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General formulae and existence criteria are derived for the diserete power
spectral densities of first-order Markov pulse trains, viz., infinite pulse
trains in which each pulse corresponds to one member of a finite set of speci-
Jfied waveforms and depends statistically on the previous pulse alone. These
results are obtained through a distribulion theorelic decomposition of the
spectral formulation given for such pulse trains by Huggins and Zadeh.

I. INTRODUCTION

An important problem related to first-order Markov pulse trains is
that of ealculating the discrete and continuous power spectral densities
of such processes. The spectral formulation first given by Huggins! and
later extended by Zadeh? is perhaps the most appropriate and straight-
forward solution of this problem, the results being conveniently expressed
in terms of the customary flow diagrams and recurrent event relations
associated with Markov systems. As regards discrete spectra, however,
their formulation lacks complete generality in two respects: (¢) the limit
notions of distribution theory, although essential for discrete components,
are not incorporated; (72) diserete components do not appear explicitly.
In this paper we reformulate the Huggins-Zadeh result on a distribution
theoretic basis, and derive both explicit relations and existence criteria
for the discrete spectral densities. It is intended also that the analysis
illustrate the distribution theoretic techniques required in cases involv-
ing more general spectral formulations.

II. BACKGROUND

The infinite pulse trains under discussion are treated as first-order
Markov processes in that each pulse is assumed to correspond in wave-
shape to one member of a finite set (alphabet) of real time functions
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g:(t), and to depend statistically on the previous pulse alone. More
precisely, we consider random processes of the form

2(t) = Xdalt =), Le(=w, @) (1)
tn < lns1 (2)
where
do(t) elgi(t) |gie Li(—w, ©);i=1,2 -+, M| (3)
Pldn = gi|duy = gj;dn2 = ge; -} = Pldn = gi|dur = gi}  (4a)

P{(tny1 — ta) S 7|dn = gi;dnpa = gi; 7 = 0} = cij(r) (4b)

with ¢, signifying the nth occurrence time, and ¢,; the cumulative transi-
tion distributions.* For fixed % and j, ¢;; gives independently of n (i.e.,
the pulse position) the conditional probability of a direct transition from
pulse g; to pulse g; within 7 seconds after the occurrence of the former.
As in related studies, the statistical and combinatorial structure of (1)
is represented by the usual flow diagram of Fig. 1 in which nodes, or
“states,” symbolize pulses g:, and directed links indicate possible
transitions. T

The flow diagram in conjunction with signal flow graph techniques
yields directly the more complex probability functions of general inter-
est.} Most important to the development here are the cumulative dis-
tributions for first occurrences or recurrences, viz.

(5)

P{(tasm — ta) < vforsomem Z 1 | dnim = g;;5dn = ¢i;
doym # gJ(m =1:,m- 1);7= 0} = qii(f)-

As indicated, ¢;; denotes the conditional probability of a first oceur-
rence (recurrence if 7 = j) of state j within 7 seconds after an occurrence
of state 7. Although less basic than ¢;; , functions g;; are entirely suffi-
cient for the calculation of spectral densities; consequently, in this paper
the set {gi;} is regarded as initially specifying the Markov process in

* Ag applied here, the terms “cumulative distribution” and “distribution”
pertain to probability theory and distribution theory, respectively.

t Zadeh? identifies the occurrence of state ¢ with the generation of a unit impulse
at node 1, the impulse in turn functioning as the input to a linear filter with im-
pulse response g; ; the corresponding responses due to all the nodes of the system
are added directly to give the original pulse train.

t The expositions by Huggins! and Aaron? illustrate in detail the various flow
diagram methods by which transition and recurrent event probabilities of higher
order are calculated.
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CiJ

Fig. 1 — Flow diagram.

accordance with the following constraints:
(7) To eomply with the usual probability conventions, we assume ¢;;
to be monotonically increasing, sectionally continuous, and such that

0= qi(r) £1, rel0, «)

(6)
ql'f(f) =07 TE(—W,O).

Under these conditions both ¢;; and the probability densities fi;(7) =
¢;’(7) exist as distributions, or generalized functions.* (Earlier in-
vestigations have used f;; exclusive of g;,.)!3

(22) For pulses to occur with certainty and at distinet times (£, <
lnt1), it is required that

gif{7) =1 (71— =) (7)
7:;(0) = ¢;;,(07) = 0. (8)

Condition (7) merely asserts that every state is accessible from every
other state, i.e., that the system is irreducible.

Assuming the specification of pulse trains x(¢) by either ¢;; or f,; and
denoting the spectral density of x(¢) by S..(f), we prove below that
my, an ordinary function f(¢) is an element of the space of distributions, or
generalized functions, provided [1 + 2]"¥f(t) & Li(— =, ) for some N = 0; more-

over, for such functions as f(t) there exist distribution derivatives of all orders
and generalized Fourier transforms.1.5.9



236 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964
S f) = Hm™ ¢ 37 37 Gi(3)G,(s) [p,- (F—(S)* + 5)
a0t TG ! 1 — Fj;(s) !

+ p; (%)]}

Gis) = j; gi(m)e Tdr = L£-g:

(9)*
where

Fij(s) = f: e " dgi(r) = f: e fii(r) dr = £-fi;

s=a+2mf, §=a—2mf, i=+/—=1, [=frequency

pi = [f Td%'*(’)]l - [1——;*(?)] - —Fw

a>0
5, = 1 G=3)
0 (z#7)

and Hm® {- ] signifies a distribution limit (cf. Ref. 4, p. 107, and Ref.
5, p. 183). The presence of lim™ and the conjugated variable § in rela-
tion (9) is especially significant, both features constituting the essential
modification of the spectral density expression given by Zadeh (cf. Ref.
2, Eq. 9, and Ref. 1, Eq. 10b). These two formulations prove equivalent,
however, relative to continuous spectra. Specifically, if f is such that
F:i(2mif) # 1, then the distribution limit reduces to an ordinary limit,
and S.. represents the same point value of the continuous spectral
density as results from Zadeh’s expression. On the other hand, analyzing
discrete spectrat requires a proper interpretation of functions

L
T— Fau(s)

in the vicinity of points s = 2xif for which Fii(27if) = 1; hence, the
notion of distribution limits is in general necessary. Another item to be
noted in (9) is the functional form of g, . Although it is assumed that
g: & Ly, one can relax this restriction in certain cases by first considering
an infinite sequence of functions ¢, e L such that g™ — g; # L
(m — ), and then performing a second limit operation on the corre-

* The quantity [Fi;(1 — F;;)™' + &:;] = Ui;(s) in (9) corresponds to the Laplace
transform of what Huggins terms the ‘‘expectation density’’ [ef. Ref. 1, Eq. (10b),

p- 80]. . .
t The term “‘discrete’’ relates to both the discrete power spectrum and the line
spectral density composed of Dirac delta functions.
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sponding density functions S,.™. An example illustrating this approach
appears in Appendix A.

The following development deals primarily with the distribution
theoretic formulation of (9) and its decomposition into discrete and
continuous components. A detailed proof of this formulation and an
analysis of the two types of components are given in Sections III and IV,
respectively. Discrete spectral density expressions for the basic classes
of first-order Markov pulse trains are derived in Sections 4.3, 4.4, 4.5,
and 4.6 (ef. Theorems 11-VI).

. THE HUGGINS-ZADIEH SPECTRAL DENSITY FORMULATION

In deriving S.., we find it convenient first to decompose x(¢) into M
separate pulse trains which consist individually of identical pulses; i.e.,
we set

oo

M
2(t) = D2 dall — 1) = 2 xi(t) (10)
i=1

Nn=—u0

where

ailt) = 20 gi(t — ")

me—sa
' & {tn | da = g1}
1 < iy

" <0 (m < 0)
'’ =0 (m =z 0).

Therefore, by standard speetral theory? S,, can be written as
Sea(f) = 22220 Seiri () (11)
i 7

where

e, (1) = tim® o BT -0

N -
sup {m|t." e [—T, T]}
inf {m |t e[=T, T}

N
M;

F = j: di et (= v/ =1).
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It is noted here that S..,, the cross-spectral density of z; and z;,
holds for both stationary and nonstationary processes.
Combined with the relation

Feair = Gi(2mif) i‘: exp (—Qﬂft,,.(")) (12)
(11) reduces to
Sualf) = 2220 Gl —2wif ) G,(2if) Sis(f) (13)

where
1 i U . .
Sy(f) = lim™ o E {Z 3" oxp [—2mif (4,9 — tm‘")]}. (14)
r 2T M; M
To transform the summation indices in (14), we let
67 — .0 = 0 >0 (15)
where integer k& = 1 indicates the number of occurrences of state j in
()

the interval (£,'”, t,'"]; further, to eliminate the variation of summation
G

indices across the ensemble, we define a weighting factor 7, = such
that
i 1; .2 and G, e[—T,T), ta? < t,?
m,k = o5 (16)

0; tn® or 4, 2 [—T,T], ' < a7,

These definitions along with condition (8) relating to distinct occurrence
times yield

Ni N' e - had hd - .
S S exp [— 27 (1P — ta )] = 2 2 nms exp (—2mif7m s )
M; M k=1 m=—c0

' o w (17)
+ 3 > g exp (2mifra ) + 8N

k=1 m=—w0

with N.» equal to the number of ocewrrences of state ¢ in the interval
[—T,T].

As random variables for the time difference between occurrences,
e are characterized statistically by the cumulative distributions
gi; . In particular, (15) and (5) imply that

Plrn ™ = 1) = qis(7). (18)
Moreover, since the quantity

qi:(f - T’)[QJ‘J'("" + A7) — QJJ'(T')I
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gives the approximate probability of two specific oceurrences of state
J within 7 seconds after that of state 7, it follows that the total probability
of all such mutually exclusive events is expressed as

Pras 5 ob = [(auts = i) = a0 (9)
0

Generally

5 (i) (k— 1; o )

I{Tm.l’ = } _/"]U ') dg;;(7") = g (7) (k=2) (20)

q‘vm(f) = g¢i(7).

At this point we introduce a basic device with which to simplify the
summations in (17) as well as justify the interchange of various limit
operations employed below. If functions g;; are specified so as to vanish
not only for + = 0 [ef. (6)] but also in an arbitrarily small neighborhood
(—¢ €), then there can be only a finite number of states in any finite
time interval (ie, P[—T = t,' £ T} = 0 for all | m | sufficiently
large), and the summations in (17) remain finite. Despite this initial
restriction on ¢,;, the spectral density proves continuous in €; conse-
quently, the resultant spectral formulation is viewed as having a final,
nonexplicit limit corresponding to ¢ — 0. Such a limiting procedure is
entirely sufficient for physical pulse trains.

For evaluating the expectation in (14), we first define

Pm(i)(t) = IJ“m(ﬂ é t} (21)
1 rz0

u(z) = { =0 (22)
0 (x < 0)

8(z) = d‘;&”). (23)

Hence, for any state ¢

T—r
llm(D) f)lj" Zf dP,.(t)

= lim® L 1 Z[ (T = 1 — 1) — w(—T — )] dPu(t)
(24)

_ . (D) i‘ n - ! _ ! - .
= lim 2Tﬁ{§f_T 5(1 tm)dt} lun2TE{ o)

= B — 1) = [ [ qu.-i(r):’_l.
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On the other hand, since

1 _ e—ar
S

‘1 -

— T (s —0)

S =7 (Res = a = 0)

the dominated convergence theorem?® yields

s I (1 —e " !
]al——nl}l Fﬁ(S) =P = l:li-ngl‘/; ( 8 )dq..(r)]
a>

a>0

. (25)
= [j; qui,;(T)] = ll;'ﬂ QIT E{N;TI .

Thus, again by the convergence theorem, there results
p‘ -/; e—!ri}'r dq:l'j(k)(f)

_ lim(D] 1 T Z fr—f dP (t) —21!":'de (lc)( ) 2
= a7 ), | & [, AP ]e g () (26)

27 =1
= lim™ L Z f I:[ de(t)] et CEQ’ij(k)(T)'

T
Fundamental to the analysis of (26) is the following distribution the-
oretic identity, a detailed proof of which appears in Appendix B:

lim® Zf —owifr dgs; (k)(T) — lim™ F‘J(S) (27)

N—+x as0t 1 — FJJ(S)

Trom (26) and (27) it is found that
N o0
lim o) Z pi j e_hih dq.‘;(k)(‘r)
N k=1 0

N 1 2T T— .
- nm‘D’ Z lim™ — 57 f [ f dP,,.(t)] ¢ dgi ™ ()

T

linTl(D’ 1 i i fﬂ" I:[T P (t)] e A ® () (28)

]g:.1 Mm=—o0

lim™ — E Z Z T exp (—2wifTm, k‘”’)}
T 2T
1"(3)
_ J
= P LI-I-I(}"' 1-— Fjj(S)'
Hence, (13). (14), (17), (25), and (28) combine to give
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Sea(f) = liml:f’ {Z 2 Gi(3)Gi(s)

(5w +2) o (2Ew)])

IV. DISCRETE AND CONTINUOUS SPECTRA

The evaluation of the distribution limit in relation (9), as shown be-
low, centers mainly on analyzing the asymptotic behavior of functions

Fij(-ﬁ‘)
1 — Fji(s)

as the variable s approaches singular points along the frequency axis,
viz., points s = 2#¢f for which F,;(2rif) = 1; the results of this analysis
together with certain general properties of #,; serve to resolve 8., into
discrete and continuous components.

Considering singularities of (30) first, one notes that

(Res = a2 0) (30)

Fi(0) = fo dq;i(r) = lim ¢;;(7) — ¢;;(0) = 1 (31)

T—*0

o0

| 175(s) | éﬁ e dq;i(t) = aj; e “qii(r)dr
- (32)
<a[ e Ydr =1 (Res > 0)
0

Fi(=2mf) = F,;(2xif). (33)

Consequently, for all processes point s = 0 is singular, points in the open
half plane Re s > 0 are nonsingular, and the existing singularities on the
frequency axis occur in conjugate pairs. In establishing notation, we
define

S;m & I8 | Fi(s) = 1; Res = 0]1

Sjnm = 2mifj. = §j—n
(34)
_f).n < fj n+1
Jio=10 J
@ —1 1
Dim = lij; rexp (—sj, 1) dqjj(T):l = - 50
Pim = Pj—n o)

Pio = pj
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Then, as in (25)
1 o0 ] —1
[ [ exp (=55m) dgis() = [ 'dq;,-(r)]

= Fius)
A [

-exp (—8jr) qu‘i(T)}

(36)

—1

1

8§ — Sjn

~

Di.n (s — sjm, Res > 0)
On the basis of this asymptotic result it is found convenient to rearrange
(30) as

Fy;(s)

1— F;(s) = Qii(s) + Riy(s) (37)

where

o =T [ Aok ] e

5+ Sin 8 — Sin

Rij(s) = Sii(s) — 22 prnTa(s) (39)
_ Fy(s)  _n Di.n

S:‘:‘(S) = 1TF_”(-S) Fu(s) ; —s ——— (40)

T.(s) = Fi,;‘z(S) [E +1 8; T3 —1.5'- ] (41)

The summations in (37) are considered for the moment to be finite and
to involve only those singularities present in a frequency interval

("fd ,‘f‘l}-

4.1 Functions @;; and R;;

It is shown next that for f € (—f4, f1) functions @;; and R;; can be
identified as contributing respectively to the discrete and continuous
spectra:

(i) That functions @;; give rise to only discrete components follows
immediately from the relation '
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Lilj})im Gi(5)G;(8)Qi;(s)

% lGi( —sz)(;j(zﬂ'if)]?ﬁ(?ﬂf)]

) REETIN: >) 2a
2 pi lim®™ a2 (f — frm)]
= HGGF i 20 piaim™ Feexp [—(a | L]) + 2mif;al] (42)

= UGG, Fi)y 2 pjnF-Hm™ exp [—(a |t ]) + 2mif; 0]
= 3GGFijly 20 pinT-exp (2mif;al)
= % G,F5)r ZPJna(f Sfim).

(72) As regards funetions R,; , we first determine the behavior of fune-
tions S;; in the neighborhood of points s; , . Substituting definition (35)
into (40) yields

v 1 Jan
o~ b [ =52 ]
— p.i'."‘pf.f fw [‘T _ 1 - exp [—(S — s}'m)T]:I
1= Fj; (Yo 8 = Sjn

exp (—sj,.7) dq,-,-(r)}

(43)

— Din ZiRAFin] F”(SJ J f 7 exp (—s;,.7) dgsi(7)

(s = 8jn,Re s> 0)

which implies that functions S;; are both bounded and integrable in
(—fa,fa), and that points s; , correspond to simple poles with residues
Pial'sj(8;n). Since functions S;; are integrable, they can contribute to
only the continuous portion of the power spectrum. Regarding functions
7. next, we note that
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Hm™ Gi(3)G,(s) Ty ¥ (s)

a-+{)

Il

o + 4x(f — fin)?
= G.GF ), lilgl(m'ff'[(#(—'t) — u(t))

1[G.G,F ) lim™ [

cexp (—a|t| + 2xif;at)]
HGGF G5 [(u(—1) — p(t)) exp (2mif;ul))

)
a7 —F S | * ( > Jim)-

34 = I7) Ut
Hence, in a deleted neighborhood of s, . , functions 7',"" appear to pre-
dominate all other terms of S... For showing that functions 7,"” in
fact sum o as to remain bounded, we set all pulses equal to zero except
one, viz., g; . If under this condition S.. becomes unbounded as f — f;.n,

then (44) and (9) give

(44)

I

Ii

GG )y |:

(i)

Soa(f) ~ p3k] G PIpinlss — Pralisil)s [ﬁ—l_f_):’
(f—fin)

However, since the factor in braces is continuous at f, ., the sign re-
versal of the unbounded factor indicates that S:. assumes, contrary to
definition, arbitrarily large negative values; therefore,

Pinl ;i (2wif;0) — PinkFii(—2w1f;a) = 0
which by (34) becomes

(45)

Pim = Pin = Pj-n (46)

[The trivial case p;,. = 0 need not be considered inasmuch as the associ-
ated terms in (37)-(41) vanish identically under this condition]. Condi-
tion (46) is sufficient as well as necessary for the ratio

Fii(2mif) — Fis(=2xif) _ (noveo y _ @i -
e = [Fjj'(sjn) — Fij'(8;,2)] + 0(f — fin)

_ [pl _ 51_] + 0(f = fim) (47)

= 0(f — fin) (f— fim)

to be bounded in a neighborhood of point f; . . Similarly, allowing two
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pulses to be nonzero and arbitrary yields
_ - —1
q ~ pipialGGFy — GGTF,, i
‘S.t:(f) p:p;.n[GsG)F J G, J]f [Qin(f — fj.n)]

+ 25 PimlGGiF i — GGF ), I:QmT—:l—}’,_):l (f = fim)

where the second term is present provided f;, = fi .. It is evident that
with the second term absent and both g: and g, arbitrary the first term
cannot be made to vanish identically at f;, ; thus

Sn (49)

(48)

Sjn = S8i,m = Sin
and
(GG lppinki; — ppinl;i]
+ GiGippinF s — pip;alii)l;, = 0. (50)
Again because of arbitrary g; and g; there results
Pl (2m0f0) = pipiaF ;i —2mif,). (51)
As in (47), this is a necessary and sufficient condition that (48) be
bounded in a neighborhood of point f = f;. = f. ; thus, for f & (—f., fa)
functions 7,”, S,;, and sums R, ; contribute to only the continuous
spectrum. It is important to note that although the use of R,; is neces-
sary for an appropriate decomposition of S, , the complete continuous
spectrum can be obtained directly from relation (9) with f # f, [ef.

(9) et seq.]. Nevertheless, from a computational standpomt functions
R:; might be more suitable.

4.2 General Formulation for Discrete Specira

At this point we consider in detail both formulae and existence eriteria
for the discrete spectral density. With respect to the complete spectral
density, the substitution of definition (37) into (9) gives at once the
decomposition

Self) = Tim ' (220 Gi3)Gi(s)pius(s) + P.Q(3)])

+ nm;‘j’ {_Z pi | Gils) [P 4+ 2207 [piRis(s) + pjzah-(s)]} (52)
a—> i 1 ]
where according to the properties of functions Q;; and Ri; [ef., (42),

(51) et seq.] the first term in braces consists of discrete components only,
and the second is bounded for f e (—f,, f4). Consequently, on letting
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8. (f) denote the discrete spectral density in the interval (—fa, fa),
we obtain

S () = lim® (32 Gi(3)G(s)pQus(s) + PiQi(8)| (53)
which by (42), (46), (49), and (51) becomes
Sa(f) = § L2 GGy pil's 2 piabd(f = f)
+ pil s Z Pind(f + f,,)]
2.2 GG [Pl 22 piad(f = fa)
+ pallis 2 pind(f + 1) | (54)
ZJZ GGFij 2 pipsad(f = fi)

=2 [ZZ PpsnGi( —2mif)

n

I
B3

Il

- G;(21rif)F,-j(2vrif):|5(f — 7).

Since the interval ( —f, fa) is arbitrary, the sum over n in (54) can be
extended as a distribution limit to include all the singular points along
the frequency axis; hence, this expression represents the general formula
for the discrete spectral density. In the sections immediately following,
formula (54) is applied to the two fundamental classes of first-order
Markov pulse trains: entirely random and stochastically uniform pulse
trains.

4.3 Discrete Spectra of Entirely Random Pulse Trains

We define the processes under discussion to be entirely random if for
at least one state ©

qii(t) = qu(7) + kz aPulr —

fii(r) = qi'(7)

I

Gl (1) + 2 oa@a(r — ') (55)
k
0 £ a’,;.”"’ é l

éii(w) + kzak“i} — 1
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where §i; is either continuous and strictly inereasing in some interval
(TA ’ TB), i.e.

Gi' (1) >0 7€ (74, Ta) (56)

or ¢; vanishes identically and the set of parameters 7, consists of two
or more incommensurate elements. Processes of this class are character-
ized more completely by the following theorem:

Theorem I: A pulse train is entirely random if and only if for any state i

Fii(2mif) = 1 (f=0)

57
Fi(0) = 1. 60

For such processes all first recurrence distributions q.; have the same form.
Proof: The second condition of (57) is merely a restatement of the gen-
eral result given by (31). To establish the sufficiency of the first condi-
tion, we consider the only possible form for ¢;; not representable by (55),
viz.

0

qii(1) = Z a;.-““,u('r — kT;)

fulr) = X aw(r — 1T0). o8
This yields
Fo(2mif) = ;a‘.“”e(—Qﬂﬂch) (59)
whence
Fa (217; %) =1 (n=0,=%1,---). (60)

Therefore, any ¢;; satisfying (57) must be representable by (55), and the
process entirely random. To establish necessity, we consider (55) to be
satisfied for at least one state 7. Under condition (56)

TR . THB ) ,
f e—2r1jr dQﬁ(T) f e—?nfré“_ dT

T4 TA

TR TB
< [Tadir = [Tain (5 0)
T4 T4
whence

| Fo(27if) | <f di(r) 4+ 20 ' =f dgi(7) = 1 (f # 0).
0 k 0
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On the other hand, with §;; = 0 and " incommensurate

| Fa(2mif) | = | ;ak“’"’ exp (—2mifr) | <1 (f#=0).

Thus, (57) is necessary for state 7. Finally, since Fy(27if;n) = 1 and
fim = fu for all i [ef., (31), (34), and (49)], the realization of (57) for
any ¢i; necessarily implies the same realization and consequently the
same form for all gi; .

Theorem I, although essential to the treatment of discrete spectra, is
not the only test for identifying entirely random processes; a somewhat
more direct test is afforded by the cumulative distributions c;; . In par-
ticular, functions ¢, have form (55) provided at least one of the functions
c:; does also. This fact follows from a basic property of irreducible
processes, viz., the property that each density fi; = ¢i'(7) equals a
speciﬁclc;ombination of positive sums and convolutions of all the densities
G"J"( T) L

As regards singular points s, and discrete spectra, it is clear from The-
orem I and (34) that the point s = so = 0 constitutes the only singularity
of entirely random processes; therefore, the formulation given by (54)
becomes

8. U(f) = [;; PfPi.on(O)Gj(O)Fu(O)]Mf) (61)
[Z; pfp;G,-(O)Gj(O)]B(f).

This expression leads immediately to the following result:
Theorem I1: The discrete spectral density of entirely random pulse trains is
given by

S0 (f) = {f: LZ pl-g.-(z)] dt}2 8(f) (62)

which vanishes if and only if

[: [Z p,'g,-(t)] dt = o. (63)

Comparing (62) with (54), we note that Theorem II applies to the
(1), or de, component of all the processes treated in this paper.
4.4 Discrete Spectra of Stochastically Uniform Pulse Trains

Processes not classified as entirely random are defined here to be
stochastically uniform. It is evident that the only first recurrence dis-
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tributions representing the uniform process, i.e., satisfying neither defini-
tion (55) nor the criteria of Theorem I, must be of the form

!1-'-'(?) = kzakm)ﬂ(‘f - ]CT-‘)
=]
0" =1 (64)

Z a ™ = 1

k

where parameters 7'; are assumed to have the largest values possible,
Under this specification

Fi(2nif) = ;ZIa,..“"’ exp ( —2wifkT;) (65)
Hence, on letting 7, denote the state for which
T, =T, (t=1,---, M) (66)
we find that all the singular values f, satisfying
Fiyig(2mifa) = 1 (67)
are given by
fo=g (= 0,%1, ). (68)
i
Furthermore, since
Fi(2mif,) = 1 (69)
for all states [cf. (34) and (49)], then
T,=Ti=T (i=1---,M) (70)

which in turn implies that all /;; are periodic over an interval of length
T, and all functions ¢;; have the basic form

gii(7) = 2 ' u(r — &T). (71)

k=1

Considering also relations (65), (68), and (35) it is seen that

Pin = [; Ta,k-[m:ll = Dio = Pi. (72)

Finally, results (68), (70), and (72) combine with (54) to give the
following theorem:
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Theorem I11: The discrete spectral density of stochastically uniform pulse
trains 1s given by

S22 ()
= [‘Z:JZ pip,Gil -Zﬂf)Gj(Qﬂ“if)Fﬁ(Qﬂf):Iﬂg_j(f —n/T) (73)

T = n/fa
F‘,(Zﬂfn) = 1

which vanishes if and only of

[ZZ p.p,-G'.-G,-F.-,],,,T =0 (n=0,=%1,--) (74)
or if

I:Z':; P-‘P:‘G-‘G;'F-‘f]f =0 (—o <f<®) (75)

At this point we consider a special but very important subclass of uni-
form pulse trains, namely, that of uniformly positioned pulses.

4.5. Discrete Spectra of Uniformly Positioned Pulse Trains

Pulse trains are defined to be uniformly positioned over a reference
interval of length T if the time intervals between successive pulses can
assume only the discrete values kTo(k = 1, 2, ---), i.e., if function ¢;;
take the form

gi;(1) = Z dk(ﬁ)#(‘n" — kTy) (i,j=1,++,M)

k=1

0<a'” =1 (76)

Z i =1

k

where T, constitutes the maximum value for which this representation
is valid. With ¢;; so specified there results

Fi;(2nif) = ijak‘”’ exp (—2mifkTo) (77)

Consequently, for a particular state ¢ the condition

a]tk'(ﬁ) >0 (k! - 1, 2, .. )
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'™ =0 (k = KE') (78)

holds for some maximum K = 1, the corresponding function F;; is
periodic over an interval of length (KT,)™", and the singular values f,
satisfying (69) are given by

n n
= wm = 7 (79)

In addition, as values f, are independent of 7, condition (78) must for all
states hold for the same value of K, the specifie value in any particular
case being determined either from one set of coefficients a,“", from (79),
or from the recurrence pattern associated with one node of the flow
graph. For all K = 1, relations (77) and (79) yield the general condi-
tions

P (2m' %)
n
Fa‘: (211'1 K_'Fu)

n+ K\ o ™
F (Zm Kl" )—F.,(-ﬂm)

Combining these conditions with (79) and Theorem III, we obtain

(@) — i P ANAN IR 3
Se(f) = Lﬁsz,p,e,(;}r.,]f 2 5( ATU)

n=—00

I
—

Fiu(2wif,) = 1

_ :E > p,.pjé,-GjF,-j} >3 (f e ;{Lﬂ)

k=0 n=—a0

Th=—0

=22 p.-p;G';G] Z 5 (f — 1’:) (81)
+ ,g {[Z Z pip i =270 f) G270 f)

k = n k
N _n_ kAL
Fs ( ™K Tn):l ,.;m 5 ( Ty KTD)}

The following theorem is based on this last expression:
Theorem IV : The discrele spectral densily of pulse trains uniformly posi-
tioned over a reference inlerval of length Ty is given by
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2 - n
DIRIEEY

K—1 k

4+ Z {[Z Z pipii( —21r’if)G,‘(2m‘:f)Fij (2#?: —):’
k=1 i j KTB

> n I
Zol-1-2n)]

n

Tofal (K2 1; d,j=1,---,M; n=0, %1, ---) (82)
Fii(2mifa) = 1

$.9( ) = ] 5 p6u(2rif)

K =
which vanishes if
> pigs(t) = 0 (83)

.ok *
Zi: ; 0Pl (27”, KT,O) [m g;('r)gj('r +t)dr =0

(k=1,-,K—1).

(84)

A special case of Theorem IV is noted as follows:
Theorem V: The discrele spectral densily of uniformly positioned pulse
trains corresponding to K = 1 s given by

. 2 = n
Sn:(d)(f) = Z piGi(z‘ﬂ'@f) ‘ ﬂ;w o (f - .FlTu)

(85)
fu = Ty

which vanishes if
2 pgit) = 0. (86)

Titsworth and Welch® have proved Theorem V for special pulse trains
in which pulses are nonoverlapping and transitions occur every Ty
seconds. This theorem is also implicit in the classic work of Bennett on
synchronous pulse trains [cf. Ref. 10, Eq. (35), p. 1509].

4.6. Aaron’s Discrete Spectral Formulation for Special Classes of Pulse
Trains

The analysis in Sections 4.3 and 4.5 yields the following theorem, a
result first obtained by M. R. Aaron:?
Theorem VI: The discrete speciral densily of entirely random pulse irains
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and uniformly positioned pulse trains for which K = 1 [¢f. (78) et seq.] is
given by

2
S () = 2 {Res [Z Gi(s) Uﬁ(sﬂ} o(f — fa)  (8T)*
where

Uji = Fill — Fa]™ + 85 (88)
and Res [-] denotes the residue of the quaniity in brackets al s = s, =

2mif, .
Proof: From relations (36), (72) and Theorem I we find that

Res [g (s )[f:':{"((;'))} = PG 2mif) Fri(2mif.) (89)

8n

for either the entirely random or K = 1 ease. On the other hand
Fi(2mf,) =1 (s, 7=1,---, M) (90)
in both cases [ef., (79) and (80)]; thus,

Res[ 2 (.;l-uj,] = 2 il 2mifa). (91)

in

Inserting this expression into either (61) or (85) gives formula (87).

V. SUMMARY

Theorems I through VI, which constitute the principal results of the
preceding sections, give explicitly the discrete spectra of first-order
Markov pulse trains. As presented, these theorems provide fundamental
existence criteria for not only the analysis but also the synthesis of such
processes. It is important to emphasize again that the distribution the-
oretic techniques employed in extracting diserete components from the
Huggins-Zadeh formulation are applicable also to more general spectral
formulations.

VI. ACKNOWLEDGMENTS

The author wishes to express his appreciation to M. R. Aaron, B. K.
Kinariwala, and M. Karnaugh for several fruitful discussions and com-
ments during the course of this work.

* Huggins has shown that the sum »_; G;U ;; represents the Laplace transform
uglthe average signal following the occurrence of state j [cf., Ref. 1, Eq. (23a), p.
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APPENDIX A

Entirely Random Square Waves

For illustrating the techniques that often apply to cases in which
g: £ L1, we consider a random square wave process of the form

x(f) = a ,.Z (—1)" Mt = tas) — w(t — ta)]  (92)
(1) = y(t) = 2a 2 (—1)"8(t — ta) (93)

where y represents a two-state pulse train with pulses related by
th = —f2 = 2(15“) Fan

(94)
a = constant > 0

and an entirely random statistical structure (cf. Section 4.3) specified
by Ci2 , Co1, and

Ciy = C2 = 0. (95)

(Note that states 1 and 2 can be identified with the +a and —a portions
of the square wave z.) Thus, in accordance with definitions (4b) and (5)

iz = C12, gn = Cu
m = f: cra(r — 7)den (7') = g (96)
whenee
Fu = Fyp = FuFy
(97)

Il

o0 . 1 _
y 4 f; T d{[u(f) = m()‘)‘ =P =D
We next construct a set of “smooth” approximations to x; i.e., we
smooth out the corners and discontinuities of each of the pulse trains z
into a sequence {x.(t)} of continuous waveforms such that
Sex(f) = lim™ S, .. ()  (m=1,2--+)

m—>0

(98)
:B”.’(t) = ym“) — Z (—1)"g“")(£ _ {n\

where
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g(m) e Ll
lim™ ¢'™ = 2a5(1) (99)
g(?ﬂ) — gj(m) — _gg(m;‘

Since pulse trains y, and y have the same transition properties and
therefore the same statistical specification ¢;;, the former process is
classified as entirely random; it then follows from the condition

Zpsgstm) — p(gl(m) + 92(m)) =0

and from Theorem II [ef. (62)] relating to entirely random pulse trains
that S,,,, has no discrete components. Consequently, relations (9),
(97), (98), and (99) yield

45 *S2( ) = Hm®™ [’ 2822, ()] = Hm™ Sy, (1)

= lim™ {2;0 |G (2xif) |

(1 - Fm)(l - Fm)]}
R
e[ 1= Fafn s

(1 = Fp)(1 = Fm):l
1 — Fply A

(100)

= 8pa’ Re I:
The most general function S, satisfying this last expression is given by

_ 2pa’ (1 = F)(1 — Fy) I
S=(1) = o Re[ e ]f + K(t) = Ko8'(f) (101)

where the first term on the right represents a continuous component, and
constants K, and K, are to be determined. As spectral densities must be
even functions, K. = 0. Regarding the discrete term, constant K, is the
square of the de, or average, component of x; hence, with

a Lw rdep(r) — a j: T den(r)
j: T d{hl('r)

ave [x(1)] =

(102)
= ap {j; 7 dlge(r) — 921(7)]}

= ap [F'(0) — Fy'(0)]
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(101) becomes
213412 Re [(1 - F:?)(l — le)]
1r2f2 ]. - Fqu]_ /
+ a'p'[Fu’(0) — Fi'(0)6(f).
It is important to note here that the discrete component in (103) arises

from the pulse structure of x and not from the singularities of [1 — F.
A more extensive treatment of this particular pulse train has been given

by Aaron."

Sulf) = (106)

APPENDIX B

A Distribution Identity

Essential to the formulation of the spectral density is the relationship
between functions F';; and the limit of

kE_qu;”"(f) = yn(7) (104)

as N — = [ef. (11) and (18)]. It is convenient to consider initially the
integral

fﬂ " yw(r) dr = 2x(r). (105)

Inasmuch as functions ¢, and, consequently, yx are sectionally con-
tinuous, then

zv'(7) = yn(7) (106)
almost everywhere in the classical sense or identically in the distribu-
tion sense. Also, with ¢i;" = 0 [ef. (20)] function yy = 0, and

0 < zn(7) < zn(7 + A7) (ar > 0)
0 = 2x(7) = z2wa(7). (108)

Considering the limit conditions on sequence {zy}, we note first from
definition (20) and the properties of Stieltjes convolution® that

j:n ¢ " den(r) = g j:o o d[fuf 6% (r) dr:l

N
1 _
= kZ_; :S_Fl'i(s)Fjjk 1(3) (109)
N N
_ Fiyll — Fy _
_k=1T[———1“Fjj (ReS—O!>0).
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Therefore, the inverse Stieltjes transform™ yields

atico i
an(r) = ‘i ! [ Fy ]e" ds

27t Ja—im ;1 1 — Fﬂ
N i (110)
R b | [—F"f’"ﬁ :le"ds
278 Jami SP1 — Fjj '
Finally, since (6), (8) and (9) imply
rF,'j(S) l § j; (?_m dq;‘j(f) = o:_/; G—Q,-q"_,'('r) dT
. (111)
<af e dr =1 (¢ >0, 4,7=1,---, M)
0
then
1 fﬂ+i°° 1 [ FU :| 87 Fﬁ(s)
— = 2 ds | £ sup | — 55—
l?ﬂ a—iw S 1 — Fy; ¢ ] fpdfl — Fji(s) (112)
'[m az__i_——w < ® (ﬂf > 0)
atin " N T N w0
‘Lf ]q[Ft'Jrn' :leﬂ ds| < sup F,J(S)F” (s) f _ df __
2t dain $*[L1 — ]‘j_,' i 1 — F,-,-(s) —uoa'+41r)f' (113)
» 0 (a >0)
N — o

and, hence, the limit

atico o
lim zy(7) = 1 1 l: s :lc" ds = z(7) (¢ >0) (114)

N—ow 2 a—im 81 — FJ'J'

exists. Relative to the asymptotic properties of function z we obtain
from (25), (114), and (107) the conditions

Yooy L Fyls)  ps
j(; ¢ dr-(T) = El———m ? (S — 0, a > 0) (115)

2(r) £ 2(r + A7) (Ar > 0) (116)

which by Karamata’s Tauberian Theorem® give
) ~B? (o). (117)

This asymptotic result together with (112) and (114) implies that
(14 77%2(7) € In(— 0, ). (118)
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Thus, function z is a proper distribution, or generalized function (ef.
footnote, Section II and Ref. 6, pp. 21-23). In addition, since

0 = zw(1) = 2wvplr) = 2(7) (119)
then
m® zx(7) = 2(7). (120)

The funetional properties of z as given by (112) and (117) imply also
that

Hm® ¢ “z(7) = 2(7) (a > 0). (121)

a-»0

In combining (104), (105), (106), and (120), there results

D)

F.2"(r) = im"™-F-2x"(7) = im™ .5 yx'
N N

N 0
- lim™ ’;fo g2 inj(k)(‘T)- (122)

N

On the other hand, (114) and (121) give

2
F-2"(r) = &'f-—d—-lim(m [e z(7)]
d1'2 3

2
F-lim™ {(g-r_? + 2a % + az) [z r)]}

o

= 1im™ {[(2mif* + 2a(2mif) + o°IF (e 2(r)]} (123)

lim®™ ('F-[e 2(7)]}

oo Fu(s)
- lm': 1 — Fj(s)’

We finally obtain from (122) and (123) the following identity

N o0 _ “N .
im™ > f ¢ dgi;®(r) = Lim™ Fiy(2mi f)I:M]
N=cwo k=1Y0 N 1 - Fj,'(sz
o) (124)
i (D) ii\8
= T e
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APPENDIX C

Definitions of symbols

a(t) — ef. equation (1) S () — (53)
w(t)  —(10) P, —(9)
du(t) — (1) Din — (35)
tn — (1) F — (11)
tw'” — (10) £ —(9)
gi(l) —(3) plx) —(22)
Gi(s)  —(9) 5(x) = w'(z) — (23)
55 —(9) bis —(9)
Sjim = 8 — (34), (49) Qi;(s) — (38)
a —(9) Riy(s) —(39)
f —(9) Sii(s) — (40)
fim = fa — (34), (49) T, (s) —(41)
cii(7) — (4b) T —(73)
gii(r)  —(5) T — (76)
;" (r) — (20) K — (78), (82)
F{,‘(S) —(9) U,‘,‘(S) — (88).
Se( ) — (9), (11)
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