitude and phase distortion can be ignored over the
relatively narrow band of the pulse spectra. However, it does not apply
to high-speed digital transmission that requires sufficiently wide pulse
spectra such that the amplitude and phase distortion indicated in Fig.
1 must be considered. For this case the duration of pulses will be so
short that the phase changes considered by Voelcker can be disregarded.
Instead, it now becomes necessary to take into acecount pulse distortion
and resultant intersymbol interference caused by the erratic variations
with frequency in the amplitude and phase characteristics illustrated
in Fig. 1. An evaluation is made herein of error probabilities on the
latter account, which has not been considered in previous publications.*

I'rom the solutions for the above two limiting cases of low and high
transmission rates, it is possible by simple graphical methods to esti-
mate the error probability for the general case in which both time and
frequency variations in the amplitude and phase characteristics must
be considered. Charts are presented of error probabilities in digital
transmission by binary PM and FM as related to various basic param-
eters of tropospheric scatter links and of the signals. Among these

* For reference to a recent related paper, see Section 8.9.
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parameters are the average signal-to-noise ratio, the bandwidth of the
pulse spectrum, the fading bandwidth of the troposcatter link, and the
maximum departure from the mean transmission delay, which is re-
lated to the length of the link and the antenna beam angles.

The analysis shows that a principal source of pulse distortion and
resultant transmission impairments is a component of quadratic phase
distortion. On this premise, an evaluation has been made in a companion
paper* of intermodulation distortion in analog transmission by FM and
PM, that conforms well with the results of measurements.®*

1. CHANNEL TRANSMISSION CHARACTERISTICS

1.1 General

Transmission performance with any modulation method depends on
the statistical properties of the signals and of channel noise, together
with various properties of the channel transmittance or transmission-
frequency characteristic. When the latter varies with time, the usual
methods of determining network response to specified input waves must
be modified in various respects, that result in appreciable complications
in the analytical methods!® and in certain conceptual difficulties. How-
ever, when the time variations in transmittance are slow in relation to
those in the input waves, it is legitimate to assume that the trans-
mittances are constant over an appreciable number of pulse intervals.
With relatively slow random fluctuations as encountered in troposcatter
systems at representative transmission rates, it is thus permissible to
determine the responses for various essentially time invariant transmit-
tances that can be encountered. In evaluating transmission performance,
the various transmittances that can be encountered must be weighted
or averaged statistically in a manner that depends on the signal prop-
erties and the modulation method.

Among the statistical properties of troposcatter transmittances are
the probability distribution of the envelope of received carrier waves
together with the autocorrelation function of the envelope with re-
spect to time and with respect to frequency. These are discussed here,
while other statistical properties will be considered in later sections.

1.2 Tropospheric Scatter Waves

To determine an appropriate model for the random process in trop-
ospheric scatter transmission, it is necessary to consider the physics

* See part 2 of this issue of the B.S.T.J., to appear.
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of this phenomenon, as dealt with in various publications. Though these
may differ in their assumptions regarding the exact mechanism of the
reflections, they appear to agree that they occur as a result of hetero-
geneities within the common antenna volume indicated in T'ig. 2. If the
transmission medium were uniform, no reception would be possible.
Owing to the numerous heterogeneities in the common volume, a very
large number of reflections will oceur, and the received wave can be
considered the sum of a large number of components of different ampli-
tudes and different transmission delays. Over any short interval, the
envelope of a received sine wave will depend on the frequency, as will
the phase. Because of variations in the heterogeneities caused largely
by winds, the envelope and phase of a received carrier will vary with
time.

Fig. 2 — Illustrative antenna beams and common antenna volume.

The transmittance of troposcatter channels is dealt with here, based
on an idealized model discussed further in the Appendix, and certain
statistical parameters obtained from experimental data are discussed.
Two limiting cases that permit simplified analysis are considered. In
one case the transmission band is assumed sufficiently narrow, such that
the attenuation characteristic can be considered constant and the phase
characteristic linear over the narrow band. There will then be fluctua-
tions with time in the attenuation accompanied by independent varia-
tions in the slope of the phase characteristic, a condition referred to
as nonselective flat fading and ordinarily assumed in random multipath
digital transmission theory. The other limiting case is that of digital
transmission at a sufficiently high rate so that time variations in the
transmittance can be disregarded over an appreciable number of pulse
intervals. In this case it is necessary to consider erratic variations with
frequency in both the attenuation and phase characteristies.
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Fig. 3 — Illustrative dependence of envelope and phase of transmittance with
frequency « from a reference frequency wo at a specified time ¢ .

1.3 Troposcatter Transmittance

Let a sine wave of frequency « be transmitted, and let w = wo + %,
as indicated in Fig. 3, where w is a conveniently chosen reference fre-
quency. In complex notation the received wave is then of the general
form

e(u,t) = r{ut) exp[—ie(u,t)] exp(iwt) (1)

where r(u,t) and ¢(u,t) are random variables of the time ¢ for a fixed
w or u, and of u for a fixed time . The channel transmittance is then

T(u,t) = r(u,t) exp[—ie(u,t)]. (2)
The following general relations apply

r(wt) = [U*(wt) + Vi(ut)]' (3)

e(ut) = tan' [V(u,t)/U(u,t)]. (4)

As shown in the Appendix, in the case of idealized tropospheric
channels the functions U and V can be represented in the following form

o0

Uup) = 3 ay(e) SUT — 14) (5)

j=—w Jr — UA
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= o osin (gr — uA)
Viut) = ,-;ﬁ.a b;(t) —r—wb (6)

where

A = maximum departure from mean transmission delay
owing to path length differences.

In (5) and (6) the coefficients a;(¢) and b;({) vary at random with
time ¢ and for a given ¢ vary at random with j. Owing to the latter
variation with j, there will be a random variation in U and V with the
frequeney u taken in relation to the reference frequency e« .

Equations for an idealized troposcatter channel, as given in the
Appendix, show that a;(¢) is related to the sum A(xt) + A(—=x,) of
two random processes and b;(t) to the difference A(x,t) — A(—=a,t).
The two random processes A () and A(—x,t) will have equal rms
amplitudes, in which case a;(¢) and b;(¢) will have zero correlation
coefficient. They will then also be independent random variables, pro-
vided A(x,t) and A(—x,t) have a Gaussian probability distribution,
which appears to be a legitimate approximation since each will be the
sum of waves from a large number of reflections.

A further assumption underlying (5) and (6) is that there is an in-
finite number of transmission paths. An additional approximation that
will be made in the following analysis is that there will be independent
random fluctuations in the signal components received over the various
paths. Actually there will be some correlation between the fluctuations,
particularly for paths with small separation. In effect, there will be a
limited number of essentially independently fading paths.

The above assumptions entail certain statistical properties of tropo-
scatter channels, as outlined below for time and frequency variations.

1.4 Transmission Loss Fluctuations

On troposcatter links there is a certain average transmission loss over
a year, which depends on the length of the link, on the properties of the
terrain and on climatic conditions. IExperimental data indicate that
there will be systematic monthly and seasonal departures from this
yearly average, owing prineipally to slow temperature changes. The
average loss during a winter month may thus be up to 20 db greater
than the average during a summer month. That is, the departure in
transmission loss from the yearly mean may be 210 db.

During each month there will be a more or less random fluctuation



152 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1064

in the hourly average loss from the mean of the month. This fluctuation
has been found to be almost independent of frequency and seems to be
associated with the variations in average refraction of the atmosphere
and resultant variation in the bending of beams. This fluctuation in
the hourly average loss relative to the monthly average has been found
to follow closely the log-normal law. That is to say, let the monthly
median loss be

apm = —In Fp (7)
and the hourly average loss be
a=—In# (8)

where In = log., 7 is the monthly rms amplitude of the envelope
r(u,t), and 7 the rms amplitude over an hour. (Other reference times
could have been chosen, as will appear below.)
The probability that the average hourly loss exceeds a specified value
= In 7 is then given by

Plaz a) = -[1 — erf = " """] (9)
where erf is the error function and o, the standard deviation in trans-
mission loss expressed in nepers, when « and a,, are expressed in nepers
as above. For links 100 to 200 miles in length, a representative value of
o« appears to be about 0.9 neper (8 db).

In addition to the above slow variations in the average hourly loss,
there will be more rapid fluctuations in the envelope 7(u,t), owing to
changes in the multipath transmission structure caused principally by
winds. This type of fluctuation follows a Rayleigh distribution law.
According to this law the probability that the instantaneous value r
of the envelope exceeds a specified value 7 is

Plr>mn) = e.\'p(—-rlz/fz) (10)

where 7 is the hourly rms value referred to above.

It may be noted that while the log-normal law for slow variation has
been determined solely by measurements, the Rayleigh law for rapid
fluctuations follows by theory when the received wave is the sum of a
large number of variable components.

The probability distribution (10) can be related to the monthly rms
value of r(u,t) with the aid of (9) by

P(r>mn) = j;w p(7) exp(—r/F) dF (11)
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where p(F) is the probability density function corresponding to (9),
which is

1
p(F) = m exp{ —[In #/r."I"/20."}. (12)

It will be recognized that (11) will yield the same result regardless
of the period over which the rms value 7 is taken, since 7 simply plays
the role of an intermediate parameter that disappears after integration.

The above probability funections relating to average loss or the dis-
tribution of the instantaneous values of r7(w,t), are independent of the
frequency. In addition to the above distribution there are others which
are important from the standpoint of transmission systems design and
performance, as discussed in the following seetion.

1.5 Time Aulocorrelation Functions of Transmittance

Expressions for the probabilities of rapid changes in the amplitude
and phase of the transmittance with time will be considered in Section
I1. These involve the autocorrelation functions of the components U
and V defined by (5) and (6), or the corresponding power spectra. Both
have the same autocorrelation function and power spectrum, so that
only U(u,t) needs to be considered,

The time autocorrelation function of U{u,t) depends on the variation
in a;(t) with time. These are related to changes in the physical structure
of the common volume and to resultant variations in the heterogeneities
that are responsible for tropospheric transmission. The rate at which
these occur depends on the velocity and directions of winds and on
temperature changes. Under these conditions the autocorrelation func-
tion will vary with time, and it becomes necessary to consider a certain
median autocorrelation function and corresponding power spectrum,
as discussed in Section 1.6.

Let ¥(7) be the autocorrelation function of variations in U(u,t) with
{. The corresponding one-sided power spectrum is then

W(y) = f;fw\pm cos vr dr (13)

where v is used to designate the radian frequency of spectral compo-
nents to avoid confusion with the frequency w of the transmitted wave.

The autocorrelation function ¥(r) or the corresponding power spec-
trum W(y) of the components {7 and V" eannot be determined as readily
by measurements as the autocorrelation funetion ¥,(7) of the envelope.
The latter is related to ¥(r) by"
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¥,(7) = W(0){2E[(7)] = [1 — & (n)IK[x()]} (14)
where
k(1) = ¥(r)/¥(0) (15)
I = complete elliptic integral of second kind
K = complete elliptic integral of first kind.

For r = 0, ¥,(0) = 2¥(0). Hence the autocorrelation coefficient of
the envelope ean be written

k(1) = Ex(7)] — 31 — &(0)]K[x(7)]. (16)

With the aid of (16), the autocorrelation coefficient x(r) of each

quadrature component can be determined from measurements of «.(7).
1.6 Observed Time Autocorrelation

Observations of the autocorrelation function of rapid fluetuations
indicate that the autocorrelation function ¥(r) of the components U
and V is nearly Gaussian and is given by

¥(7) = ¥(0) exp(—a'r°/2). (17)

The corresponding power spectrum obtained from (13) is
W(y) = ¥(0)(2/70")" exp(—7"/20") (18)
where ¥(0) is the average power in each component as obtained with

r=0in (17) .
The equivalent bandwidth of a flat power spectrum W(y) = W(0)
is given by

¥ = \/Wo ~ 1.250. (19)

As noted in Section 1.5, there will be a certain median autocorrelation
function and corresponding median values of the power spectrum, of
o and of y. Measurements® indicate that these median values depend on
the antenna beamwidths and that the fading rate is not quite propor-
tional to frequency. Furthermore, there can be appreciable departure
from the median values. From measurements of the median number of
fades per minute, the median value of ¢ can be determined, with the aid
of equation (26) in Ref. 2. These measurements indicate that for a
particular antenna arrangement ¢ = 0.1 cps at 460 me and about 1.3
eps at 4110 me. The corresponding equivalent bandwidths of a flat
power spectrum are thus ¥ = 0.125 cps, or 0.8 radian/sec. at 460 mc,
and & = 1.6 cps, or about 10 radians/sec. at 4110 me. The measurements
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further indicate that there is a probability of about 0.01 that the fading
rate exceeds the median value by a factor of about 7 at 460 mec and a
factor of about 3.5 at 4110 me.

1.7 Frequency Correlation Funetion of Transmitiance
q Y

Returning to (5) and (6), let the time ¢ be fixed, and consider varia-
tions in U and V with w«. The coefficients a; and b; will then have certain
values that vary with j, and there will be a certain variation in U and
V with %. At a different time there will be another set of coefficients
and a different variation with «. The form of (5) and (6) indicates that
if % is regarded as a time variable and A as a frequency, U(u) would
be the variation in time owing to impulses of amplitudes a; and b;
impinging at time intervals = on a flat low-pass filter of bandwidth A.
That is to say, the autocorrelation function of components U and V
for a difference v = w» — wi in frequency is

W(r) = W(0)(sin »A/rA). (20)
The corresponding power spectrum of the variation in U and V with
frequency 6 is

w(s) = g f“ ¥(v) cos »8 dv (21)

™ Yo
= ¥(0) for 0<dé<A
=0 for A < 6.

(22)

When ¥(v) is given, it is possible to determine the autocorrelation
function ¥,(») for variations in r(u,t) with u. Expression (14) applies
with » in place of r, for the autocorrelation function of time variation
with frequency.

For an autocorrelation function (20), the corresponding correlation
coefficient is

k(v) = (sin vA/vA), (23)

The corresponding autocorrelation coefficient of the envelope, as oh-
tained from (16), is

ke(v) = E(—Si‘:;A) - %[1 - S?:;;ﬂ K(Si‘:A”A). (24)

For various values of »A the correlation function of the envelope is
given in Table I and is shown in Tig. 4.
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TaBLE I — AUTOCORRELATION FUNcTION OF ENVELOPE

yA=10 =/2 :r 3=/2 ' w

k() =1 0.9 /4 0.78 | /4

The autocorrelation functions (23) and (24) apply for certain idealized
conditions outlined in the Appendix and in Section 1.3. For one thing,
the average power received over each elementary path is assumed the
same. For another, a linear variation in the transmission delay with
angular deviation from the mean paths is assumed, with maximum
departures ==A from the mean delay. Furthermore, an infinity of trans-
mission paths is assumed, with independent random fluctuations in the

1.0
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Fig. 4 — Frequency autocorrelation coefficient «,(v) of envelope for autocorre-
lation coefficient «(») of components U and V.

signal components received over the various paths, though there will
be some correlation between the fluctuations in the signal components
received over various paths.

In spite of the various approximations, it appears possible to obtain
a reasonably satisfactory conformance with the results of measure-
ments of the autocorrelation functions of the envelope, as shown in
Section 1.9.
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1.8 Differential Transmission Delay A

Exact determination of the equivalent maximum departure from the
mean transmission delay requires consideration of the beam patterns
as affected by scattering. On the approximate basis of equivalent beam
angles a, the following relation applies, with notation as indicated in
Fig. 5

L
Az—“+ﬁa+“‘+ﬁ) (25)
] 2 2
where 8 = a, v is the velocity of propagation in free space, L is the

length of the link, and

L L
TR T IRK (26)
where R, is the radius of the earth and the factor K is ordinarily taken
as 4/3.

The equivalent beam angle a from midbeam to the 3-db loss point
depends on the free-space antenna beam angle ey and on the effect of
scatter, which is related in a complex manner to @ and the length L,
or alternately 6. Narrow-beam antennas as now used in actual systems
are loosely defined by o = 26/3. For these @ &~ a on shorter links,
while on longer links & > ap owing to beam-broadening by scatter.
Analytical determination of « for longer links appears difficult, and only

df\ \ ot - }w BEAM
~_ _ )2 -
HORIZON - HORIZON

-

— S~

Fig. 5 — Definition of antenna beam angles e, take-off angle g and chord angle
6 to midbeam. With different angles at the two ends, the mean angles are used in
expressions for A. In applications to actual beams, « would be the angle to the
3-db loss point.
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limited experimental data are available at present. For broad-beam
antennas, ag > 26/3 and beam-broadening by scatter is in theory in-
appreciable.

By way of numerical example, let L = 170 miles and K = 4/3, in
which case 8 = 0.016 radian. Since ap = 0.004 radian < 26/3, it is
permissible to take & = ay. With 8 & a0, (25) gives A = 0.08 X 10~°
second.

1.9 Observed Frequency Variations in Transmitlance

In Fig. 6 is indicated the shapes of the envelope vs frequency varia-
tions that can be obtained from (3) when the components U and V
are given by (5) and (6). These fluctuations will vary with time but
will have the characteristic shapes indicated in Fig. 6, which resemble
shapes obtained in sweep-frequency measurements on a link of the
length for which the above value of A applies.”

A better indication of the adequacy of the present idealized tropo-
scatter model is obtained by comparing the autocorrelation coefficient
of the envelope as given by (24) with the correlation coefficient derived
from observations. In Fig. 7 is shown the theoretical coefficient for
A = 0.08 X 10 ° second together with coefficients obtained from three
experimental runs considered represent-ative.z

The bandwidth capability can be defined as the maximum baseband
signal spectrum that can be received with some coherence between
spectral components at the maximum and minimum frequencies. This

Ic-z lc-. ° |c‘ ic; C |c5
-277/A -TT/A [} /A 27/A 37m/A 477/5 s577/4

Fig. 6 — Ilustrative rectified envelope vs frequency characteristic r(u) ob-
tained with expressions (5) and (6) in (3). The amplitudes ¢; at the radian fre-
quencies u; = j=/A from the carrier are ¢; = (a;* + b;?)}. The amplitude of the
envelope at any intermediate frequency u depends on the amplitudes and phases
of all ¢; between j = —« and j = «. In sweep-frequency measurements with a
radian frequency sweep from —m/A to x/A from the carrier, the envelope varia-
tions might be like that in any of the intervals a-b, b-c, c-d, etc.
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Fig. 7 — Theoretical vs observed envelope autocorrelation functions. Above:
autocorrelation coeflicient obtained from (24) with A = 0,08 X 107% second. Be-
low: autocorrelation coeflicients given in Fig. 70 of Ref. 2 and derived from meas-
urements of envelope variations with narrow-beam antennas on four days: 1.
Sept. 13, 1957; 2. Sept. 30, 1957 (considered very unusual); 3. Oct. 15, 1957, and
4. Nov 8, 1957. The value of A derived from (25) for the experimental link is A =
0.08 X 107¢ second.

bandwidth is equal to the separation between ¢; and ¢;,, in Fig. 6, which
corresponds to the separation between null points in (23), for which
k() = 0 and «(v) = w/4. It is given by 1/2A eps and for A =
0.08 X 107° second is 6.3 me/second.

With a smaller spectral bandwidth, distortion will be reduced and
transmission performance improved. A more realistic appraisal might
be half the above maximum bandwidth, or 3.15 me/second, for which
<(») = 0.9. In Ref. 2 the criterion &*(») = 0.6 corresponding to &,(v) =
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0.904 has been selected, and twice this spectrum bandwidth as required
in double sideband transmission is quoted in Table VII of the reference.

The mathematical model represented by (3) to (6) is based on certain
idealizations outlined in Section 1.7 and in the Appendix. It appears
from the above that certain theoretical transmittance variations based
on this model conform sufficiently well with observed variations for the
model to be acceptable.* In order to determine expected performance
with digital transmission, it is necessary to consider certain other sta-
tistical properties of tropospheric channels based on the above model,
as discussed in sections that follow.

II. TRANSMITTANCE VARIATIONS WITH TIME

2.1 General

As discussed in Section 1.2, the transmission vs frequency charac-
teristic of a tropospheric scatter channel is a highly variable quantity,
as indicated in Fig. 1. One way of avoiding transmission impairments
owing to variations in transmittance with frequency is to transmit by
narrow-band modulation of a number of different carriers. The amplitude
vs frequency characteristic can then be regarded as virtually constant
over each narrow band, and the phase characteristic as linear, as indi-
cated in Fig. 1. With this method, it is permissible to assume flat fading
within each narrow band, but the various narrow channels will not fade
independently. In addition to such flat fading there will be variations in
the phase and frequency of each received carrier with time. Owing to
the narrow bandwidth of each channel, the duration 7' of a signal or
sampling interval may be relatively long, and it becomes necessary to
consider the above amplitude, phase and frequency variations over this
interval T. The probability distribution of these variations are basic
to later considerations of various digital transmission methods and are
discussed here. They can be obtained from expressions given by Rice
for narrow-band random noise.!

2.2 Amplitude and Phase Distributions

Let the frequency w and thus w = w — wo be fixed, and consider only
time variations in r and ¢. The probability density of ¢ is simply p(¢) =
1/2x, since each phase is equally probable. Since the components U and
V are the sum of a very large number of independent random variables,
in accordance with (5) and (6), each component U and V will have a

* This conclusion appears to be supported by the results of recent measure-
ments of «(») for a 100-mile path.
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normal law or Gaussian probability density. The probability density
of the envelope in this case follows the Rayleigh law, and the probability
that the envelope r exceeds a specified value r; is given by

P(r=r) = exp(—r/7) (27)

where 7 is the rms amplitude of the envelope or the transmittance taken
over an appropriately long time.

The average received envelope power is in this case # = § = 28,
where S is the average carrier power, ie., the average power within
the envelope. The probability that the received envelope power at any
instant exceeds a specified value S; = 28, is

IJ(S > Jq1) = PXD( —Sl/S) = CXp(—Sl/l'.‘:). (28)

The median value S,, of S is obtained from P(S = S,,) = %, which
gives S, = S In 2. Hence, in terms of the median value

P(S = 8)) = exp[—(5/8.) In 2]. (29)

The distribution represented hy (28) or (29) is shown in Fig. 8.

The above distribution of rapid fades is to be distinguished from the
distribution of slow variations in the envelope, or in attenuation, dis-
cussed in Section 1.4.

2.3 Distribution of Envelope Slopes (r")

One measure of the rapidity of the above amplitude variations is the
fading bandwidth discussed in Section 1.6. I'rom this fading bandwidth
can be derived the probability distribution of the slope »" = dr(t)/dt
in the envelope.

The rapidity of changes in the envelope and phase depends on the
time rate of change in the heterogeneities in the common volume — that
is to say, the variations with respect to time of the coefficients a;(f)
and b;(¢t) in (5) and (6). These changes are characterized by the auto-
correlation function of U(¢) and V' (1), or by the corresponding power
spectrum. When the power spectra of {7 and V" are the same, and are
specified, the probability distribution of " = dr(t)/dt and ¢’ = dp(t) /dt
can be determined. These distributions are the same as for random noise
of specified power spectrum. The 1)|ol)al)1hty that | r’ | exceeds a speci-
fied value | 7 | follows the normal law"

POz |n'|) = erfe (k/2h) (30)
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in which
E=r'/F
7 = rms amplitude of 7’
= [3(b — b/ (31)
where
b, = fn‘” W{(y)y™ dy. (32)

The above result (30) follows from equation (4.6) in Ref. 12 for Q = 0,
by integration with respect to # = r between 0 and «, and in turn
with respect to R’ = »’ between r,’ and =,

Expression (30) can alternatively be written

P[] = k¥] = erfe (k/2%). (33)

In the particular case of flat power spectrum W(y) = W of band-
width 4, (32) gives

bo = W4, b= W5/2; by = W4Y/3
and (31) becomes
7 = /6" ~ 0.4057. (34)

The fading bandwidth in the above case is 4 radians/second.
With a Gaussian spectrum (17) expression (32) gives

bo = W(0); by = o(2/m)W(0); b= o ¥(0)

7 = Fo (l — 1)5
2 T

~ 0.42Fc ~ 0.347% (35)

and (31) becomes

where 7 is the equivalent bandwidth given by (19).

2.4 Distribution of Phase Dertvative (¢")

In considering a small phase change A¢, and over a small interval
Ar, it is legitimate to use the probability distribution of the phase
derivative ¢’ = Ag/Ar, which is given by [Section 5 of Ref. 12]

, k
Pl | 2 |e ]):1_\/1—_—?1:3 (36)
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in which
k= (bo/bs) et = (bo/bs)*(Agr/Ar) (37)

where by and b. are given by (32).
Expression (36) can alternatively be written

PAI¢| 2 kb)) = 1 = s (38)
~ 1 for E> 1.
2J?
For a flat power spectrum W(y) = W of bandwidth ¥
(bo/bo)* = 4/3" =~ 0.584. (39)
For a Gaussian spectrum (17)
(bo/ba)* = o = 0.87 (40)

where 7 is the equivalent bandwidth given by (19).

2.5 Distribution of Frequency Derivative (")

The probability of exceeding a small variation Aw in frequency over
a brief interval Ar can be determined from the probability distribution
of ” = Aw/Ar.

The probability that ¢” exceeds a specified value ¢,” is given by

P(le"| 2 |e") = P(l¢" | Z kbo/by)

2k [~ ;
- ?fu lg(x) —i&r’c‘*]g("v) (41)
_2 “tan”" (k/g'(z)) Ja
o (1 4 a?)}
where

k = boer” /s (42)
g(z) = (a — 1 + 4%)(1 + 2%) (43)
a = bobs/bs". (44)

Expression (41) is obtained from relation (6.10) of Ref. 12 for
pree’ @) for Q = 0, by integration with respect to r, ¢ and ¢’, be-
tween 0 and o, 0 and 27 and — = and + =, respectively, and in turn
by integration with respect to ¢” between ¢,” and =. Considerable
simplification is required to obtain (41).
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For very large values of k the following approximation applies

PUlo* | 2 Hbufbe) 7 % [1 +In (f—) + 1):| (45)

where In = log. .
For a flat spectrum W{vy) = 1" of bandwidth 4

a=9/5 and  by/by = $°/3. (46)
For a Gaussian power spectrum (18)
a=23 and  by/by = o (47)

The quantity (bs/bo)t is the rms frequency of the power spectrum
and bo/bg is the ““variance.”

The probability distribution (41) as obtained by numerical integra-
tion is shown in Tables IT and III for flat and Gaussian power speetra.
For large values of k, approximation (45) is shown in parentheses.
These probability distributions are shown in Fig. 9.

111. TRANSMITTANCE VARIATIONS WITH FREQUENCY

3.1 General

Tn the previous section a sufficiently narrow signal band spectrum
was assumed such that amplitude and phase distortion over the narrow
band eould be neglected. In this case it was necessary to consider time
fluctuations in the transmittance over a pulse duration 7' that would be
relatively long owing to the narrow spectrum bandwidth.

The other extreme of wideband transmission will now be considered,
in which the duration of a pulse would be short enough for fluctuations
in transmittance over a pulse interval to be disregarded. In this case
it becomes necessary to consider variations in the transmittance with
frequency over the much greater signal spectrum band. The variations
in the amplitude and phase characteristies with frequency will fluctuate
with time, so that it becomes necessary to determine the resultant

TapLe 1T — Propasiuity Distrisurion P(|e” | > k4%/3)
vor Frat POWER SPECTRUM

k=0 1 ‘ 2 3 4 5 10 20 50 100

1 .b38 ‘ 381 321 269 .238 .158 100 051 |.031(.03)
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TasLeE IIT — ProBaBiuiTY DistrRIBUTION P(|¢” | > ke?)
FOR GAUSSIAN POWER SPECTRUM

k=10

1 2 3 4 5 | 10 20 50 100

1 ‘ .695 | 447 | 369 | .317 | .280 I .182 | .113 | .0567 [.033(.03)

transmission impairments on the basis of certain probability distribu-
tions.

In a first approximation the departure from a constant amplitude vs
frequency characteristic will be a characteristic with a linear slope, as
indicated in Tig. 10, that will vary with time. Similarly the departure
from a constant transmission delay over the channel band can be approxi-
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Fig. 9 — Probability that ¢ exceeds “variance’ of fading power spectrum by
factor k for flat power spectrum with bandwidth 4 and “variance’ ¥2/3 and for
Gaussian power spectrum with “variance’’ o2
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mated by a linear variation in transmission delay. The probability
distributions of the slopes of these linear variations in the amplitude
and delay characteristics are the same as for corresponding variations
with time, with appropriate modification of the basic parameters, as
discussed in the following.

3.2 Amplitude and Phase Distributions

Let the time ¢ be fixed, and consider only variations in r and ¢ with
the frequency w of a number of transmitted sine waves.

Each sine wave could be regarded as a spectral component of a carrier
pulse of very short duration with an essentially flat and continuous
spectrum about the carrier frequency. In this case w rather than ¢ is
changed in expressions (5) and (6) for the two components U(u,t) and
V(u,t). There will in this case be a particular variation with u for each
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time £. When observations are made for a sufficiently large number
of specified times, the resultant probability distribution of the amplitude
and phase will be the same as discussed in Section 2.2 for variation in
time for a given frequency 1.

3.3 Slope in Amplitude Characteristic (i)

At a particular time, the envelopes r(u,t) of the received sine waves
will vary with frequency . The slope of the envelope will be designated
dr(u,t)/du = 7 It will have a probability distribution as given by (30)
for the time rate of change in r(w,t). This probability distribution is

P(1#] > i) = P(|#] 2 k) = erfe (k/2") (48)
where erfe is the error function complement and
k = i/F
7 = rms value of 7
= [3(bs — b/bo)]’ (49)
except that now
b, = f: W(s)s" dé (50)

where W (3) is the power spectrum given by (21). When W(3) is given
by (22), (50) gives bo = ¥(0)/A; by = ¥(0)A"/2; bs = ¥(0)A*/3 and
(49) yields

i = 7a/6! (51)

where 7 = ¥ (0)5 is the rms amplitude of the envelope.

3.4 Envelope Delay Distribution

The envelope delay at a particular time ¢ and frequency u is given
by ¢ = de(u,t)/du. The probability distribution of this delay ¢ is given
by (36) or (38). Thus

P(le|> lér]) = Plle]| = k(ba/bo))

Il

- _}c:_ (52)
VIR
where as before
ko= (bo/be) r (53)

where by and b, are given by (50).
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For a flat power spectrum (22)

(bao/b)! = A/3" = 0.58A. (54)

3.5 Distribution of Linear Delay Distortion

The slope ¢ = d¢/du at a particular time represents linear delay
distortion. The probability that ¢ exceeds a specified value ¢, is given
by (41), or

P(lﬁﬂ > 1101|) F(W’I = H’z/bo)

_ 2 fw dz

m Jo (gla) + kD)g(x) (55)

9 1 tan~ (k/a*(x

- ;rj[; %&—L)—) da.
For very large values of & (45) applies, or
P(1 s 2 kbs/bo) ‘-::1% [1 +n (’; + 1)] (56)
where now

k= bop1/be (57)
g(x) = (@ — 1+ 42°)(1 + 2%) (58)
a = bobs/bs’ (59)

and b, is given by (50).
Tor a flat power spectrum (22)

ba/bo = A*/3. (60)

The probability distribution (55) as a funetion of k is given previously
in Table II for a flat power spectrum and is shown in Iig. 9.

1V. ERRORS FROM TRANSMITTANCE VARIATIONS WITH FREQUENCY

4.1 General

As discussed later, the error probability in digital transmission over
noisy channels with selective Rayleigh fading can be approximated by
combining the probability of errors from three basic sources. One of
these is errors from random noise determined in the presence of flat
Rayleigh fading. The second souree is errors from time variations in the
transmittance, which is important at low transmission rates. The third
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source is errors from transmittance variations with frequency, which
becomes important at high transmission rates and puts an upper bound
on the transmission rate for a specified error probability. In this section
an approximate evaluation is made of errors on the latter account.

As a first approximation, the statistical properties of transmittance
variations with frequency, ordinarily referred to as selective fading, can
be represented by the probability distribution (48) of 7 and (55) of (&).
The first of these represents a linear slope on the amplitude vs frequency
characteristics, and the second represents a linear variation in trans-
mission delay. Errors will oceur even in the absence of noise, when #
or p exceeds certain maximum values. These maxima will depend on
the spectrum of pulses in the absence of distortion, on the pattern of
transmitted pulses and on the carrier modulation method. After these
maximum values are determined, it is possible to determine the proba-
bility of encountering them with the aid of the probability distributions
of 7 and & given in Section III.

1.2 Carrier Pulse Transmission Characleristics

It will be assumed that a carrier pulse of rectangular or other suitable
envelope is applied at the transmitting end of a bandpass channel. The
received pulse with carrier frequency wo can then be written in the
general form"

Po(1) = cos (wit — Yo)Ro(t) + sin (wot — o) Qo(t) (61)
= cos [wot — Yo — eo(1)]Po(t), (62)
where
Pot) = [R(0) + Q'] (63)
wo(t) = tan™ [Qu(t)/Ro(t)], (64)
Ro(t) = Po(t) cos eo(t), (65)
Qu(t) = Po(t) sin eo(t). (66)

In the above relations Ro and o are the in-phase and quadrature
components of the received carrier pulse and Py(t) the resultant enve-
lope. The time ¢ is taken with respect to a conveniently chosen origin,
for example the midpoint of a pulse interval or the instant at which
Ro(?) or Py(t) reaches a maximum value.

Let So(u) be the spectrum of received pulses at the output of the
receiving filter, i.e., at the detector input, and yo(u) the phase function
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of the spectrum, as illustrated in Fig. 11. The functions Ry(¢) and
Qo(t) are then given by"

Ry = Ry + R0+; QO = Qﬂ_ - Q0+J

Ry = ;lr j:m So( —u) cos [ut + ¥, (—u)] du, (67)

Rof = 1 fm So(u) cos [ut — Wo(u)] du, (68)
]

Q = %fﬂuo So —u) sin [ut + Wo( —u)] du, (69)

Q" = }rf: Solu) sin [ut — Wo(u)] du. (70)

The upper limit wo can ordinarily be replaced by «, since So( —wo) = 0.

Let S(u) be the spectrum in the absence of amplitude distortion,
and A(u) the amplitude characteristic of the channel. The received
spectrum is then, for a time invariant channel

So(u) = S(u)A(u). (71)

4.3 Ideal Pulse Spectra and Pulse Shapes

In earrier pulse transmission over an ideal channel the sideband
spectrum of carrier pulses at the detector input will be symmetrical

AMPLITUDE __ CARRIER
CHARACTERISTIC OF - FREQUENCY
SPECTRUM AT CHANNEL

OuTPUT N

~_PHASE CHARACTERISTIC OF
SPECTRUM AT CHANNEL
| OUTPUT

wD
FREQUENCY, & —>

Fig. 11 — Amplitude and phase functions of pulse spectrum at channel output,
i.e., detector input.
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about the carrier frequency. As discussed elsewhere,"* it is possible to
realize optimum performance in binary transmission by AM, PM and
FM with an infinite variety of pulse spectra at the detector input, with
the general properties illustrated in Fig. 12. With all of these spectra,
pulses can be transmitted without intersymbol interference at intervals

T = z/Q = 1/2B (72)

where B is the mean bandwidth in eps to each side of the carrier fre-

quency, as indicated in Fig. 12.
'A desirable pulse spectrum in various respects is a raised cosine

spectrum as illustrated in Fig. 13, given by

=T cos?™ ¥
S(u) = S(—u) = g 15" (73)
1
Sy (u)
-u = U
le——1=277B 0 —>
- Wo=1{1 wo Wo+

o B
7 ~

|

|

Sa(-w) = -S2(wW)

|
|

So=5:+52

I wo |

Fig. 12 — General properties of ideal spectra of carrier pulses at channel out-
put (detector input) that permit pulse transmission without intersymbol inter-
ference at intervals 1" = =/ = 1/28.
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(b)

Fig. 13 — (a) Raised cosine bandpass pulse spectrum and (b) carrier pulse
transmission characteristic, i.e., envelope of a carrier pulse.

The corresponding carrier pulse at the detector input as shown in
Fig. 13 is given by
Po(l) = Pu(t) cos (wit — ¢v) (74)
where
sin % cos
> (75)

Pt = ) = = Ty

4.4 Linear Variation in Amplilude Characteristic
Let ¢o(u) = 0 and
Alu) =14+ cu (76)
where ¢ 1s a constant. In this case (71) becomes

So(1e) = S(w) (1 + cu). (77)
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When the received spectrum in the absence of distortion has even
symmetry about the carrier frequency wo, such that S( —u) = S(u),
(77) in (67) to (70) gives

Ro(t) = gfm S(u) cos wt du (78)
m Yo
Qu(t) = —1:: j:ﬁ wS(w) sin ut du (79)
d '
= CERU(O = ¢Ry (t). (80)

In the case of a raised cosine spectrum, Ry(t) is given by (75) and
(80) yields

cos 20t sin 2Q¢
Q1) = 2 s ey ~ 2 Gay — T oV
=0 for t=0. (82)

At the first sampling points before and after ¢t = 0, { = £T =
=+ (7/2) and(81) yields

Qo £T) = £cfl/3m. (83)
At the next sampling points t = £2T = £2x/Q
Qo( +£2T) = /30w, (84)

From (83) and (84) it appears that only the first sampling points
t = =47 need to be considered in determining the effect of linear am-
plitude distortion.

4.5 Probability of Errors from Linear Amplitude Distortion
The rms amplitude of the component Qu(£7) is given by
Qu(£T) = ¢9/3r = ¢B/3 (85)
where B = 29/2r and & is the rms amplitude of # as given by (51) or
¢=1 =7A/6. (86)
Thus (85) becomes
Qu(£T) = #(Ba/3-6%). (87)
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The rms amplitude of Rq(0) is 7. Hence

Q(T) _ Ba
Ry(0) 3.6

(88)

This is the ratio of rms intersymbol interference at the first sampling
points to the rms value of the peak pulse amplitude.

The probability of exceeding the above ratio by a factor % is, in ac-
cordance with (48)

P(n = ki) = erfe (k/2%). (89)
The probability of error will depend on the carrier modulation method.

In general, however, the approximate allowable peak value of 5 in the
absence of noise is

A
n R

[0

. (90)

The probability of exceeding this value, corresponding to
k= 3-6"/2BA is

P. = erfe (3-3'/2BA) & erfe (2.6/BA). (91)
This probability is much smaller than that resulting from a linear
variation in delay over the transmission band. For example, if B = 10°
eps and A = 107" see, 1/BA = 107" and P, = erfe (26), which is negligi-
ble.
4.6 Linear Variation in Envelope Delay
It will be assumed that the phase distortion component is given by
Wol(u) = e’ (92)
which corresponds to a linear delay distortion given by
W' (u) = 2cu. (93)

In this case expressions (67) to (70) give for a raised cosine spectrum

/2
Ro(—1) = Ro(t) = g f cos’ x cos ax cos bz’ dx (94)
0

wl2
Qo(—1t) = Qlt) = :—t f cos’ x cos ax sin ba’ dx, (95)
0

where
a=40/T), b= (4/x)(d/T); T = (1/B)
in which the delay d is defined as in Fig. 14.
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Fig. 14 — Raised cosine pulse spectrum with linear delay distortion.

The above integrals have been evaluated by numerical integration
and are tabulated elsewhere.”” The functions Ro(f) and Qo(f) are shown
in Fig. 15, as a function of /T = {B for various values of d/T = dB.
The phase has been adjusted to 0 at ¢ = 0, hence the notation R and
Q(lﬂ .

4.7 Maximum Tolerable Linear Delay Distortion

Intersymbol interference at sampling points owing to linear delay
distortion is significantly greater than that resulting from a linear slope
in the amplitude characteristic. Moreover, pulse patterns that cause
maximum intersymbol interference with linear delay distortion will not
give rise to intersymbol interference from a linear slope in the am-
plitude characteristic, and conversely. For this reason it suffices to
consider the more important component, i.e., linear delay distortion.

The reduction in tolerable noise power owing to linear delay distor-
tion has been determined elsewhere” for binary AM with envelope
detection, binary PM with synchronous detection, and binary FM with
frequency discriminator detection. For these methods the reduction
in noise margin is shown in Fig. 16 as a function of the parameter
A = d/T = d-B. In the same figure is shown the reduction in noise
margin for two-phase and four-phase modulation, with differential
phase detection as determined by methods similar to those for the other
modulation methods in the above reference. These methods essentially
consist in determining the maximum intersymbol interference that can
be encountered, considering the pulse shapes shown in Fig. 15 and all
possible pulse patterns over the number of pulse intervals that contribute
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Fig. 15— Carrier pulse transmission characteristics for raised cosine pulse
spectrum and linear delay distortion. For negative values of (/7" = ¢-B the char-
acteristics are the same as shown for positive values.

significantly to intersymbol interference. Exact analytic determination
of the maximum impairments does not appear feasible, and it becomes
necessary to resort to trials for selection of the worst condition. It should
be noted that with binary PM with differential phase detection the
optimum threshold level differs from zero owing to a bias component
in the demodulator output.” The curve in Fig. 16 and the analysis that
follows assume automatic adjustment to the optimum threshold level,



178 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

1.0

I

ool T~

* \\%\Q N = N
8 ¥ ‘\ 4
NN TN s
o NN AN
2 N NS
g os \ \\ N\
= \ N
B od| AN \
2 . \\ \\
5 03— 0 }}K
f VNN N
- | \
£ o \ \ \\
|

\
o T
| \\

=01 \ \
W\

o] 0.2 0.4 0.6 0.8 1.0 1.6 1.8 2.0 2.2 2.4 26

2 14,
A=d/T=dB

Fig. 16 — Maximum reduction in noise margin owing to linear delay distor-
tion: 1, binary AM with envelope detection; 2, binary FM with frequency dis-
criminator detection; 3, binary PM with differential phase detection; 4, binary
PM with synchronous detection; 5, four-phase modulation with synchronous
detection; 6, four-phase modulation with differential phase detection.

and a significantly greater error probability would be encountered with
zero threshold level.

It will be noted that the noise margin is reduced to zero for certain
values Ay of A. These values apply for certain combinations of baseband
pulses in about four pulse positions. The probability of this and other

pulse patterns must be considered in evaluating error probability as
discussed below.

4.8 Probability of Errors from Linear Delay Distortion

As A is increased slightly above the value A mentioned above, inter-
symbol interference increases rapidly. Thus errors will occur for a value
A. of X only slightly greater than Ao, for certain combinations of two
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pulses, occwrring at times — 7 and 47 relative to the sampling instant
{ = 0. There are four possible combinations of these two pulses. IFor
one of these (say 1, 1), an error will oceur if A = A, . For another (say
—1, —1), an error will occur if A £ —A\.. F'or the other combinations
(=1,1) and (1, —1), intersymbol interference will cancel so that the

probability of error is zero. The probability of error is thus
Po=33+ DPCIN 2 [N])
_ (96)
=1P( [N Z |A])

where P(|X| = |A.|) is the probability that the absolute value of
A is greater than A, .

For a given value A, = d.B the corresponding slope ¢ of the linear
delay distortion is

¢ = d,/2nB
~a (97)
= \./2xB".
The following relation applies
POIN[z N[y =PCléelz e ). (98)

The probability distribution represented by the right-hand side of
(98) is given by (55) with ¢, = ¢, . For small probabilities (56) applies,
so that in view of (96) and (98) the error probability is

Po= 1016 2 é.0)

1 k. (99)
= Sl [1 + In (_—3 + 1)]

(100)

where

With (100) in (99)

AR ' 3\
P, = 1+ In(1 =1 101
:m[ N "( +4m-3-)] (1o

Trom Fig. 16 it will he noted that for binary AM and FM, and for
binary PM with differential phase detection, Ao = 1.8. I'or these cases
it appears a legitimate approximation to take A, = 2. On this premise
the error probabilities given in Table IV are obtained for various values
of the parameter AB.
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TasLe IV — ProBaABILITY OF ERRORS IN A Dicir OWING To LINEAR
DeLay DistorTron IN ABSENCE oF NoISE FOR BiNary AM, FM
AND PM (wrtH DiFreErENTIAL PHASE DETECTION)

AB = 107 1073 1072 1072

3.1 X 10°# 2.4 X 107% 1.6 X 1074 8 X 1073

The above error probabilities are shown in Fig. 17 as a function of
AB. If, for example, A = 107" second and B = 10° cps, then AB = 107*
and P, = 1.6 X 10" Pulses could in this case be transmitted at a
rate of 100,000 per second with a minimum error probability P, = 1.6 X
107", In the presence of noise the error probability will be greater, as
discussed in a later section.
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Fig. 17 — Error probability in binary AM, FM and PM owing to linear delay
distortion for maximum departure A (seconds) from mean transmission delay.
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The error probability with four-phase modulation and differential
phase detection can be determined in a similar way. In this case Ao =~ 0.9
and A, & 1in (101).

V. ERRORS FROM TRANSMITTANCE VARIATIONS WITH TIME

5.1 General

As mentioned in Section 4.1, transmittance variations with time is a
second basic source of error in digital transmission. In transmission at
low rates the bandwidth B of the pulse spectra will be narrow, so that
fading can be regarded as constant over the spectrum band. Errors
from selective fading, as considered in Section IV, can then be disre-
garded. On the other hand, the duration of a signal interval T may then
be sufficiently long so that consideration must be given to random
fluctuations in the amplitude, phase and frequency of the carrier between
one signal interval and the next. Errors may occur owing to such fluctua-
tions even in the absence of noise. The probability of errors in this
account is evaluated here.

5.2 Amplitude Variations

The amplitude of a received wave will fluctuate with a Rayleigh
distribution (10). Because of the great range of fluctuation, it is essential
to provide automatic gain control at the receiver to prevent overloading
and resultant adverse effects. Such gain control is activated by circuitry
that integrates the received wave over a number of signal intervals T'.
With FM and PM only a few pulse intervals are required, for the reason
that the received carrier wave is essentially independent of the pulse
patterns. It is thus possible to provide effective gain control against rapid
variations in the received carrier wave that occurs over a few signal
intervals. Moreover, with 'M and PM the distinction between marks
and spaces is made by positive and negative deviations from zero thresh-
old level in the detection process. This permits the use of limiters at
the input to the detectors, to prevent the adverse effect of rapid fluctua-
tions in the amplitude of the received carrier wave owing to fading. These
advantages in applications to fading channels are not shared by AM,
for reasons outlined below.

In binary AM or on-off carrier transmission, the received wave may
be absent over a large number of consecutive signal intervals T'. Hence
automatic gain control must be activated by circuitry that integrates
the received pulse train over a very large number of signal intervals T';
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otherwise gain would be increased during long spaces, regardless of the
fading condition. For this reason automatic gain control is inherently
slow, in relation to the duration of a signal interval. It may thus be
ineffective as applied to transmission at slow rates. With transmission
at high rates, however, such that variations in the received wave owing
to fading are inappreciable even over a large number of signal intervals,
it may be possible to implement effective gain control.

At low transmission rates, such that fading is virtually constant over
the band of the pulse spectrum, intersymbol interference can be made
inappreciable. In this case it is possible to employ limiting prior to
detection, and this method may then be more effective than automatic
gain control, or could be used in conjunction with it. The limiter would
slice the received wave at an appropriately selected level L. In the
choice of the optimum slicing level it is necessary to consider the proba-
bility of errors during a mark owing to fading such that the received
wave is less than L. In accordance with (10) this probability is

P(r £ L) =1—exp (=L'/F)

(102)
~ L'/

A second consideration in the choice of L is the probability of errors
owing to noise during a space, which is increased as L is reduced. The
optimum threshold level considering both effects is determined in Sec-
tion 6.9,

Owing to even small intersymbol interference, the use of a limiter as
postulated above may be precluded in actual systems. For example,
let L be 10 per cent of the rms signal amplitude 7, and let intersymbol
interference be 5 per cent of L when the received signal is just equal to
L. When the received signal is increased by a factor 20, intersymbol
interference would be increased correspondingly and would be equal to
L. Hence errors would occur even in the absence of noise. This is the
inherent reason why limiting is generally ineffective as applied to binary
AM. However, even if intersymbol interference could be disregarded,
the error probability in the presence of noise will be greater than with
binary PM or FM, as shown in Section 6.9.

5.3 Carrier Frequency Varialions

In transmission over troposcatter links, random fluctuations will
oceur in the carrier frequency, which may be important from the stand-
point of receiver implementation with any modulation method. Such
fluctuations can be limited at the input to the IF filter with the aid of
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signal-tracking oscillators for demodulation of the received radio fre-
quency wave. The frequency of such oscillators may be controlled by
feedback from the mixer output or from the detector output. The follow-
ing expressions apply for the probability distribution of carrier fre-
quency fluctuations without such frequeney control at the receiver.

The probability distribution of frequency variations is given by
(38). For a Gaussian fading power spectrum, the probability that the
frequency variation ¢’ = Aw exceeds ko is thus

P(|Aw| = ko) &~ (1/2K"). (103)

The equivalent fading bandwidth is in accordance with (19) ¥ ~ 1.25¢.
The probability that Aw exceeds k¥ is thus

P(|Aw| = ky) ~ (1/3K"). (104)

Since ¢ and ¥ are nearly proportional to the carrier frequency, it
follows that the frequency fluctuations encountered with a specified
probability will be nearly proportional to the carrier frequency. By
way of example let ¥ =~ 2 radians/second or about 0.3 eps. The proba-
bility that the frequency fluctuation exceeds 30 eps is in this case ob-
tained from (104) with & = 100 and is 3 X 107", It appears that for
bandwidths of the pulse spectra in excess of about 5000 eps, frequency
fluctuations will not be important. However, for narrow band spectra
the random frequency excursions may become excessive and give rise
to errors, particularly with frequency modulation, as discussed below.

5.4 Frequency Variations over a Signal Interval

It will be assumed that the carrier frequency excursion is limited with
the aid of a signal-tracking oscillator, or that a demodulation process is
used in binary FM in which the change from mark to space is based on
comparison of the frequencies in adjacent signal intervals of duration
T. If the separation between mark and space frequencies is 2Qq, an
error will oceur if the frequency is changed by +Qy for a space and
by —Qq for a mark.

From (41) it is possible to determine the probability of errors owing
to frequency changes £Qn over a signal interval of duration 7. The
maximum permissible value of ¢” is determined from

‘Pmux” T = £ ( 105)

where the positive sign applies for a space and the negative sign for a
mark.
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With an ideal pulse spectrum the pulse interval is given by T = =/Q,
so that (105) can be written

p” max — ﬂ:ﬂmg/‘ﬂ'. ( 106)

5.5 Error Probability in Binary FM
The error probability is in this case
Pe= %P(lﬁa”’ g Iﬂomnx”l) (107}

where the factor % occurs when the probability functions is defined in
terms of the absolute values as in (41).
The parameter L defined by (42) in this case becomes

2
l|‘!C:|mz: = ﬁamux”/ﬂ'

108
= Qmﬂ/‘n‘fz. ( )

With frequency diseriminator detection, 2, = @. For a raised cosine
spectrum, B = 2B = /= and
kmax = wB*/d". (109)

Employing (45), the probability (107) of an error becomes

P, = (;%)2 [1 +1In (1 + ’;—UB:)] (110)

In the above relation, ¢ is in radians/second while B is in eps. The
equivalent fading bandwidth is, in accordance with (19), ¥ &~ 1.250.
The ratio of the maximum bandwidth B in eps to ¥ in ¢ps is thus

B 2rB 5B

bS5 1280 o (1
The probability of error (110) is given in Table V for various ratios u.

These error probabilities are shown in Fig. 18.

TasLe V — Error ProsasiuiTies with Binary M rroMm
FraT RAYLEIGH FADING IN ABSENCE OF NOISE

p =10 100 1000 10000

Ble =2 20 200 2000

6 X 1073 9.3 X 10°°¢ 1.4 X 1079 1.8 X 1078
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Fig. 18 — Error probability in binary FM in absence of noise, owing to fre-
quency variations over a pulse interval 7' resulting from flat Rayleigh fading.

5.6 Phase Variations over a Signal Interval

The probability density of the carrier phase is 1/2x, such that any
phase may be encountered unless the carrier phase wander is limited
by phase tracking oscillators in the demodulation process. In a digital
phase modulation system where appreciable phase wander may be
expected, the preferable demodulation method is differential phase
detection. With this method the phase error will be limited to that
encountered over a signal interval T,

From (36) it is possible to determine the probability of an error for
a given maximum tolerable phase echange @ over an interval 7. For
I >> 1 the following relation applies
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’ ! 1
Ple | zle']) =55 (112)
b T
=20 (113)
With a Gaussian fading power spectrum (40) applies and
Plle' | 2 ()] = ('T%/26)). (114)

5.7 Error Probabilities in PM
With two-phase modulation # = =(x/2), while with four-phase

modulation § = ==(wx/4). Hence the probability of error with these
methods as obtained from (114) is, for two-phase modulation

P, ~ (2/1")d'T" = 0.24°T" (115)
and for four-phase modulation

P, ~ (8/x")d'T" ~ 0.824°T". (116)

These expressions apply provided the signal duration is sufficiently
short so that the change in phase is small and can be considered linear
over the interval. More accurate expressions that do not involve this
assumption have been derived by Voelcker® for the error probability.
Thus, with two-phase modulation the error probability is actually

P, = 31 — «(T)] (117)
and with four-phase modulation
1 2 " 2 -} = K(T)
=== 2 — _ B
P, 5 «(T)[ x (T)]* tan B = 2T (118)
where &(T) = x(r) for 7 = T, ie., the autocorrelation function for

each quadrature component as defined by (15).
For a Gaussian fading spectrum, «(7') as obtained from (17) is

k(T) = exp (—a'T°/2). (119)
For oT K 1:
(T)~1— T2 (120)

With the latter approximation in (117) and (118), the error proba-
bility with two-phase modulation becomes

P, ~ 1T* = 0.25¢" 1" (121)
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and with four-phase modulation

P, = (1 + 1) T~ 0.820°T" (122)
2 7 :

which are to be compared with (115) and (116), respectively. The
somewhat greater inaccuracy with two-phase than with four-phase
modulation comes about since the phase change +(x/2) cannot be
considered small as required for (114) to apply.

In the above relations 7' is the interval between phase changes, which
is related to the bandwidth of the baseband pulse spectrum. With
idealized spectra of the type shown in Fig. 12, the interval is

T = 1/2B (two-phase) (123)
= 1/4B (four-phase) (124)

where B is the equivalent mean bandwidth.
In the particular case of pulses with a raised cosine spectrum, the
maximum bandwidth is

B =2B (125)
so that
T = 1/B (two-phase)

. (126)
= 1/2B (four-phase).

In terms of the above bandwidth the error probabilities (115) and
(116) are thus the same for both two-phase and four-phase modula-
tion and are given by

P.~ 0.05(¢/B)* (127)
~ 0.2(a/B)% (128)

The above relations apply for any number of phases. For this reason
the capacity of a noiseless channel could be inereased indefinitely by
inereasing the number of phases. There will, however, be certain limita-
tions in this respect owing to intersymbol interference, as in stable
channels.

The above error probability is shown in Table VI for various values
of B/o and u = 5B/a, where u is the ratio defined by (111). It will be
noted that these error probabilities are somewhat smaller than with
binary I'M as given in Table V.

The above probabilities of an error in a single digit are shown in Fig.
19, as a funetion of p.
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TaBLE VI — ERROR PROBABILITIES WITH DIFFERENTIAL PM
rroM FrLAaT RavieigH FADING IN ABSENCE OF NOISE

u=10 100 1000 10000
Ble =2 20 200 2000
2 X:107® 2 X 108 2 X 1077 2 X 107

As noted in Section 1.6, there will be a certain median value of ¥ and
thus a certain median value of p and corresponding median error proba-
bility. During certain intervals, the error probabilities will be signifi-
cantly smaller or significantly greater than the median error proba-
bilities.
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Fig. 19 — Error probability in binary PM with differential phase detection
in absence of noise, owing to phase variations over pulse interval T resulting from
flat Rayleigh fading.
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V1. ERRORS FROM NOISE WITH FLAT RAYLEIGH FADING

6.1 General

As mentioned in Section 4.1, a third basic source of errors in tropo-
scatter transmission is random noise. The probability of errors from
noise depends on the modulation and detection methods and on their
implementation. I"or optimum performance it is in the first place neces-
sary to have appropriate pulse spectra such that intersymbol inter-
ference is avoided in transmission over ideal channels. Moreover, the
error probability depends on the division of spectrum shaping between
transmitting and receiving filters, The minimum error probabilities
with various modulation and detection methods as quoted here are
based on optimum design in the above and various other respects, such
as accurate sampling of pulse trains. The probability of errors from
noise in actual systems will be greater owing to various imperfections in
implementation.

6.2 Signal-lo-Noise Ratios

In carrier pulse transmission over an ideal channel, the sideband
spectrum of the carrier pulses at the detector input will be symmetrical
about the carrier frequency. As discussed elsewhere,' it is possible to
realize optimum performance in binary transmission by AM, PM and
FM with an infinite variety of pulse spectra at the detector input with
the general properties discussed in Section 4.3.

The error probability in digital transmission over noisy channels is
ordinarily specified in terms of the average signal-to-noise ratio at the
input to the receiving filter that ordinarily precedes the detector. This
signal-to-noise ratio is ordinarily taken as

p= S/N
S = average carrier power at detector input

N = average noise power in a flat band B = 1/27 at
input-to-receiving filter.

When S represents the average signal power in a fading channel, the
designation 3 = S/N will be used in place of p.

The above reference band B is the minimum possible bandwidth in
baseband pulse transmission without intersymbol interference. The
minimum possible bandwidth in double sideband transmission as used
in binary AM, PM and FM is 2B.

The error probability as related to p will depend on the division of
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spectrum shaping between transmitting filters and the receiving filter
at the detector input. With optimum division, the error probability is
the same as for transmission over a flat band B to each side of the carrier
frequency.' Such a flat channel band is ordinarily assumed or implied
in theoretical analyses, though not feasible in actual systems.

6.3 Error Probabilities with Flai Rayleigh Fading

Let r be the signal amplitude and P,"(r) the error probability of errors
owing to random noise in transmission over a stable channel with signal
amplitude 7. In the presence of fading, let the probability density of
various signal amplitudes be p(r). The error probability in transmis-
sion over fading channels is then

P = [ PAr)p(r) dr. (129)

0
With Rayleigh fading the probability density p(r) is the derivative
of (27) with respect to ;. With r in place of r; the probability density is
p(r) = (20/7") exp (—1*/7) (130)
= (r/8) exp (+*/28) (131)

_2 . .
where S = 7 /2 is the average signal power.

6.4 Binary PM with Synchronous Delection

In binary PM, marks and spaces are transmitted by phase reversals.
With ideal coherent or synchronous detection the error probability
in transmission over a stable channel is

P, = }erfe (p/2)" (132)
The error probability with Rayleigh fading as obtained from (129)

is, in this case™’
1 5\ 1
ros[-GE) =5 (15

where 7 = S/N = ratio of average received signal power with Rayleigh
fading to average noise power as previously defined.

6.5 Binary PM with Differential Phase Dection

With binary PM and differential phase detection the error proba-
bility in transmission over a stable channel is'®

Pl = 1", (134)
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The error probability with Rayleigh fading is, in this case’
P,=1/2(p 4+ 1). (135)

6.6 Binary FM with Dual Filter Detection

With this method two receiving filters are used, centered on the space
and mark frequencies «; and wz, as indicated in Fig. 20, with sufficient
separation to avoid mutual interference between the space and mark
channels. Complementary binary amplitude modulation is used at the
two carrier frequencies, and the two baseband filter outputs are com-
bined with reversal in the polarity of one.

The error probability in transmission over stable channels with co-
herent detection is'’

P = Lerfe (p}/2) (136)
and with noncoherent detection is'®

P = Lexp (—p/2). (137)

MARK SPACE

(b)

Fig. 20 — Comparison of channel bandwidth requirements in binary FM with
(a) frequency discriminator detection and (b) dual filter detection.
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Comparison of (136) with (132) shows that the error probability
P, with Rayleigh fading is obtained by replacing in (133) p with 5/2.
This yields for coherent detection

-3~ ) 1~ 5 (138)

Comparison of (137) with (134) shows that P, is obtained by re-
placing in (135) p with /2, in which case, for noncoherent detection

P, =1/(p + 2). (139)

6.7 Binary FM with Frequency Discriminator Delection

With this method a single receiving filter is used, with space and mark
frequencies as indicated in Fig. 20. Pulse transmission without inter-
symbol interference over a channel of the same bandwidth as required
for double-sideband AM is in this case possible for certain ideal amph-
tude and phase characteristics of the channels, as shown elsewhere.™

The error probabilities in the absence of fading depends on the charac-
teristics of the bandpass channel filters and the post-detection low-pass
filter, and are difficult to determine exactly. Approximate evaluations™
indicate that for a given error probability, about 4 db greater signal-
to-noise ratio would be required than for binary PM with coherent
detection, when no post-detection low-pass filter is used. Recent exact
evaluations by Bennett and Salz,'" indicate 3 to 4 db increase in the
required signal-to-noise ratio over a variety of filter shapes. With an
optimum post-detection low-pass filter, a small improvement may be
realized, such that about 3 db increase over binary PM with coherent
detection would be expected. On this basis it appears that the error
probability will be virtually the same as for binary FM with dual filter
coherent detection, such that the principal advantage over the latter
method is a two-fold reduction in bandwidth.

6.8 Binary AM with Ideal Gain Control

It will be assumed that the receiver can be implemented with ideal
automatic gain control, such that the output in the presence of a mark
would have a fixed level [ and in the presence of a space would be zero.
This condition can be approached at sufficiently high transmission rates,
such that the received wave prior to gain control changes insignifi-
cantly over a large number of pulse intervals of duration T'. Under this
condition the fading bandwidth is negligible relative to the bandwidth
of the baseband pulse spectrum.
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On the above premise and with ideal coherent (or synchronous)
detection, the optimum threshold level for decision between marks and
spaces would be [/2. The tolerable peak noise amplitude before an error
oceurs would be /2, as compared with [ for binary PM, resulting in
6 db reduction in noise margin. On the other hand, the average trans-
mitter power is 3 db less than with binary PM. Hence this method
would have a 3 db disadvantage compared to binary PM with synchro-
nous detection.

Accordingly, (132) would be replaced by

Pl = Lerfe (p/4)} (140)
and (133) would be replaced by

P =1[1—(p’3 )1 (141)
©2 p+2/ ]

The above relations are the same as (136) and (138) for binary FM
with dual filter coherent detection, and (141) is virtually the same as
(135) for binary PM with differential phase detection. Hence binary
AM offers no advantage in signal-to-noise ratio even at sufficiently
high transmission rates such that ideal gain control eould be imple-
mented.,

6.9 Binary AM with Optimum Fived Threshold Detection

At low transmission rates, such that the received wave can change
appreciably over a few pulse intervals owing to fading, gain control
cannot be effectively implemented, as discussed in Section 5.2. Without
effective gain control, there will be a certain optimum threshold for
distinetion between marks and spaeces. This optimum level and the cor-
responding signal-to-noise ratio is determined here on the premise that
no gain control is used. This threshold level could be implemented by
either a predetection or a postdetection limiter. Assume a probability
3 of a mark being present; in the absence of noise, the probability of
errors in marks is, in view of (102)

P.(r = L) = }[1 — exp (—L*/29)] (142)
where L is the threshold level. In the presence of noise the error proba-
bility will be only slightly greater than (142).

A second consideration in the choice of L is the probability of errors

during a space. This error probability is obtained from (137) with
p = L'/N and is

P(n= L) = Yexp (—L*/2N) (143)
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where 7 is the instantaneous noise amplitude and N the average noise

power.
The combined error probability is
P, =3[l — exp (—p/2) + exp (—pu/2)] (144)
where
p=1L/S; p=S/N. (145)

The optimum L or u is obtained from the condition dP,/du = 0. This
yields the following relation for the optimum value po

exp (—po/2) = pexp (—puo/2) (146)
or

_2Inp _ 4606 logw p

—_ = 4
o 5= 1 e— (147)

In practicable systems 5 >> 1, in the order of 100 or more, and wo < 1.
With (147) in (144), the following approximation is obtained for the
minimum error probability

P, min & 1[ Inp + exp (—In 5)]. (148)
21 —1

The above error probability is significantly greater than with binary
PM or FM. The error probability (148) is thus greater than for binary
FM with dual filter coherent detection by a factor of at least In 7.
For 5 = 1000 (30 db) this factor is about In 5 ~ 7. Hence about 10
logi 7 &~ 8.5 db greater average signal power would be required than
with binary FM. This assumes that excessive intersymbol interference
is avoided, which may not be feasible for reasons mentioned in Section
5.2. Since it is evident that binary AM is at a considerable disadvantage
in signal-to-noise ratio as compared to binary PM and FM, it will not
be considered further herein.

6.10 Combined Rayleigh and Slow Log-Normal Fading

In the previous determination of error probabilities, rapid Rayleigh
fading was assumed, with a fixed mean signal-to-noise ratio p over the
interval under consideration. It will now be assumed that in this interval
there is a slow log-normal variation in path loss and thus in signal-to-
noise ratio at the receiver, in conjunction with rapid Rayleigh fading.

Let P, be the error probability with Rayleigh fading as previously
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related to the mean signal-to-noise ratio 3 = §/#°, where 5 is the rms
signal amplitude and 7 the rms noise amplitude. If p(§) is the proba-
bility density of the rms amplitudes with slow fading, the probability
of error in an interval during which the rms amplitude exceeds , is

Pur = [ P(5)p(s) d. (149)
i
For 5 3> 1, the expression for P.(5) is of the general form

P.(3) /s = ——. (150)

§%/n?

For binary PM with differential phase detection and for binary PM
with coherent dual filter detection, ¢ = L.

The probability density p(5) is given by (12), or in the present
notation

p(5) = mp[—(]n 5/5)%/24°] (151)

\/_
where § is the median rms amplitude and ¢ is the standard deviation
of the fluetuation in 3.

With (150) and (151) in (144)
L1/ 1 1

P.,=c exp [— (In §/5)%/247] ds (152)

2 ol e\p [— (% In p/po)’/24%) dp (153)

where po = &’/ on p = §°/7".
Solution of (153) yields the relation

Py = Ponla, k) (154)
where
K= pi/po (155)
and
1
(e, k) = 1 exp (20’2) erfe {\/gg [46* 4 In K]} . (156)
Forpy = 0,Inx = —« and erfe (— =) = 2. Hence for this case

7 = exp (24°). (157)
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This is the factor by which the error probability taken over a long inter-
val is greater than without a log-normal variation in signal-to-noise
ratio and only rapid Rayleigh fading.

Instead of modifying the error probability as above, an alternative
method is to use an equivalent mean signal-to-noise ratio p. that is
smaller than p by the factor exp( —2¢”). Thus

p. = pexp (—2d°). (158)

When 5., 5 and o are all expressed in db, expression (158) can alterna-
tively be written

Pedd = Pdb — ﬂ'dbg/s.ﬁg. (159)

For example, with a representative value cap = 8 db, the last term
in (159) is 7.4 db. Thus the charts in the later Figs. 21 and 22 apply
when p is taken 7.4 db less than the median signal-to-noise ratios with
log-normal fading,.

VII. COMBINED ERROR PROBABILITY

7.1 General

In Sections IV to VI, three basic sources of errors in digital transmis-
sion over troposcatter links were discussed, and expressions were given
for the probability of error from each of these sources in the absence
of the others. In a first approximation, the error probability considering
all three sources can be evaluated by taking the sum of the three error
probabilities. Approximate expressions are given here for the resultant
error probabilities, together with charts that facilitate determination
of error probability as a function of the binary pulse transmission rate,
when the basic system parameters are known. These are the average
signal-to-noise ratio , the mean fading bandwidth ¥, and the maximum
departure A from the mean transmission delay. The error probability
for a given transmission rate can be reduced by various means that may
or may not entail an increase in total transmitter power or bandwidth
or both. For a given total transmitter power and bandwidth, the most
effective means to this end is diversity transmission over independently
fading paths, as discussed briefly herein.

7.2 Combined Error Probability
As a first approximation, the error probability is given by
P.~P" +P” + P (160)
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where

P, = probability of errors in the absence of noise owing to inter-
symbol interference caused by frequency selective Rayleigh
fading (Section IV)

P, = probability of errors in the absence of noise owing to random
variations in carrier phase or frequency (Section V)

P = probability or error owing to random noise with nonselective
Rayleigh fading (Section VI).

As will be evident from the preceding discussion, and from charts
that follow, P, can be disregarded when P, must be considered, and
conversely, for error probabilities P, in the range of practical interest.
Hence in actual applications (160) will take one of the following forms

P,~P"Y + P (161)
P,~P" +P". (162)

In addition, there are intermediate cases in which P, ~ P,”.

In an exact determination of the error probability (161) it is neces-
sary to consider the net effect of random intersymbol interference on
the probability of errors owing to random noise, and similarly an exact
determination of the error probability (162) the probability distribution
of random phase deviations is involved. Intersymbol interference at a
particular sampling instant may reduce or increase the tolerance to
noise, and the net effect considering all pulse patterns may be such that
(161) is a legitimate approximation. Similarly, random fluctuations
in the slope of the phase characteristic may decrease or increase the
tolerance to noise at a particular sampling instant, and the net effect
considering all sampling instants may be such that (162) is a valid
approximation. This is evidenced by the following exact relation derived
by Voelcker’ in place of (162) for binary PM with differential phase
detection

P.= [p/(p + DIP.” + P2 (163)

Since 5 would ordinarily exceed 100 (20 db), it follows that in this case
(162) is a very good approximation to (163).

The exact error probability (161) depends on the probability distribu-
tion of phase distortion in conjunction with the probability distribution
of intersymbol interference, which involves consideration of all pulse
patterns. The combined probability distribution, and in turn the exact
error probability, would be very difficult to determine, and hence the
inaccuracy involved in (161) cannot readily be assessed. However, if
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the probability distribution of intersymbol interference were the same
as that of the reduction in tolerance to noise owing to random fluctua-
tions in the slope of the phase characteristic, the inaccuracy in (161)
would be no greater than that indicated by (162) versus (163). In
most engineering applications, substantially greater inaccuracy would
be permissible in the estimation of error probability, such that (161)
and hence (160) can be considered permissible approximations in the
present context.

The above expression (160) is applied below to binary PM and FM.

7.3 Binary PM with Differential Phase Delection

For binary PM with differential phase detection P, is given by
(101) with A, = 2 or
A’ 3
P == [1 + In (1 + H)] 164
6 2rA’ B (164)
This error probability is given in Table IV as a function of AB.
The error probability P.” is obtained from (117), or approximation
(121)

P = 31 — «(T)] (165)
~ 0.25(sT)" ~ 0.06(0/B)* (166)
~ 0.039(7/B)". (167)
The error probability P.” is given by (135) or
P =1/2(p + 1). (168)

7.4 Error Probability Charts for Binary PM

In Fig. 21 are shown the error probabilities P2 P® and P,” as
a function of the transmission rate, for a raised cosine spectrum. The
error probability P, depends on the maximum deviation A from the
mean transmission delay, and curves are shown for a number of values
of A. The probability P, depends on the mean fading bandwidth ¥,
and curves applying for several values of ¥ are shown. Finally, the error
probability P, depends on p, and is shown for a number of different
values of 5.

By way of illustration, the combined error probability obtained from
(170) is shown by the dashed line in Fig. 20 for the particular case in
which A = 107" second, ¥ = 2cpsand p = 10* (40 db).

The error probability as a function of transmission rate shown by
this dashed line could apply to a variety of tropospheric scatter links,



DIGITAL TROPOSCATTER 199

107!
5
21
102 g =20D8B
. 23
25
27
3008

1074

PROBABILITY OF ERROR IN A DIGIT
N

et
S
c,p""k

'bl

1073
)
5 -~
o
W
2l \%
»
1078 1
ot ? 104

TRANSMISSION RATE IN KILOBITS PER SECOND

Fig. 21 — Probabilities of errors in binary PM with differential phase detec-
tion: 1, curves for various departures from mean delay show error probabilities
in absence of noise owing to pulse distortion from selective fading; 2, curves for
various mean fading bandwidths ¥ show error probabilities in absence of noise
owing to random phase variations caused by flat fading; 3, curves for various
mean signal-to-noise ratios 3 show error probabilities owing to noise for flat Ray-
leigh fading; 4, dashed curve shows approximate combined error probability for
p = 40db,A = 1077 second, and ¥ = 2 cps.

since A depends on the length of the link and on the antenna beam
angles. Moreover,  depends on the transmitter power, the length of
the link, and the antenna beam angles. Hence, given values of A and g
can be realized for a great variety of conditions.

7.5 Binary FM with Frequency Discriminator Detection

With frequency diseriminator detection, the minimum required band-
width for a given pulse transmission rate is the same as for binary PM,
and half as great as that required with dual filter detection.



200 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

The error probability P,V is in a first approximation the same as
(161) for binary PM with differential phase detection. For the error
probability P, approximation (110) applies, or

w _ (o 2 ’L‘lzz
P® = (TB) [1 +In (1 - 252)]' (169)

This error probability is given in Table V as a function of B/s.

The probability of error owing to noise is, in a first approximation,
the same as given by (139) for dual filter detection with coherent detec-
tion, or

P ~1/25. (170)

7.6 Error Probability Charts for Binary FM

In Fig. 22 are shown the error probability P>, P® and P,” for
binary FM as a function of the transmission rate. The curves apply for
a raised cosine pulse spectrum, and the same basic parameters ¢, ¥ and
5 as shown in Fig. 21 for binary PM. The error probability for the partic-
ular set of parameters previously assumed in Section 7.4 is shown by
the dashed curve.

Comparison of the curves in Figs. 21 and 22 shows that the error
probabilities are the same with both methods except at very low trans-
mission rates. This applies only as a first approximation and with ideal
implementation of both methods.

7.7 Diversity Transmission Methods

In diversity transmission, either space, frequency or time diversity
can be used. The performance would be the same with these methods,
and is an optimum when there is no correlation between the diversity
paths. This entails adequate separation of receiving antennas in space
diversity, adequate frequency separation in frequency diversity, or
adequate time intervals between repetition of signals in time diversity.

With any one of the above three methods, different combining or
decision procedures can be used at the receiver, as discussed in considera-
ble detail by Brennan.'” The optimum method from the standpoint of
minimum required signal power for a specified error probability is known
as “maximal ratio combining,” in which the gain of the receiver in each
path is made proportional to the input signal-to-noise ratio. This method
is difficult to implement, and a simpler but somewhat less efficient
method is “equal gain combining,” in which the various receivers have
equal gain and the demodulator baseband output are combined linearly.
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Fig. 22 — Probabilities of errors in binary FM with frequency discriminator
detection: 1, curves for various departures A from mean delay show error proba-
bilities in absence of noise owing to pulse distortion from selective fading; 2,
curves for various mean fading bandwidths ¥ show error probabilities in absence
of noise owing to random frequency variations caused by flat fading; 3, curves
for various mean signal-to-noise ratios 5 at detector input show error probabili-
ties owing to noise for flat Rayleigh fading; 4, dashed curve shows approximate
combined error probability for 3 = 40 db, A = 1077 second and ¥ = 2 cps.

This entails a demodulator in each diversity channel and common gain
control of the various channels. The need for a demodulator in each
diversity channel and common gain control is avoided with “selection
diversity,” in which the receiver having the largest signal is selected.
Though this method is somewhat less efficient than equal gain combin-
ing, it has greater flexibility in that it can be used in conjunection with
both linear and nonlinear modulation and detection methods, with path
selection on the basis of predetection as well as post detection signals.
The principal diversity techniques would thus be space, frequency
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or time diversity, in conjunetion with “equal gain combining” or “selec-
tion diversity.” The error reduction afforded by the two latter methods
is discussed below.

7.8 Error Probabilities with Equal Gain Diversity

The error reduction afforded by equal gain diversity transmission has
been determined by Pierce® for binary FM with coherent and nonco-
herent dual filter detection, on the premise of sufficiently slow flat
Rayleigh fading, such that errors from noise alone need to be considered.
For binary PM with differential phase detection, the error probablllty
with equal gain diversity transmlssmn has been determined by Voelcker,®
considering both errors from noise [P.”] and errors from time variations
in the transmittance [P.*]. Voelcker has also determined the error
probability with dual diversity transmission for four-phase modulation
with differential phase detection, considering errors from transmittance
variations with time alone. For all of the above cases, the following
approximation applies for the probability of single digit errors with
dual diversity transmission over independently fading paths

P~ 3P, (171)

where P, is the error probability for transmission over a single path
(no diversity). For four-phase modulation, Voelcker’s more exact
expression, when reduced to small error probabilities, gives a factor
47(3 + 7)/(2 + 7)* &~ 3.13 in place of 3 in (171).

The mechanism responsible for error reduction by diversity trans-
mission in the above cases also applies to transmission over channels
with selective fading when the errors are caused principally by inter-
symbol interference. With independently fading transmission paths
there will be no correlation between intersymbol interference in the
various channels, even though the signals are the same. Hence relation
(171) would also be expected to apply for the combined error probability
P, given by (160).

For small error probabilities, the following approximate expression
is given by Pierce® for the error probability owing to noise with flat
Rayleigh fading for binary FM and multidiversity transmission

(2m — 1)!
P..~3P.; (173)
Py~ 10P., (174)

Poa= 350, )" (175)
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The optimum number of diversity paths will depend on a variety of
considerations, among them the available bandwidth and transmitter
power, system complexity, and the source of errors. When the errors
are caused by noise it is possible to realize a certain minimum total
average signal power for a specified error probability P...., by appro-
priate choice of m. As shown by Pierce’® and Harris," the minimum
total average signal power is attained for any specified error probability
when m is so chosen that in each diversity channel 5 =~ 3, or about 5
db, for binary M with dual filter noncoherent detection. The number
of diversity paths required to realize the minimum total average signal
power is rather large, and the signal power reduction that can be realized
with more than four paths is fairly small. For example, Pierce” shows
that for an error probability P, . = 107, the minimum average signal
power is realized with m = 16, for which the total signal-to-noise ratio is
16.7 db, corresponding to a signal-to-noise ratio per channel of 4.7 db
(g = 2.95). With m = 1 the average signal-to-noise ratio is 40 db and
with m = 4 is 19.4 db. Hence only a small additional reduction in signal
power is realized when the number of diversity paths is increased from
m = 4tom = 16,

7.9 Lrror Probabilities with Seleetion Diversily

Equal gain diversity as considered above entails a linear addition
of the baseband outputs of the various demodulators, and would be less
effective in conjunction with nonlinear demodulation methods, such
as binary F'M with frequency diseriminator detection. With the latter
method, switch or selection diversity reception would probably be pref-
erable, in which only the receiver having the largest signal is selected.
With this method the following relations apply for m-diversity transmis-
sion when the errors are caused by noise and when receiver selection is
based on the largest carrier signal at the detector input®

Powm 2" mP, " (176)
P.» =~ 4P, (177)
P.; ~ 24P, (178)
P,y ~ 102P, % (179)

For equal error probability, the average signal power with selection
diversity must be greater than with optimum diversity by a factor
equal to the mth root of the ratio of the factors in (176) and (172). The
power must thus be inereased by 0.62, 1.27 and 1.85 db form = 2, 3
and 4, respectively.
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7.10 Mulliband Digital Transmission

The curves in Figs. 21 and 22 suggest that for a given total transmitter
power and channel bandwidth, the error probability can be reduced by
transmitting at a slower rate over each of a number of narrower channels
in parallel. An approximate optimum bandwidth for each channel would
be such that P, + P,” is minimized. This can be accomplished with
separate transmitters and receivers for each channel, such that mutual
interference between channels is avoided. Hence the adverse effects of
selective fading can be overcome with the aid of more complicated
terminal equipment, without the need for increased signal power or
channel bandwidth.

An alternative method that is simpler in implementation is to trans-
mit the combined digital wave from the parallel channels by frequency
or phase modulation of a common carrier, as ordinarily used for trans-
mission of voice channels in frequency division multiplex. This method
entails some mutual interference between channels, as well as greater
channel bandwidth and carrier power than with direct digital carrier
modulation, as discussed below.

With the above method, the spectrum of the modulated carvier wave
will have greater bandwidth than with direct digital carrier modulation.
To avoid excessive transmission distortion of the combined wave, the
bandwidth between transmitter and receiver must be at least twice
that with digital carrier modulation. Hence, at least 3 db greater average
carrier power is required in order that the noise threshold level of the
common channel be comparable with that of direct digital carrier modu-
lation.

With such multiband transmission, intersymbol interference owing
to selective fading is avoided, in exchange for mutual interference be-
tween the various channels owing to intermodulation distortion caused
by selective fading. Such intermodulation distortion is dealt with else-
where (this issue, part 2) for a modulating wave with the properties of
random noise, which is approximated with a large number of binary
channels in frequency division multiplex. The results indicate that
under this condition intermodulation distortion will cause less trans-
mission impairment than does intersymbol interference in direct digital
transmission. Hence multiband transmission by common carrier modula-
tion permits a reduction in error probability in exchange for at least a
twofold increase in bandwidth and carrier power. However, this reduc-
tion in error probability may be less than can be realized with direct
digital carrier modulation in conjunction with a twofold increase in
bandwidth and signal power with dual diversity.
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Error probabilities in binary multiband transmission by frequency
modulation of a common carrier are dealt with by Barrow? on the premise
of slow flat fading over the combined band, so that only errors owing to
noise need be considered and intermodulation distortion can be dis-
regarded.

VIII. SUMMARY

The objective of this analysis has been to develop a transmission and
modulation theory for troposcatter systems, applicable to digital trans-
mission by AM, I'M and PM at any speed and based on a realistic
idealization of troposcatter transmittance properties. The basie model,
together with the analytical procedure and certain basic assumptions,
are reviewed here.

8.1 Troposcatter Transmittance

Based on certain physical considerations, an idealized multipath
transmittance model is developed in which the received component
waves vary at random in amplitude and phase and have transmission
delays owing to path length differences which vary linearly with angular
deviation from the mean path with maximum deviations 4A from the
mean delay. With this type of model, a Rayleigh probability distribu-
tion is obtained for the envelope of a received carrier wave in conform-
ance with observations.

To facilitate determination of transmission performance, two basic
statistical parameters are required aside from the signal-to-noise ratio
at the receiver. One of these is the autocorrelation function of envelope
variations with time at a given frequency. The other is the autocorrela-
tion function with respect to frequency at a fixed time.

The first of these, the time autocorrelation function, depends on the
rapidity of changes in the atmospherie structure within the common
antenna volume. It has been determined by a number of observations
with some theoretical support, as given in certain publications.

The second basic parameter, the autocorrelation function with respect
to frequency, has been determined by observation on a particular link.
These observations conform well with the autocorrelation function
determined analytically herein on the premise that the maximum delay
deviation +A noted above is given by the path length differences
based on the beam angles between the 3-db loss points.*

With the aid of this idealized model, endowed with the above basie
parameters, as determined by observation or theory, it is possible in

* This conclusion appears to be supported by the results of recent measure-
ments on a 100-mile path.*
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prineiple to determine analytically the associated idealized transmission
performance with any modulation method. Though an exact solution is
possible in principle, it appears intractable and is not essential for
engineering purposes. An approximate solution for transmission at
any digital rate is derived herein. To this end certain basic statistical
parameters are determined from the above two autocorrelation fune-
tions.

8.2 Variations tn Transmittance with Time

In Section II, distributions are given for the time rate of change in
the envelope and for the first and second derivatives of the phase func-
tion. These probability distributions permit approximate evaluation of
changes in the envelope, phase and frequency over a signal or pulse
interval for narrow-band signal spectra.

8.3 Variations in Transmittance with Frequency

The corresponding probability distributions with respect to varia-
tions in transmittance with frequency are given in Section IIT and permit
approximate determination of random attenuation and phase distortion
over the band of the signal spectra owing to the selectivity of fading.
From these random variations it is possible to determine the correspond-
ing pulse distortion together with resultant intersymbol interference in
carrier pulse trains and error probability in the absence of noise.

8.4 Errors from Selective Fading

As a next step in the determination of error probability, an approxi-
mate evaluation is made in Section IV of the probability of errors from
intersymbol interference with selective Rayleigh fading in the absence
of noise. In a first approximation it turns out that attenuation distortion
can be neglected in comparison with phase distortion. Furthermore, the
latter can be approximated by a component of quadratic phase distor-
tion, or corresponding linear delay distortion. Intersymbol interference
owing to quadratic phase distortion is determined for various carrier
modulation methods, and an approximate relation is derived for the
resultant error probability in the absence of noise.

8.5 Errors from Nonselective Rayleigh Fading

With transmission at sufficiently slow rates, errors can occur in the
absence of noise, owing to changes in amplitude, phase or frequency over
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a pulse interval, caused by nonselective Rayleigh fading. The proba-
bility of errors on this account is determined in Section V on the approxi-
mate basis that changes over a pulse interval are proportional to the
time derivatives of the amplitude, phase or frequency, depending on the
modulation method. Comparison with available exact solutions for
phase modulation shows that the inaccuracy resulting from this approxi-
mation is inappreciable.

8.6 Errors from Random Noise

In Section VI expressions are given for the probability of errors from
random noise with flat Rayleigh fading, as derived in various publica-
tions for different digital earrier modulation methods. In addition, an
expression is derived for error probability with rapid Rayleigh fading
in conjunction with slow log-normal fading, as encountered on tropo-
scatter links.

8.7 Combined Error Probability

In the final Section VII the combined error probability is determined
on the approximate basis that it is the sum of the error probabilities for
the three basic sources assumed above. Charts are presented from
which can be determined the approximate combined error probabilities
for binary phase and frequency modulation over a single path, and
approximate expressions are given for the error probability with diversity
transmission over independently fading paths.

8.8 Basic Approximations

The idealized model of troposcatter transmission assumed herein is of
course an approximation, as are the idealizations regarding the per-
formance of the earrier modulation methods. Even with exact mathe-
matieal analysis based on this model, the predicted performance would
not conform entirely with that observed on actual systems.

In determining error probability from the idealized model, two basic
approximations were used to obtain numerical results. One is that the
maximum departures +A from the mean transmission delay can be
determined from the beam angles taken between 3-db loss points. On
short links with narrow-beam antennas, these are virtually equal to the
free-space antenna beam angles, but for long links are greater owing to
beam broadening by scatter. The second approximation is that errors
from distortion owing to selective fading are caused principally by a
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quadratic component of phase distortion. This is the first component
that gives rise to distortion in a power series expansion of a nonlinear
phase characteristic as a function of the frequency from the carrier.

The same two basic approximations have been used in a companion
paper (this issue, part 2) in a determination of intermodulation noise in
analog transmission by FM of signals with the properties of random
noise. Theoretical predictions based on free-space beam angles are in
this ecase in reasonable agreement with measurements on two tropo-
scatter links 185 and 194 miles in length, with narrow-beam antennas.
Measurements on links 340 and 440 miles long give intermodulation
noise that would correspond to beam angles and maximum delay differ-
ences +A that are greater than for free space by factors of about 1.35
and 2.15, respectively.

The above measurements also show that as the bandwidth increases,
actual intermodulation noise will be progressively smaller than predicted
on the premise of quadratic phase distortion. Translated to digital
transmission, the error probabilities P,® owing to selective fading as
determined here on the premise of quadratic phase distortion would
represent an upper bound, that should conform well with actual error
probabilities when the latter do not exceed about 10~ in Figs. 21 and 22.

8.9 Comparison with Recent Relaled Publications

Since the completion of the galley proof of this paper an article by
Bello and Nelin®® has appeared, dealing with errors in binary transmis-
sion owing to frequency selective fading by a different analytical pro-
cedure than used here. Numerical results are presented for error prob-
abilities in dual and quadruple diversity transmission by binary FM
with dual filter incoherent detection and binary PM with differential
phase coherent detection. These results are based on an assumed Gaus-
sian correlation function, or power spectrum, of the selectivity of fading
with frequency. A comparison is made below of the above numerical
results with those obtained on similar premises from relations presented
here.

For a Gaussian power spectrum of correlation bandwidth B, as used
in the above paper, the corresponding value of ¢* in (18) is o* = 2(xB,) ™
Expression (55) applies with bs/by = o® in place of A?/3. With this sub-
stitution and with 7 = B!, expression (101) and Fig. 17 apply, with
A-B = 0.79(B.T)"", where (B.T)~!is the parameter appearing in Figs. 5
and 9 of the above paper for the irreducible error probabilities.

Binary FM with dual filter detection as assumed in the above paper
can be considered equivalent to ideal complementary binary AM over
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each of two channels. When the frequency selectivity of fading is suffi-
cient to cause errors in one or the other of these channels, the above
method is essentially equivalent to dual diversity transmission by AM
over two independently fading channels. On this basis, binary I'M with
dual diversity and dual filter noncoherent detection is approximately
equivalent to binary AM with quadruple diversity. The error probabil-
ities determined on the latter premise with A-B = 0.79(B.T)"' in (101),
or in Fig. 17, in conjunction with (172) for m = 4, conform reasonably
well with those given in Fig. 5 for dual diversity withy = O and n = 1.
Complete agreement is not possible for the reason that the results in
Fig. 5 assume a rectangular shape of undistorted pulses, whereas the
present analysis is based on a more realistic pulse shape with a raised
cosine spectrum, as indicated in Iig. 13.

In the case of binary PM with differential phase detection, the rela-
tions presented here with A-B = 0.79(B.T)! vield error probabilities
that are significantly smaller than those given in Fig. 9 of the above
paper. This is to be expected, since the present relations are based on
detection with an optimum threshold level, whereas those in the above
paper assume zero threshold, which is not the optimum owing to the
presence of a substantial bias component in the demodulator output,
when pulse distortion is pronounced.’ Moreover, the shapes of the un-
distorted pulses are different, as noted above.

It is evident from the above considerations that apparently unrelated
and possibly misleading results can be obtained unless comparisons are
made of binary modulation methods of equal bandwidths with optimum
implementation of each, as was done in Fig. 17.

The above article called attention to another paper® by the same
writers that refines Voelcker’s original analysis® of errors in transmission
over narrow-band channels owing to transmittance variations with time.
Their results show that for a Gaussian power spectrum of the fading
rate as assumed herein, Voelcker’'s analysis is exact, though this is not
true for all forms of power spectra.
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APPENDIX

Transmittance of Troposcatier Channels

Owing to the differences in path length from transmitter to receiver
via the various heterogeneities in the common volume, the various
components of the received wave arrive with different delays. For
analytical purposes it is convenient to assume a certain mean reference
path with delay 7o and to express the transmission delay via other
paths relative to the delay 7. Actually there will be a large number
of paths with the same delay T’ as the mean path and a large number
of paths for each other delay. In the present analysis the approximate
model indicated below is assumed, with a single vertical scatter plane
midway between transmitter and receiver.

The amplitude of the wave component arriving over a path at the
distance x above the mean path is taken as A(x,{) and the delay over
this path as

T(x) = To + 6(z).
The wave component arriving via this path is then
e (wt) = A(z,t) cos w[t — To — 8(x)]. (180)

Let L be the distance between transmitter and receiver and H the
height of the mean path. In this case

8(x) = s(z)/v (181)
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where » is the veloeity of propagation and s(z) the path length difference
given by

s(r) = [II‘ + (H + .r.)g]; - (%- + 112)§. (182)

In actual systems H < L. Furthermore, the maximum value £ of z is
ordinarily much smaller than H. On these premises the following ap-
proximation applies

§(x) = (2H/Lv)x = x/c (183)

where ¢ = vL/2H.
It will further be assumed that there is an infinite number of paths,
in which case the received wave becomes

i
elwl) = f A(xt) cos w(t — To — x/c) dx (184)
oy
z
= cos w(t — Tq) f [A(xt) + A(—=z)] cos (wr/c) dv
0
i (185)
x
+ sinw(t — T) f [A(ag) — A(—a,t)] sin (wx/c) dr.
0
It will now be assumed that
fx [Alxt) + A(=z )] de = 0. (186)
0

This appears to be an appropriate physical requirement, for the reason
that reflections oceur as a result of variations in the electrical properties
of an elementary volume, relative to that of the common volume. No
reflections occur with a uniform common volume. In a heterogeneous
common volume, each positive reflection must be accompanied by an
equal negative reflection, which is reflected in condition (186). More-
over, under this condition there is no reflection along the mean path of
the transmitted beam. That is, with = = 0 in (185), e(¢) = 0 provided
(186) applies.

Condition (186) can be insured if the following Fourier series repre-

A

sentations are used for v = &

o

A(z,t) + A(—xt) = Za(m,t) cos mrx/E (187)
and
Alzt) — A(—at) = i b(m,t) sin mmx/E. (188)

m=1
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With m = 1, 2, 3, ete., as above, the area under each harmonic com-
ponent vanishes, such that condition (186) is satisfied.
With (187) and (188) in (185), the following relation is obtained

e(wt) = cos w(t — T)U(wt) + sin w(t — T)V(wt) (189)

where

o0

Ulwt) = 2 almgt) fx cos mwx/E cos wr/c d (190)

m==1

Vieg) = 3 b(my) f sin mra/f sinwz/eds  (191)
Evaluation of the integrals yields the following expressions

sin (mr — wA) | sin (mzr + wA):l
g;z bA(mt) l: mmr — wl + mr + wA (192)

I

Uw,t)

o 1 sin (mr — wA) _ sin (mr + wA)
Vi) = MZ=31 $B(mt) [ pe—— pe—— ] (193)

where
A(mt) = 2a(m,t)
B(mt) = £b(m,t) (194)
A = g/e.

It will be noted that A is the maximum departure from the mean
delay T\ .

In evaluation of (192) and (193) it is convenient to introduce a new
reference frequency wo in place of 0, and to choose this reference fre-
quency such that

wlA = nm. (195)
Thus
wA = nr + uA (196)

where —7 < uA < , and u is the deviation in frequency from wy .
The functions (192) and (193) are then replaced by
_ 31 sin [(m — n)r — ud]
UGu) = 3 3AGm) {21 = nz

m=1

(197)

sin [(m 4+ n)7r + uA]}
sin (m + n)r + uA
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— sin [(m — n)r — ual
Viut) = m2=l iB(myt) { = n)r — A

(198)

_ sin [((m 4+ n)r + uA]}
sin (m + n)w + ud |’

In troposcatter transmission it turns out that m is of the order of

100 to 1000. For this reason the second terms in the above series, in
(m 4+ n)m, can be neglected. With this simplification and with m —
n = j, expressions (5) and (6) are obtained.

TExpression (189) can then be written in the form

e(wt) = r(ut) cos [w(t — T) — @(u,t)] (199)

where r and ¢ are given by (3) and (4).

The channel transmittance is accordingly given by (2).
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