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The subject of traveling-wave maser design s reviewed and a first step
towards an analytical design procedure is presented. A method is derived
Jor caleulating the upper and lower culoff frequencies of a comb-type slow-
wave structure of stmple geometry. It is based on the electromagnetic field
pattern and the equivalent impedances which are calculated for these fre-
quencies, both for the dielectrically loaded and the empty comb structure.
The design procedure resulting from these calculations permits the predic-
tion of a dielectric loading geometry that shifts the upper and lower cutoff
frequency of the empty comb to new, lower values which can be arbitrarily
© specified within certain limitations. Frequencies calculated by this pro-
cedure are compared with the results of measurements, and it is found that
culoff frequencies can be predicted to belter than 10 per cent.

I. INTRODUCTION

In the early development of the traveling-wave maser (TWM),! the
design procedures used were largely empirical. Short TWM model sec-
tions were built, tested and modified in order to meet the desired per-
formance specifications. By this cut-and-try method, a satisfactory de-
sign was finally derived which was applied in the construction of
full-length TWDM’s.

However, a more satisfying approach is possible if the relevant the-
oretical aspects regarding the maser active material, the ferrimagnetic
isolator and the electromagnetic behavior of the slow-wave structure
are known, either rigorously or approximately. Then a TWM can be
designed on the basis of analysis before actual construction. Most at-
tractive in the analytical approach is the inherent flexibility and versa-

* This work was supported in part by the U.S. Army Signal Corps under Con-
tract DA 36-039-sc-85357.
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tility. Thus, a large number of design ideas may be explored and a near
optimum configuration can be found before any hardware is built.

The present paper is a step in the direction of a more analytical ap-
proach. Using reasonably accurate approximations to the field pattern
at both cutoff frequencies, the equivalent TEM line impedances, the
“offective” dielectric constants and, finally, the cutoff frequencies are
caleulated. This results in a numerical design procedure for the TWM
structure. The analysis is made for a comb having fingers of rectangular
cross section and for dielectric loading with maser material in the form
of one or two rectangular parallelepipeds as shown in Fig. 1. Compari-
son of cutoff frequencies calculated by this method with experiment
shows agreement to usually better than 5 per cent.

TOP CROSS SECTION END CROSS SECTION

PERSPECTIVE VIEW

Fig. 1 — Typical comb structure.
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1.1 The Significance of Cutoff Frequencies in TWM Design
Consider the TWM electronic gain formulal
G(db) = 27.3(—x")fFl/v, . (1)

Here (—x") is the inverted susceptibility of the maser active material,
f the signal frequency, F' the filling factor, ! the length of the maser
structure and », the group velocity. The TWNM net gain is obtained by
subtracting from (1) the slow-wave struecture loss (copper loss) and the
ferrimagnetic isolator loss (ferrite loss).

In the development of a practical TWM, the design frequency f and
the structure length [ are generally determined by the application. The
susceptibility (—x") is a property of the active material which eannot
be theoretically predicted and must be experimentally determined.
(—x") is redefined as

_X” — IXD” (2)

and the quantities I and x,” are determined by two independent measure-
ments. Here, I is the inversion ratio, i.e., the ratio of electronic gain
from the activated maser material to electronic loss in the same material
at thermal equilibrium. J. E. Geusic and W. J. Tabor have earried out
inversion measurements for ruby maser material in a helix test structure,
and the method and results will be described in a forthcoming paper.”
The susceptibility at thermal equilibrium, x,”, is measured by standard
resonance techniques’ or may be calculated from the material composi-
tion and linewidth. In this way, —x” can be determined to about 10
per eent, which is adequate for the present design procedure. Complica-
tions can arise in practice, however, if nominally identical crystals show
variations in the active ion concentration or in the erystalline perfection,
The filling factor I may be factorized into two expressions

F = F,F, (3)

o= ([ wnrraa]/liur [nra] @
F,,=|:fM|H|2dA]/|:L[H2!dA] (5)

Here, p is the magnetic dipole moment associated with the maser signal

where

and
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transition and H is the RT magnetic field in the TWM structure. The
asterisk * denotes the conjugate complex time dependence. The integra-
tion is performed in the cross-sectional plane where M denotes the cross
section of the maser material and A the total structure cross section.
F, may be called the polarization efficiency factor and F, the volume
filling factor. F', expresses the excitation efficiency of the signal transi-
tion by the RF magnetic field present in the maser material. For example,
if both u and H are of circular polarization in the same direction, then
F, is unity. Similarly, for maser material symmetrically loaded on both
sides of the comb and with a circular transition perpendicular to the
finger direction, a symmetry argument shows that F, = 14. F', indicates
what fraction of the total magnetic field energy is contained within the
maser material. F, and F, are functions of frequency across the pass-
band of the comb structure. Usually, however, it is sufficient to consider
F at some midband frequency where it is only a slowly varying function
of frequency.

Experience suggests that it is possible to estimate F to fair accuracy
from the TWM geometry and a qualitative estimate of the RF magnetic
field pattern. For example, it is estimated that in TWM’s designed in
this laboratory for 5.6, 4.2, 2.4 and 1.4 ge the filling factor F varies over
the relatively limited range from 25 to 45 per cent. Thus, from the view-
point of the analytical design of the TWM, a detailed computation of
the RF magnetic field configuration is of no great value unless the other
factors entering the TWM gain formula are known with comparable
accuracy.

Up to the present time, this was not the case, the factor least amenable
to analytical prediction being the group velocity v, . It is well known
that a wave traveling through a slow-wave structure has field com-
ponents varying like exp [i(wt — Bz)], where w = 2xf, ¢ is the time, 8
the phase propagation constant and z the length coordinate along the
structure. In the comb structure, each finger is an energy storage element
capable of resonant storage in the same way as a quarter-wavelength
coaxial resonator. As a general rule, the phase shift between adjacent
elements may assume values between 0 and == as the frequency is
varied across the passband. The phase shift values 0 and =7 are as-
sociated with the cutoff frequencies. The comb structure is normally a
forward-wave structure, where -+ is the phase shift at the upper cutoff
frequency and 0 that at the lower. It is possible (although not of practical
importance in TWM design) to make the comb a backward-wave
structure, in which case — is the phase shift at the lower cutoff fre-
quency and O that at the upper. In the normal forward-wave comb
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structure, the phase propagation constant then varies from 8 = 0 to
B8 = (N — 1)x/l across the passband, where N is the number of fingers
and [ is the structure length measured between centers of the first and
last finger. The group velocity is given by

vy = dw/dp. (6)

Typical diagrams of 8 as a function of » are shown in Fig. 2(a). As the
curves approach the cutoff points, they assume infinite slope, correspond-
ing to zero group velocity. There is a range at midband, however, where
the group velocity is fairly constant. These graphs are typical of most of
the structures studied but exceptions occasionally were found, as in-
dicated in Fig. 2(b). These exceptions include backward-wave structures
where phase and group propagation take place in opposite directions,
They also include “mongrel” structures where, over part of the band,
@ is a double-valued function of w; these, therefore, are forward and
backward at the same time. This latter case is a very undesirable one;
as discussed in Ref. 4, the existence of two propagation modes at the
same frequency, one a forward wave, the other a backward wave, allows
for propagation with gain in both directions despite the presence of an
isolator. As a result, the maser will oscillate instead of offering stable
gain. Empirically, however, this situation can be easily diagnosed and
there are remedies to rectify it. Therefore, double-valued w-8 relations
may be excluded from the present considerations.

With this proviso, it can be seen from Fig. 2(a) that the midband
group velocity can be estimated reasonably well from a knowledge of
the two cutoff frequencies alone, viz.

v, = 2aAfl/(N — 1) = 2aAfAl (7a)

Here Af is the frequeney width of the passhand, Al is the center-to-center
spacing between comb fingers and a is a numerical factor which takes
into account the detailed shape of the w-3 curve. Equation (7a) may be
rearranged in terms of the group velocity slowing

L/“‘) i. (7b)

indicating that slowing is partly a geometric effect, i.e., the compression
of a half wavelength into one period of the structure, and partly the ef-
fect of compression in the frequency domain, sometimes expressed by a
loaded Q. a assumes values of one for a straight line «-8 relation, 1.57
for an inverse cosine, and may in practice be as high as four for a
“sagging” w-f curve. In other words, the uncertainty in estimating the
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Fig. 2 —(a)Typical forward w-g diagrams of loaded comb structures with nor-
malized cutoff frequencies. (b) Exceptional w-8 diagrams found in comb structures
with extreme dielectric loading.
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group velocity or slowing from the cutoff frequencies is not very large,
usually less than a factor of two.

Thus, it is clear that a method for caleculating the two cutoff frequencies
would be an important first step towards an analytical design procedure.
Such a mathematical method should be carried out as rigorously as
possible. The reason for this may be demonstrated in the following way.
If fringe capacity at the finger tips and dielectric loading effects are
neglected, the comb structure is electrically equivalent to the Easitron™
structure. In this approximation, the comb would be a zero passband
structure with identical cutoff frequencies like the Easitron. In reality,
they differ only because fringe capacity and dielectric loading affect
both frequencies to different degrees. Thus, the width of the passband
Af is obtained as a small difference between large numbers, the upper
and lower cutoff frequencies, fy and f., . To obtain Af with fair accuracy,
Jv and f; must be known with good accuracy. Similarly, a small change
in the dielectric loading may change fr and f;, each by a small percentage,
but Af by an appreciable factor. Experience has shown that comb strue-
tures with different dielectric loadings may have a passband width Af
anywhere between 1 and 50 per cent of the midband frequency. In other
words, as long as the cutoff frequencies are not known, the uncertainty
in an estimate of », may be almost two orders of magnitude. The compu-
tation of the cutoff frequencies would be very useful if it could reduce
this uncertainty to about a factor of two. Besides determining the group
velocity and hence, indireetly the electronic gain, the cutoff frequencies
also define the center frequency and the tunable bandwidth of the TWM.
Since it is impossible to matcha structure right up to the cutoff frequency,
the useful tunable band is well inside the structure passband Af. An
analytical design procedure that allows a reasonably accurate prediction
of the cutoff frequencies would clearly be desirable, as center frequency
and tunable bandwidth are among the primary TWM specifications.

1.2 The Function of Slow-Wave Structures in Electron Beam Tubes and
TWM’s

A considerable amount of work, both theoretical and experimental,
has gone into the study of slow-wave structures for tubes. It would be
gratifying if this knowledge could be used in TWM work. Unfortunately,

* The Easitron was analyzed by L. R. Walker, unpublished manuseript, quoted
in Ref. 1. This structure consists of a rectangular waveguide with an array of uni-
form, identical conductors in the H plane connecting both short walls, It has zero

assband, nonpropagating resonances of frequencies where the conductor length
18 one or more half wavelengths.
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this work has only limited applicability to the TWM. This is more readily
understood if slow-wave structures for electron beam tubes and for
TWM'’s are compared. '

In tubes, slowing factors between 10 and 100 are typical, while in the
TWM, slowing of 50 to 1000 is used. This difference influences primarily
the mechanical tolerances, which are tighter for higher slowing.

A more fundamental distinction concerns the applicable slowing con-
cept. In an electron beam tube there must be synchronism between the
electromagnetic mode propagated on the slow-wave structure and the
interacting mode characterized by a charge distribution on the beam.
Therefore, the analysis of tubes is concerned with the phase velocity of
the slow-wave structure mode. Similarly, in a traveling-wave parametric
amplifier there must be synchronism between pump, idler and signal
propagation, requiring a phase velocity relation for these three fre-
quencies. In filter circuits the condition of synchronism is usually satis-
fied only over a small fraction of the total structure bandwidth. By
contrast, the amplification by the maser material does not depend on the
existence of phase relations along the TWM structure. The maser
material may be considered as an incoherent, long-time energy reservoir
from which energy is withdrawn upon stimulation by an incident signal
and added to the incident signal in a coherent phase preserving fashion.
The function of the slowing is merely to “give the signal more time” to
interact with the energy stored in the maser material, i.e., to enhance
the stimulating gain interaction. Thus, the analysis of TWM’s is con-
cerned with the signal group velocity in the structure rather than phase
velocity. It is not necessary that v, be constant over the tunable band.
If the gain over the tunable band is required to be constant, then the
produet —x”Ff/v, (neglecting copper and ferrite losses) should be con-
stant over the band. Experience has shown that this condition can be
met over almost the entire passband.

Another point is the interaction mechanism between the active ele-
ment and the slowing structure. An electron beam interacts with a strue-
ture mode via the RF electric field, and the interaction is conven-
tionally represented by an interaction impedance. The interaction of the
inverted spins in the maser material with the structure mode takes place
via the RF magnetic field, and its strength is measured by the filling
factor.

All the differences mentioned have no bearing on the question whether
the knowledge of slow-wave structures accumulated in studies directed
towards electron beam interaction can be applied to TWM structures.
For example, the degree of slowing is not essential for a theoretical anal-
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ysis, the group slowing is easily derived by differentiation from the phase
propagation, and electric and magnetic interaction terms can be obtained
equally well from the field analysis.

The chief difference in slow-wave structures for these two applications
lies in their relation to dielectric loading. In a tube, dielectric loading is
undesirable and is usually avoided as far as possible. By virtue of its
dielectric constant, the glass envelope of a TWT, for example, drags
away from the beam some of the electric field energy carried by the helix
and thus reduces the gain interaction. In fact, most studies of slow-wave
structures for beam tubes pertain to metal structures surrounded by
vacuum.

Dielectric loading, being an undesirable side effect for tubes, is an
essential and rather beneficial feature in maser structures. Since the gain
interaction is magnetic in nature, the interaction of the electric field
with dielectrics may be used to advantage without deteriorating the gain
interaction. Indeed, it is being used for reducing the over-all maser size,
tuning the band center frequency, adjusting the tunable bandwidth or
increasing the gain by increased slowing (of course, the items mentioned
are not independent). Thus, a high degree of design flexibility can be ob-
tained, even with the identical copper comb, merely by changing the di-
electric loading.

For this reason, dielectric loading must be included in any treatment
of TWM structures. The present paper is a first contribution to the the-
oretical treatment of maser structures taking dielectric loading into ac-
count. To keep the mathematies reasonably simple, the maser comb ge-
ometry, including the dielectric loading, was chosen to be fairly simple.
In the laboratory, dielectric loading techniques were developed in which
the loading consists of more than one dielectric and has more complex
shapes. Work to be published by F. S. Chen has generalized the analysis
to take these modifications into account. It also expands the present
analysis of the cutoff frequencies into a more general one which allows
the prediction of the entire w-3 diagram. This will be particularly valua-
ble in finding eriteria to avoid structures having a double-valued “fold-
over” or “mongrel” w-8 diagram.

II. GENERAL PROBLEM AND APPROACH TO SOLUTION

The problem is to find by analysis the upper and lower cutoff fre-
quencies of the comb-type slow-wave structure as used in a traveling-
wave maser (TWM). In particular, this implies taking into account the
dielectric effect resulting from loading the comb with maser material or
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possibly some other dielectric material and the effect of the fringe ca-
pacity at the tips of the comb finger. It was pointed out before that, in a
zero-order approximation neglecting both effects, the comb is a zero
passband structure.

In the course of this treatment it will be necessary to introduce a num-
ber of restrictions and approximations. These are mostly required in
order to keep the mathematics manageable. Some other restrictions are
introduced in order to have the geometry underlying the calculations
correspond to the type of TWM geometry which is presently investi-
gated in the laboratory. These various restrictions and approximations
are labeled with lower-case roman numerals for reference in this discus-
sion.

(i) The first restriction perlains lo the cross section of the comb fingers.
The treatment used here is applicable only to combs with fingers of rectangu-
lar cross seclion.

This means that it is not possible to apply this type of analysis to a
comb having round fingers as used in the original TWM’s. It may be
mentioned here, however, that it is possible to treat the round-finger
comb as long as certain simple frequency or impedance data are available
from measurements on scale models, resistance cards or measurements
in the electrolytic tank.

Besides being better suited for mathematical analysis, there is another
justification for treating combs with rectangular fingers. This has to do
with fabrication of combs. There is indication that it is possible to
fabricate combs with rectangular fingers not only with greater ease but
also with greater perfection. The subject of these fabrication techniques
may be discussed at some later date.

A typical comb structure as treated here is shown in Fig. 1. The fingers
shown are of square cross section and are spaced by a finger width. It
should be emphasized that the general method used here is applicable
to any rectangular cross section and spacing, although a great many of
the computations are concerned with square fingers spaced by a finger
width.

(#%) The next restriction is that maser material (or some other dieleclric)
is inserted inlto the comb in the shape of a single rectangular parallelepiped.

The restriction to parallelepipeds is rather definite. There is a possi-
bility, however, of considering more than one slab of maser material
loading the comb. No change in the general analysis is required if two
identical slabs are considered which are loaded symmetrically on both
sides of the comb. This is shown in Fig. 3(a). The analysis could be carried
out also for the case shown in Fig. 3(b) where the maser material is in-



TWM COMB STRUCTURE CUTOFF FREQUENCIES 447

ST
7 7

\

AN

N\

N
7.

\ AN

A
1

(a) (b)

Fig. 3 — Loading geometries.

serted in the form of two pairs of identical slabs. It should be mentioned,
however, that the calculation will be appreciably more cumbersome in
this case. Although it will not be described in detail, it will be fairly ob-
vious to the reader how the calculations have to be modified to take into
account geometries like the one of Fig. 3(b).

(@e) A further simplifying assumption is that the dielectric loading is
assumed to have an isotropic dieleclric constant, al least for field components
perpendicular to the finger direction.

This assumption is not too restrictive. An effective dielectric constant
may be estimated in the case of a tensor dielectrie constant. This estimate
will usually be different for either cutoff frequency, since it depends on
the electric field configuration. As the tensor components are always of
the same order of magnitude, the estimated effective dieleetrie constant
should turn out to be sufficiently accurate for most cases of practical
interest.

No provisions have to be made for magnetic permeability. Outside the
maser signal line, x” = 1 for the maser material. Even within the fre-
quency range of the signal line, the deviation of 4" from unity is so small
that it can be neglected for all practical purposes as a factor influencing
the cutoff frequencies. A similar reasoning applies to the ferrimagnetic
isolator. Even though the values of " — 1 are larger there, they are less
effective due to the very small ferrimagnetic filling factor.

The starting point for the calculation is the phase shift. At one cutoff
frequency the phase shift between fingers is zero. This has the conse-
quence that an instantaneous electric field pattern within the comb may
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look like Fig. 4(a). Usually, although not necessarily so, this is the case
at the lower cutoff frequency, ., . Throughout the paper this case will be
referred to as the “lower cutoff,” although the term ‘zero phase shift
case” would be more appropriate. The field pattern is repetitive and
shows no field lines from finger to finger since they are on the same po-
tential. It is symmetric with respect to a cross-sectional plane in the
structure which contains either the center line of a finger or the center
line in the space between two fingers. Therefore the same field pattern is
obtained with a single finger if the section of the comb containing this
finger is enclosed by a “magnetic wall.” A magnetic wall is a fictitious
plane on which the electromagnetic field components obey boundary
conditions such that the electric field is tangential and the magnetic field
normal to the plane. These boundary conditions are opposite from those
on a perfect conductor. The perfect conductor is closely approximated
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Tig. 4 — Field patterns showing phase shift conditions.
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in experiments by high-conductivity metals, whereas the magnetic wall
is a mathematical model only. Since the field patterns of Figs. 4(a) and
4(c) are identical, the frequencies will be the same, too. Thus the lower
cutoff frequency of the comb can be found as the resonant frequency of
the one-finger structure in Fig. 4(c).

A similar reasoning applies to the upper cutoff frequency fv . Here the
phase shift is = between adjacent fingers. An instantaneous field pattern
will therefore look like Fig. 4(b). Since adjacent fingers are subject to
opposite potential, there are strong electric field components going from
finger to finger. The field pattern is symmetric with respect to a cross-
sectional plane in the structure which contains the center line of a finger,
but antisymmetric with respect to a cross-sectional plane which contains
the center line in the space between two fingers. Thus the same field
pattern can be realized on a single finger if the section of the comb con-
taining the finger is enclosed by a perfectly conducting (or metallic) wall.
This wall will take the place of the plane of antisymmetry in the comb.
This is illustrated in Fig. 4(d). Again, identical field patterns require the
same frequency. Thus the upper cutoff frequency of the comb can be
found as the resonant frequency of the one-finger structure in Fig. 4(d).

The method of determining the resonance frequeney of either one-finger
model, that of Fig. 4(c) or 4(d), is suggested by Fig. 5. The finger acts
essentially as a quarter-wave TEM resonator. At the comb base, this
TEM line is terminated in a short. At the finger tip the TEM line is
terminated by a nearly perfect “open.” This is only slightly modified
by fringing electric fields between the finger tip and the surrounding
walls. The effect of these fields can be lumped into a fringe capacity C.
In prineiple, €' will be different for both cutoff frequencies.

Unfortunately, both capacities C'y and €', cannot be caleulated easily.
Therefore, measurements have been made in an analog electrolytic tank
setup. A scale model having the cross section of the one-finger lines in
Figs. 4(c) and 4(d) was built. This cross section is shown in Fig. 6(a) for
the upper cutoff frequency and in Fig. 6(b) for the lower. In the elec-
trolytic tank the electric field lines of the object under study are simu-
lated by the current lines in the tank fluid. No approximation is involved
in this analogy. In particular, it is possible to simulate a magnetic wall
like that of Fig. 3(c) by an insulating wall. This is done in the cross sec-
tion used in the lower cutoff analog measurement shown in Fig. 6(b).
In the analog measurements, the metal configuration was first lowered to
the insulating bottom of the tank as indicated in Fig. 6(c). The resistance
measured between electrodes in this fashion is proportional to the im-
pedance of the corresponding TEM mode of the one-finger line; it is
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inversely proportional to the capacitance of the line. For a second meas-
urement, the finger was raised to the proper scaled height and a metal
plate was placed on the bottom of the tank. The inverse of the resistance
so measured is proportional to the capacity of the appropriate length of
one-finger TEM line plus the fringe capacity arising from the diverging
field pattern beyond the end of the finger. [See Fig. 6(d).] The conduc-
tivity of the tap water used was measured also. From these measure-
ments it is possible then to evaluate the fringe capacity as well as im-
pedance and capacitance of the TEM mode on the one-finger line.

In Fig. 7, the fringe capacitance values C'p, for the lower cutoff fre-
quency and Cy for the upper cutoff frequency obtained from the tank

0.10
0.09
0.08 \
0.07

\ \

\\ \

CU AND Cl_ IN MICROMICROFARADS

0.05 — \\
\ \
0.04
\.ﬂ,_\&- CU
"'——\

0.03
0.02
0.01

0

] 10 20 30 40 50 60 70
d IN MILS

Fig. 7 — Fringing capacitance Cy, for lower cutoff frequency and Cy for upper
cutoff frequency. The geometry of the comb used includes fingers of cross section
0.040 x 0.040 inch, spaced 0.080 inch on center in a housing 0.240 inch wide (ratio
Wu/Dy = 1.25). Capacitance is plotted vs spacing d between finger tips and the
opposing housing wall.
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measurements are shown as a function of the distance d between the
finger tips and the opposite waveguide wall. The data are valid for fingers
of square cross section, Dy/2 X Dy/2 = 0.040 X 0.040 inch, spaced
center-to-center by Dy = 0.080 inch and contained in a housing of width
2Wy + Dy/2 = 0.240 inch (aspect ratio Wy/Dy = 1.25). The Wy and
Dy are the dimensions of the empty comb, as shown in Fig. 9 in Section
III. It should be mentioned here that these data can be applied to
dimensions other than those indicated if one observes two facts. First,
if all linear dimensions are scaled simultaneously by some factor, the
capacity is scaled by the same factor. Second, experience has shown that
the fringe capacity is a very slow function of the ratio Wy/Dy ; no
noticeable errors were found when these capacity values were used for
Wy/Dy values ranging from 0.75 to 1.5.

Another experimental method to determine the fringe capacity is
based on the availability of either a comb structure of exact size or a
scale model. The upper and lower cutoff frequencies, fgr and fgr, , of the
empty, unloaded structure are measured by direct measurement. The
result of the measurement can best be expressed in terms of a new ef-
fective finger length, Ly or L; . This is based on the fact that a trans-
mission line of physical length L/, shorted at one end and terminated
with a small capacity at the other, is electrically equivalent to a some-
what longer transmission line which is shorted at one end and open at
the other. The effective finger lengths are different for both cutoff fre-
quencies

c

LU = 4}_: = L + Al[} (Sﬂ)
c ’
Li= ff= = L' + M. (8b)

Here ¢ is the velocity of light.

The relation between these length dimensions and the fringe capacity
involves the characteristic impedance of the line. The fringe capacity
follows from

b !
-—-——1 = ZEU tan _————TrfEUL = ZEU cot —2waUAlU (98.)
211'ng0[] C C
and
I) ’ ‘
‘_._l_z ZBL tani’”"i.: ZELcot,zr'fE—LAlL_ (gb)
2‘1TfEL,OL [ c
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For the particular structure geometry investigated here in detail, the
fringe capacity was determined using these equations and the character-
istic impedances derived later in this section. The values of 'y, and Cy
obtained agree well with these from the tank measurement.

For the subsequent calculations it is assumed that the new effective
lengths, Ly and L, , are known. If, instead, the fringe capacities, C'y and
C., are known, the new effective lengths can be calculated using the
impedances Z gy and Z g, . Since the capacities are small, (9a) and (9b)
can be approximated by

Aly = ZgoCuc (10&)
AlL = ZELCLC. (10]3)

In this fashion, the problem of Fig. 5(b) is reduced to that of Fig. 5(c).
The cutoff frequencies, f;, and fv , are found as resonance frequencies of
a transmission line L, or Ly long, where one end is shorted, the other
open, and a length [ is partially loaded with dielectric.

The field pattern in the unloaded part of the transmission line is rigor-
ously a TEM mode. Therefore, the impedance of this line can be found
by a resistance card or an electrolytic tank technique. The electrodes are
shaped for the model in the same way as the conductors in the unloaded
TEM line. Then the impedance of the line is simply equal to the re-
sistance measured in the model provided the resistance per square is
adjusted to or scaled to 377 ohms. In addition to this measuring tech-
nique, these impedances, Z gy and Zxy , will be determined analytically
below. This involves a calculation with good accuracy of the electric field
pattern.

The dielectrically loaded section of the transmission line would, if
treated with the same rigor, require a much more involved procedure.
Therefore, at this point an approximation is introduced.

(i) The field configuration in the loaded part of the transmission line
can be treated as a TEM mode.

In reality, this is not true. An exact solution of Maxwell’s equations
for a TEM-type transmission line having a cross section partly filled
with dielectric is not a TEM mode. Instead, the process of matching
boundary conditions requires the presence of longitudinal field com-
ponents. It can be seen, however, that these longitudinal components will
become smaller with decreasing frequency and vanish in the zero fre-
quency limit. Thus this approximation implies the representation of a
dynamie field configuration by its static analog. The accuracy of such
an approximation, therefore, tends to be better the shorter the linear
dimensions involved are with respect to the wavelength. In the range of
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dimensions used here it is expected that no appreciable loss of accuracy
is incurred in this connection.

The consequences of treating the field configuration in the loaded part
of the one-finger model as a TEM mode are far-reaching and very helpful
for the subsequent analysis. Considering the same metal boundaries as
in the unloaded part, the field configuration in the loaded part has to be
the same. This follows from the fact that the TEM fields are given as a
unique solution to Laplace’s equation for the appropriate geometry.
Thus one way to treat the loaded part of the one-finger model, consistent
with a TEM mode in the same geometry, is by an effective dielectric
constant. This allows for a reformulation of approximation (iv):

The part of the transmission line loaded partially by a high dielectric
constant material can be treated as if it were loaded uniformly throughowt
the cross section with a material of a lower “effective” dielectric constant.

This effective dielectric constant will, of course, be different for the
upper and lower cutoff frequencies. Using these effective dielectric con-
stants, & and &,, the impedances and propagation constants of the
loaded section are related to those of the empty section by

ZDL = ZEL/‘\/E_L ZDU = ZEU/\/E_;; (11)
Bor = Ve Bes Bov = Ve Bru . (12)

Here the first indices & and D refer to the empty and dielectrically
loaded line, the second indices L and U to the lower and upper cutoff
frequencies. The propagation constants in the empty TEM line are, of
course, identical to that in vacuum

Ber = (2mfr/c) Brv = (2xfv/c). (13)

Assuming for the moment that the effective finger lengths, Ly and L, ,
the characteristic impedances of the empty line, Zzy and Zg; , and the
effective dielectric constants, &, and &, , are known, the cutoff frequencies,
fv and f., can be calculated. The procedure is to match voltage and
current at the boundary between the loaded and unloaded section of
the line. This results in impedance equations

Z g cot BE!":LU — 1) = Zpy tan BDUZ (]43.-)

ZEL cot .Bp“‘(LL - 1) = ZDI. tan Bn[,l. (14[))
These are rewritten in a more convenient form
_ T L\ fuv
£ : 1 — — )= 1
Vew tan[ Vg — - f,,,,]t n [2 ( Lu) fw] (15a)
&, = tan [ ‘\/eL ] tan [E (] — i) &] . (15b)
: LL fgL 2 LL fEL

Il
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These equations are identical for lower and upper cutoff frequencies.
They do not contain the characteristic impedances explicitly. They are
solved in the following way.

/&y or V%, is considered a given parameter. Then the frequency
ratio fu/fsv or f1/f . is a function of I/ L. or I/ Ly . This function requires
the solution of transcendental equation (15a) or (15b). Numerical
values were obtained by machine computations using the IBM 7090.
The results are plotted in Fig. 8.

This graph can then be used to determine the upper and lower cutoff
frequencies of the loaded comb structure. It is assumed here that the
upper and lower cutoff frequencies of the empty comb, fzv and fx. , and
connected with them, the effective finger lengths, Ly and L., are known.
They are best determined by measurement, but they could also be cal-
culated from the fringe capacity and the characteristic impedance. The
quantity yet to be evaluated is the effective dielectric constant, & and
&1, , before the cutoff frequencies can be read from the graph in Fig. 8.
Tt will be necessary, however, to work out the electric field pattern within
the unloaded comb, then in the loaded section, including the respective
characteristic impedances, before the effective dielectric constant can be
obtained.

II1. FIELD PATTERN AND CHARACTERISTIC IMPEDANCE OF UNLOADED COMB

3.1 Upper Cutoff Frequency

The electric field pattern of the unloaded one-finger model will look
about like Fig. 9(a). This geometry is, unfortunately, too complicated
for a closed analytical treatment. On the basis of the geometry and the
mathematical tools at hand, the following approach may be suggested.
The area available to the electric field is divided into four regions, two
equivalent regions of type A and two equivalent regions of type B, as
shown in Fig. 9(b). Two further approximations are then necessary.

(v) The electric field in the regions A can be represenled as a homogene-
ous, parallel plate condenser field.

(vi) The electric field in the regions B can be represented by the field pro-
duced by an infinitely thin metal fin inserted in a rectangular enclosure of
corresponding dimensions.

These approximations are illustrated in Figs. 9(c) and 9(d). Along the
joints of regions A and B the field thus assumed is discontinuous. In
reality, it is inhomogeneous near the boundary of region A, and it is
less inhomogeneous than assumed near the boundary of region A because
there is only a 90° bend, not a 180° bend as in the model used. These
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discrepancies of the field model from what would be expected should in
reality be very small, particularly if the gap between finger and wall, the
dimension W, = 3(1 — r)Dy defined in Figs. 9(a) and 9(e), is small
compared to other dimensions. This is so in cases of practical interest.

As far as the impedance is concerned, the two regions A and the two
regions B are in parallel. The impedance of a region A is simply the ratio
of its dimensions multiplied by free-space impedance. The impedance of
region B is not as easily found. It is possible, however, to use a conformal
transformation which maps the region B into a parallel plate geometry.
This is schematically indicated in I'ig. 9(e). The transformation actually
utilized consists of the consecutive application of two transformations,
each using elliptical functions, The procedure, including the mathemarti-
cal details of the conformal transformation by elliptical functions, is
outlined in the Appendix.

It is known from the theory of conformal mapping by functions of
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Fig. 9 — Analysis for upper cutoff frequency: (a) real field patterns, (b) re-
gions used for analysis, (c) homogeneous field assumed in region A, (d) fin field
assumed in region B, (e) fin field equivalent to homogeneous field.

complex variables that the geometry is preserved in infinitesimal regions.
In particular, it is clear that infinitesimal squares with boundaries
formed by field lines and equipotential lines continue to be squares.
Since the impedance can be thought of as composed of the impedance of
these infinitesimal squares, partly in parallel and partly in series as in-
dicated by the over-all geometry, it follows finally that the impedance
of the two transmission lines of Fig. 9(e) is the same.

The geometry before transformation is characterized by the two ratios:
Wyu/Dy and 7. Thus W'/Dy' will be a function of both of these ratios.
So far only combs with r = } have been investigated in practice. For
convenience, therefore, the subsequent calculations are carried out for
this value of r. This implies a further restriction.
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(vit) In the numerical calculations lo follow, only comb geometries with
the finger width as large as the gap belween fingers are considered,

From a mathematical point of view, this restriction is somewhat
arbitrary. Any other choice of r, the ratio of finger width to length of
period, however, would necessitate another application of the elliptie
integral conformal transformation.

With r = &, W¢'/Dy/ is a single-valued function of Wy/Dy . This
function is plotted in IFig. 10, An interesting feature of this graph is that
Wo'/Dy' goes asymptotically to i; it reaches this value to within 2 per
cent at Wy/Dy = 0.65. The physical interpretation of this observation
is as follows. For Wy/Dy > 0.65, essentially all the field lines originating
at the center fin in Fig. 9(d) terminate on the side wall; none reach the
opposite end wall. Therefore, this wall can be moved out toward infinity
with no noticeable effect on the impedance at the upper cutoff frequency.

The characteristic impedance of the empty structure at the upper
cutoff frequency can now be given. It is

Zoy = 377 0hms/(2&+2D']
W 4

W'

An important special case is one where, first, Wy/Dy is greater than
0.65 so that the asymptotic value W,'/Dy’ = % applies and where,
second, the fingers have a square cross section so that W,/D, = 3.
Then the characteristic impedance is simply

(16a)

Zoy = § X 377 ohms = 47.1 ohms. (16b)
o8
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Fig. 10 — Conformal transformation for upper cutoff.
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Since the partial impedances are equal, it also follows in this case
that the total stored energy is equally distributed between the four
regions A, A, B, B. This remark may be helpful in estimating the filling
factor.

3.2 Lower Culoff Frequency

The procedure here is quite similar to that in the case of the upper
cutoff frequency. The field pattern is illustrated in Fig. 11(a). The
cross-section area available to the electric field is divided into four re-
gions, two electrically equivalent regions of type A and two regions of
type B, ag shown in Fig. 11(b). Again two approximations are required.

(viti) The electric. field in region A is so small that it can be neglecled.
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Fig. 11 — Analysis for lower cutoff frequency: (a) typical electric field pattern,
(b) regions used for analysis, region A assumed field-free, (c) fin field assumed in
region B, (d) fin field equivalent to homogeneous field.
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(ix) The electric field in region B can be represented by the field produced
by an infinately thin metal fin inserted into a rectangular enclosure with ap-
propriate dimensions and boundary conditions.

It is apparent that the approximation (vi7) is justified. Only very
small fringing fields will exist in region A. The implication of approxima-
tion (4z) is indicated in Fig. 11(¢). It should also be very well justified,
since there is no essential difference between the idealized field pattern
and the real one. Region B can be transformed into a simple parallel
plate geometry. This is indicated in Fig. 11(d). The transformation
again consists of two consecutive conformal mappings by means of el-
liptic functions. The procedure is outlined in the Appendix. The imped-
ance of region B is simply given by the aspect ratio W,//D,’ of the
parallel plate geometry resulting from the transformation, multiplied by
the free-space impedance. This resulting ratio W,'/D,’ is a function of
two ratios, » and W/D. For mathematical convenience and because of
practical importance, only comb geometries with r = 14 are considered
in the subsequent caleulations. For other ratios r, a new evaluation of
the elliptical transformation is necessary. Thus restriction (vi7) is in-
voked here, too.

(vit) In the nwmerical caleulations which follow, only comb geomelries
with the finger width equal to the gap width between fingers are considered.

The single-valued funetion W,.'/D." of W./D, with the parameter
r = 3 is shown in Fig. 12. The characteristic impedance of the empty
structure at the lower cutoff frequency is then given hy

1%
Zm:, = == ¥ 377 ohms. (173)
2D,

Aslong as W, /D, > 0.2, it is seen from the graph that this can be
approximated by

Zop = 1 (& + 0.11) 377 ohms. (17b)
2 DL

The asymptotically linear curve in Fig. 12 and this last equation suggest
an almost obvious interpretation. The electrical behavior of region B is
essentially the same as that of a parallel plate geometry having the same
width D" = D, , but a slightly greater distance between plates, W,’ >
Wy . Also, the asymptotic slope for the curve is unity. Considering a
geometry with W /D > 0.2, this would mean the following. If W is
increased further, the electric field pattern near the fin stays the same,
while the added volume away from the finger is taken up by a homo-
geneous electric field,
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IV. CAPACITANCE AND EFFECTIVE DIELECTRIC CONSTANT OF COMB PAR-
TIALLY FILLED WITH DIELECTRIC

It was mentioned that the electromagnetic field configuration in the
comb line partially loaded with dielectric should be treated as a TEM
mode. It was pointed out that this is equivalent to finding a static solu-
tion of the electric field problem. Thus the problem here is to find the
static value of the capacitance per unit length of the loaded finger line.
The difference in electrical behavior of the loaded line compared to the
unloaded line is then fully expressed by an effective dielectric constant.
This effective dielectric constant is simply the ratio of the static capaci-
tance of the loaded line to the capacitance of the unloaded line.
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4.1 Upper Cutoff Frequency

The field pattern in the presence of one dielectric slab is illustrated in
Fig. 13. It is seen that the dielectric is present in one of the regions called
B before. The usual boundary conditions for the continuity of the tan-
gential £ vector and of the normal D vector have to be observed in
fitting together the electric field pattern inside and outside the dielectric.

At first sight it seems that no difficulty is incurred in this respect at
the boundary of the dielectric. In the model chosen for the field con-
figuration, the field lines run parallel to the boundary both in regions A
and B. The boundary condition for tangential electric field seems to ap-
ply, with the consequence that the field pattern remains the same in the
dielectric as before in the unloaded region B. Calculations are based on
this assumption, and they are presumably of sufficient accuracy for
present purposes.

There is a small error in this assumption. It was pointed out before
that the two models chosen to represent the field in regions A and B do
not match at the boundary. In the models, the field in A is homogeneous,
that in B strongly inhomogeneous. The real field at the boundary of A
and B should be somewhere between these two extremes. It is expected,

Q)
()

Fig. 13 — Electrie field pattern at upper cutoff with dielectric loading present.
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therefore, that the error in the impedance calculation of the empty comb
at the upper cutoff frequency is negligible. The same is not necessarily
true in the presence of dielectric. The real, inhomogeneous field in the
region near the boundary of A and B will be disturbed by the insertion of
dielectric. The deviations of the real field from that used in the calcula-
tions — homogeneous in A, elliptic function field in B — are now ac-
centuated by a high dielectric constant rather than evened out as in the
empty comb. This will lead to an error in the calculation of the capaci-
tance and the effective dielectric constant. Hence it is not trivial that
the approximations (v) and (v7) are still reasonably good in the presence
of dielectric. Fortunately, it can be argued that the error incurred by this
approximation is still negligible within the accuracy sought for here and
with respect to typical structure geometries and dielectric constants
considered. A formulation of the approximation follows.

(z) In the presence of dielectric loading, the static electric field can still
be represented by a homogeneous, parallel plate field in region A and the
field of a metal fin inside a reclangular enclosure in region B filled by the
dielectric.

The next concern is the other boundary of the dielectric away from
the finger. Here the field lines cross the boundary at all directions be-
tween tangential and perpendicular. It would be very difficult to apply
boundary conditions to this field pattern. Therefore another restriction
is introduced.

(zi) The calculation is restricted to dielectric loadings thick enough so
that essentially the total electric field energy of region B is contained within
the dielectric.

The numerical implication of this restriction follows directly from
Fig. 10. It is assumed that the fingers are as wide as the gap between
them. From the graph the following fact can be deduced. If a geometry
is considered where Wy is considerably larger than Dy , then 98 per cent
of the electric field energy is concentrated in a rectangle near the finger,
Dy wide and 0.65 Dy deep. Restriction (27) thus implies that only di-
electric slabs which have a thickness of at least 0.65 times the length of a
period of the comb are considered.

Fortunately, this restriction does not exclude any cases of practical
interest. Since the field configuration on the finger is treated here as a
TEM mode, the filling factor in the plane perpendicular to the finger
is the same for the dielectric and the magnetic field energy. Thus, slabs
thinner than indicated by restriction (z7) would also have a reduced gain
interaction near the upper cutoff frequency, since not all of the magnetic
field energy of region B would be contained in the maser material. Gain
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is still at a premium in present TWM development, and thus it does not
seem to be necessary to treat cases other than those restricted by (7).

It is now possible to write down the capacitance and the effective di-
electric constant. By comparison with (16a), it is seen that the capaci-
tance per unit length of the empty one-finger line is

D D
Cpy = eu[ﬁﬁ +2W—"U,:|. (18)

(Lower case ¢ is used to distinguish this quantity from the fringe ca-
pacity C'y.) With dielectric loading on one side of the finger

cow = 60[2%;+ (e+1) ﬁ,”;,] (19a)
Similarly, if the dielectric is loaded on both sides of the finger
cw=eu,:2%’i—{—2e%:|---. (19b)
The effective dielectric constant is then simply, for loading on one side
év = [(e + 1) + 2b]/[2 + 2b] (20a)
and for loading on both sides
&v = (e+ b)/(1+0) (20b)
with
b = DW'/W.Dy. (21)

Most important perhaps for present applications is the case where, first,
the fingers are square so that (16b) applies and where, second, the di-
electric is ruby with an isotropic average dielectric constant of e = 9.
In that case, for loading on one side

&v = o (22&)
and for loading on both sides
&y =5 (22]3)

4.2 Lower Cutoff Frequency

The field pattern in the presence of one dielectric slab is illustrated in
Fig. 14. The dielectric fills part of the region called B before. For the
evaluation of the capacitance it is significant that restriction (a7) is
applied here, too. Then the following approximation e¢an be made.
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Fig. 14 — Electric field pattern at lower cutoff with dielectric loading present.

(xit) In the presence of dielectric loading, the static electric field can be
represented in the following way: There is zero field in region Aj; in the
dielectric there is a field like that produced by a metal fin in a rectangular
enclosure, having the dimensions of the dielectric and subject to appropriate
boundary conditions. The field past the dielectric is a homogencous parallel
plate field.

It can be argued that these approximations are well justified. There
is no potential difference between fingers; hence region A should be field-
free except perhaps for some very small fringe fields. In connection with
17(b) it was shown that the field has its inhomogeneities near the finger,
whereas the field region near the wall is reasonably homogeneous.

The capacitance per unit length of the loaded one-finger model can
now be given. For the empty line it is

CerL = QGQ(DL’/WL'). (23)

For the loaded line, the capacitance is obtained from two contributions
in parallel, one from each side of the finger. The capacitance of the loaded
side comes from two contributions in series: one from the dielectric, in-
volving an elliptical transformation using the dimensions of the dielectric,
and one a parallel plate contribution from the space behind the dielectric.
Thus, for dielectric loading on one side
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~ [b) Wy Wg>“
CpL = € I:W —+ (m + -53— (24&)

and for loading on both sides

w, W
Cpr = 250/(6DD’ + _D—E) . (24b)
D E

Here Wy and Dj are the physical dimensions of the dielectric cross see-
tion per one-finger line, W, and D the dimensions of the empty space
behind the dielectric. W,'/Dy’ is obtained from W /D, by means of the
elliptical transformation illustrated in Fig. 11.

The effective dielectric constant can now be evaluated as the ratio
¢oi/cer . The formulas, however, turn out to be fairly long. They are
given here, therefore, only for the case that the approximation in (17b)
is valid both for the empty structure and the dielectric. It is further
observed that

Dy =Dyp=Deg=D
and
Wy=Wp+ Wg.
Then the effective dielectric constant for dielectric loading on one side is

. 1 2eW, — (e — 1)W, + (e 4+ 1)0.11D (25a)
=7 W, — (e — DWo + 011D

and similarly, for loading on both sides

. Wi+ 011D
LT EW, = (e— )W, +011D°

It is seen that the effective dielectric constant is a function of ¢, Wp/ W,
and D/W . Once a particular structure geometry has been picked, then
D/Wy is known. If a particular maser material is selected, e is known.
Then &, is a unique function of the relative loading thickness, W,/W .
One example of such a function is given in Fig. 15. For convenience in
using the graph of Fig. 8, the square root /%, is given instead of & .
Curves for effective constants based on other parameters can easily be
caleulated using either (25a) or (25b).

(25b)

V. EXAMPLE FOR DESIGN PROCEDURE

In Sections IIT and IV the empty and the dielectrically loaded comb
structure were evaluated. Field pattern, impedance and propagation
constants were obtained for both the upper and lower cutoff frequencies.
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With this information at hand, it is now possible to arrive at a numerical
design procedure. The aim is to predict the cross-sectional dimensions of
a dielectric parallelepiped which will simultaneously tune the upper and
lower cutoff frequencies of the comb structure to some predetermined
values. Of course, it is not possible to ask for completely arbitrary design
cutoff frequencies. Obviously there are limits to the amount of tuning
which can be achieved by a given dielectric material within a given comb
geometry. These limits can also be determined easily by the analysis.

The design procedure follows the outlines given briefly at the end of
Section II. Tt ean now be deseribed in general terms. Perhaps it is ad-
vantageous, however, to illustrate the procedure by means of an ex-
ample. The example to be described is a case of a “design on paper.”
That is to say, the design calculations can be made entirely on the basis
of caleulable values. It is not necessary to fabricate a size or scale model
of the comb structure under consideration in order to determine certain
values by measurement. The only empirical value required is the fringe
capacity between finger tip and the structure enclosure; this may be ob-
tained from Fig. 7.

One interesting and valuable feature of the design procedure is that of
independently setting the upper and lower cutoff frequencies. This is
possible because the upper cutoff frequency can be controlled by adjust-
ing the height [ of the dielectric loading alone, and because it is not de-
pendent in any way on the dielectric thickness W5 as long as Wp ex-
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ceeds a certain small minimum value. Then the dimension W, can be
used to control the lower cutoff frequency independently.

As an example for the design procedure, a comb structure is considered
with the following dimensions:

(a) finger length 0.400 inch

(b) spacing between fingers 0.040 inch

(e) finger cross section 0.040 square inch

(d) wall-to-wall spacing of enclosure 0.240 inch.

As further information, the fringe capacity was measured in an electro-
lytie tank model and was found to be (see Fig. 7 for gap spacing greater
than 70 mils):

(e) fringe capacity (', = 0.025 pul", Cy = 0,035 puk.

The problem considered is that of finding the dimensions for a single
ruby parallelepiped which brings the upper cutoff frequeney to 4200 me
and the lower cutoff frequency to 3210 me.

Iirst step: Find effective finger length at the upper cutoff frequency of
the empty comb.

Equation (10a) applies for the increase in length and (16b) applies
for the impedance; thus

Al[’ = ng'('('(f

—12

= 47.1 X 0,025 X 1077 X 3 X 10"
= (.035 em.
The effective length for upper cutoff is then [see (8a)]
Le =1L+ Aly
= 2,54 X 0400 + 0.035 = 1.051 em.

This eorresponds to an upper cutoff frequency for the empty comb [see
(8a)]

fm' C,’I'LL U

7150 me.

Thus the design specification

Jo = 4200 me
is eqquivalent to specifying a ratio of

Te/fee = 0.587.

Second step: Find in an analogous way the effective finger length at
the lower cutoff frequency of the empty eomb.
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Equation (17h) applies for the impedance. From the dimensions given,
W, = 0.100”, D, = 0.080", hence

LW, -
ZEL = 5 (D——L + 0.11) 377 Oth

= 256 ohms.
The addition to length is given by (10b)
Al = ZgiCre
= 256 X 0.035 X 107% X 3 X 10"
= 0.268 cm.
The effective length for lower eutoff becomes
L,=L + Al
= 0.400 X 2.54 + 0.268
= 1.284 ecm
corresponding to a cutoff frequency for the empty comb
fer = ¢/4L.
= 5840 me.
The design specification of
fr = 3210 me
is thus equivalent to specifying a ratio
fu/fer = 0.55.

Third step: Satisfy the upper cutoff frequency specification by choos-
ing an appropriate dielectric height I without regard for Wp , the thick-
ness of the loading. This is possible because, as mentioned before, the
effective dielectric constant at the upper cutoff frequency is independent
of loading thickness. The effective dielectric constant, &y, for one-sided
loading with ruby is 3 from (22a); thus

Consulting Fig. 8 for the dielectric height which makes fu/fev = 0.59
with the parameter 1/, , it is seen that

ZJ//L v = 0.9“.
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Hence, the dielectric loading height should be
[ =096 X 1.051 = 1.010 em
= 0.398”

In other words, the dielectric loading height turns out to be very nearly
the same as the finger length,

Fourth step: Satisfy the lower cutoff frequency specification by choos-
ing an appropriate thickness W, of the dielectric loading. This is done
by the following successive measures.

From the loading height [ just determined find

l/L, = 1.010/1.284
= 0.79.

Enter the graph of Fig. 8 with I/L, = 0.79 and f./fz. = 0.55. The
value interpolated at the point having these two coordinates is

Ve, = 2.22.

The graph of Fig. 15 is valid for present calculations; entering this last
value into the graph it is found that

Wy =W,
hence
Wp = 0.100 inch.

The final answer, then, is that the comb deseribed initially will have
the specified cutoff frequencies if a slab of ruby of height 0.398 inch and
of width 0.100 inch is inserted.

An experiment was carried out to cheek the results of this caleulation.
The two cutoff frequencies of a comb as specified above were measured
after inserting a single slab of polyerystalline high density alumina (di-
electric constant ~9.3) with cross-sectional dimensions of 0.400 inch and
0.100 inch. The cutoff frequencies measured were 4200 me and 3210 me
respectively. These frequencies were then specified as design frequencies
for the above example. The close agreement between the actual dimen-
sions of the alumina slab and those calculated by the present recipe is
gratifying. It may be argued, however, that the obtained agreement is
somewhat fortuitous. In particular, one should expect that the fringe
capacity is altered if the dielectric loading extends all the way along the
fingers up to the finger tips. To investigate the accuracy of the present
analysis, a series of systematic measurements was made.
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For this study a number of short sections of comb structures were
built and tested. They all had finger dimensions of 0.040 X 0.040 X
0.445 inch, and the fingers were spaced 0.080 inch on center. The struc-
tures were loaded symmetrically with two slabs of high-density poly-
crystalline alumina (dielectric constant quoted to be 9.3) of full finger
height. The geometry and the result of the measurements are shown in
Fig. 16. In two series of measurements, the fraction of the housing width
filled by the alumina loading, Wp/W ., was held at 0.90 and 0.95, re-
spectively, while the gap width between the finger and the housing wall,
W, = Wy, was varied in the range 0.75D = 0.060 inch, D = 0.080 inch,
1.25D = 0.100 inch and 1.5D = 0.120 inch. From the analysis, it is
known that fi- should be independent of these dimensional changes. This
is borne out by the experiment. Both the experimental points and the
solid line for the theoretical value of f show the frequency independence.
It is observed, however, that the experimental frequencies are 3.5 per
cent higher. A somewhat greater disagreement is found for the lower cut-
off frequency, which seems to indicate a systematic trend between theory
and experiment. It can be said, however, that the largest deviations are

3.4
o l o o
3.0
f
2.9 Y
[
w 28 0.445" 0.010"
(8]
> Wp
2 a7 fL |:W—|_ =o.goj|
—
g 28 o P~
X 1.
Z 25 "
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"'n' o fL -‘N.—D =0.95] )
Zz 24 L 7 ALUMINA (€ =9.3)
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o T =
23 H—]
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o A MEASURED o
2.2 5]
2.1
06 0.8 1.0 1.2 1.4 1.6
W W,
DL Du

Fig. 16 — Examples of measured and calculated cutoff frequencies; the insert
shows the comb geometry used.
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10 per cent and that the typical discrepancy between theory and experi-
ment; is less than 5 per cent. The chance for greater systematic errors in-
creases, of course, if comb and loading geometries are considered which
comply less rigorously with the restrictions and approximations made in
the text.

The numerical examples shown demonstrate that dielectric loading in-
deed decreases the fundamental passband frequency of the empty comb
by a very appreciable factor. A one-sided loading with ruby may reduce
the frequencies by a factor of 1.7, while double-sided loading may lead
to a reduction by a factor 2.5. Still greater reductions may be obtained
by using dielectric materials with higher dielectric constants and by
modified comb geometries, in particular by changing the finger cross
section from square to rectangular. It is also clear from this treatment
that the shaping of the dielectric loading can be used to vary the degree
of slowing within wide limits. These remarks may suffice here to illus-
trate the prominent role of dielectric loading techniques in the field of
TWM development which was pointed out in the Introduction.

Sinee the original derivation of this analysis in 1960,* several TWM’s
have been developed in this laboratory. They include the TWM for the
ground station receiver in the Telstar satellite communication experi-
ment® and radio astronomy TWM preamplifiers for hydrogen line work
at 1420 me.” In these cases, the analysis has proved to be a valuable aid
for arriving at a first-order design and similarly for providing guidelines
in the subsequent improvements of these designs.

APPENDIX

The conformal mapping transformations are derived and evaluated,
leading to the impedance transformation eurves in I'igs. 10 and 12. The
mathematical treatment given here is not too extensive, because the
type of transformation used is known from other areas of electrical en-
gineering. Yet the description of the mathematical procedure is made
reasonably complete so that it may be useful as a guide for treating other
related problems: for example, traveling-wave masers where the finger
width is not identical to the spacing between fingers.

A.1 The Schwartz-Christoffel Transformation

The particular conformal transformation used here is a special case of
the more general Schwartz-Christoffel transformation. The theorem
proved independently by these two mathematicians states that it is possi-
ble to find an analytical function which maps the inside of a polygon on the
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complex plane into the upper half of this plane. The boundary of the
polygon thus is mapped into the real axis. If two transformations are con-
sidered, one of the type mentioned, the other performing the inverse
funetion, it follows that the inside of a polygon can be mapped into the
inside of any other polygon.

The general Schwartz-Christoffel transformation is illustrated in Fig.
17. For purposes of discussion, it is perhaps easier to consider first the
inverse transformation of the upper half of the complex plane into a
polygon. The transformation will be accomplished by a function whose
derivative is given by a product of the type

%’Z - (w— ) P — DV (w — )"V ... (26)
7 F i ///
7
/ N/ Ak CLW%
~— ¢ o ¢ b a >
!,-—Loo (a)
Z-PLANE
= 0 +00
l—i..oo (b)

Fig. 17 — Tllustration of the general mapping properties of the Schwartz-
Christoffel transformation.
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To demonstrate the transformation property, consider values of w and
dw on the real axis. Also represent each factor in the form ree™ with a
real number 7, for the magnitude and ¢; for the angle. It is seen then
that for values w such that w > ab,e --- all the ¢, on the right-hand
side of (26) vanish. Hence the angles of dz and dw are identical; that is,
these line elements are parallel. Mathematically

Adz = 0 if w and dw are real and w > abe ---.  (27a)

For values ¢ < w < b the first bracket changes sign; that is, its angle
is . The angle of the first factor becomes &« — =

Adz = a — 1 if w and dw’ are real and @ > w > be ---. (27b)

That is to say, the real axis of the w plane near a is transformed in the
z plane into a polygon corner at some as yet undetermined point A
including an angle «. Similarly

Adz" = a+ B —2r  ifwanddw” arerealandab > w > ¢ --- (27¢)

indicating another polygon corner at B including an angle g8 and cor-
responding to the point b on the real axis of the w plane.

In this fashion, it is shown that the transformation (26) indeed maps
the upper half of the w plane into the inside of a polygon having speci-
fied angles &, B, v - - - at points in the 2 plane corresponding to a,b,c - - -
in the w plane. While it is thus easy to satisfy conditions on the angles
of the polygon, the difficulty is to find the points A,B,C' - - - in the z plane
which correspond to a,b,¢ - - - in the w plane. This requires an evaluation
of the integral of (26).

Even more typical for engineering applications, and important in the
present example, is the inverse situation. The corner points A,B,C - - -
of the polygon are given. Then the problem is to find the real numbers
a,b,c - - - which when inserted into (26) will transform this polygon into
the upper half of the w plane. In most cases, this problem can only be
solved numerically. The procedure would be to tabulate integrals of (26)
for some range of values a,b,c --- . Numbering such tables with the
given integral values A,B,C ..., the appropriate transformation
parameters a,b,c could be picked.

To keep the need for tabulation down to a manageable chore, the
number of significant parameters has to be restricted as much as possible.
The example of importance in this connection is the mapping of a rec-
tangle into the upper half of the complex plane. The number of significant
parameters here can be reduced to one, the length ratio of two adjacent
sides, Other parameters can be eliminated by trivial transformations
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such as scaling and rotation of the coordinate system, which is ac-
complished simultaneously by a complex constant factor in (26) or a
shift of the coordinate origin which corresponds to the integration con-
stant of (26).

A.2 Mapping of a Rectangle into the Upper Half of the Complex Plane

It is now possible to write down the transformation equation for a
rectangle. The conventional notation is illustrated in Fig. 18. The
corners of the rectangle in the z plane are the complex numbers K,
K + iK', —K + iK'’ and —K. In the w plane they correspond to the
points 1, 1/k, —1/k and —1 on the real axis.

+Loo
D=—HK+iK’ T C=K+iK

l—'l.oo (a)
% 5
% /
<  d=-1/k e% b=+1 c=+1/k %
Jtee (b)

Fig. 18 — Illustration of the transformation of a rectangle in the z plane into
the upper half of the w plane, introducing the conventional mathematical nota-
tion.
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FFrom (26) the transformation derivative is
-} -3
@ =4 (w — l) (w — 1) w+ 1) (w + l) ; (28)
dw I k
When the constant A is chosen appropriately (4 = —1/k) this becomes

dw

= g = Ty

(29)

and

v dw
2= Lo T = i1 = ) (30)
This integral is an elliptical integral of the first kind. It gives z as a
function of w and k, where k is referred to as the modulus of the integral.
From the definition adapted in the figures it follows that
1
dew

k= om0 (1 — )1 — K2?)} (31)

and

i de
K' = . 2

iK fm_. 0 = i1 = )l (32)
K is called the complete elliptical integral. K’ is the complete integral to
the complementary modulus obeying the functional relationship

K'(k) = K(K') (33)

where k* + k' = 1 isused todefine the modulus &’ as complementary to k.

The definition of the elliptical integral of the first kind as given in
in (30) is due to Jacobi. Many tables use also the notation of Legendre.
This is obtained by setting

w = sin ¢, dw = cos ¢ d¢
; (34)
k = S11 6, I’ = cos 9.
Then
&
d¥
- j‘-hn (1 — sin? @ sin® W)} (35)
T2
d¥
K= f\!l=o (I — sin? @ sin® W)} (36)
w2
d¥r
K= .
v=0 (1 — cos? @ sin? W)} (37)
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From this discussion it is clear that the transformation of a rectangle
into the upper half plane requires finding the modulus k or equivalently
the modular angle 8 of the elliptical integral from the given geomelry of
the rectangle. Tt is further clear that K and K’ are not independent, but
related through either (31) and (32) or (36) and (37). Therefore, it is
not possible to specify both length dimensions of the rectangle of Fig. 18
but rather only their ratio. The problem thus is reduced to finding the
dependence of the modulus k or 6 from the aspect ratio K'/2K of the
rectangle.

This functional dependence was evaluated using the Smithsonian
Elliptic Function Tables, in particular tables of complete elliptical
integrals. The result is presented in Fig. 19.

It should be added that frequently, instead of the elliptical integral
(30), its inverse is used. This inverse function is written

w = sn z modulo k (38)

which is defined to mean (30). This notation is reminiscent of the sine
function, with which the sn function is indeed identical in the special
case k = 0.

A.3 Mapping of the Upper Cutoff Frequency Configuration

It is now possible to carry out the mapping transformations used in
the comb structure analysis. The initial geometry for the lower cutoff
frequency is indicated in Fig. 20(a), where solid lines represent conduct-
ing electrodes. The final result is a parallel plate geometry like that of
Fig. 20(d). This figure represents the cross section of an idealized trans-
mission line for which the impedance is simply given by the ratio of the
length dimensions times free-space impedance. The transformation makes
use of two intermediate steps. The interior of the rectangle (Fig. 20a)
is first mapped into the upper half of the complex plane (Fig. 20b).
Then a readjustment of the scale leads to I'ig. 20(c). Then the upper
half plane is finally mapped into the inside of the desired rectangle
(Fig. 20d) with electrodes only on opposite sides.

To keep track of these steps, the relevant points in the original geome-
try and their transforms are denoted by capital letters O,A,B --- . The
first and second elliptical transformations are distinguished by indices 1
and 2 attached to the modulus and the complete integral values. The
mapping then proceeds as follows.

(@) From the z plane to the y plane.

y = sn z modulo &k, = sin 6, (39)
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Fig. 19 — Relation between the ratio of the length dimensions of the rectangle
to be transformed and the modular angle of the transforming elliptical function.

The modular angle 6, is found by entering the curves of Fig. 19 with the
aspect ratio W/ = K,'/2K, of the original rectangle. The corresponding
coordinates in the z and y planes are given in Table I. The transformation
of points O through D requires only the graph of Fig. 19. For points A
and I", use has to be made of elliptic function tables. In the Smithsonian
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TaBLE I — SUMMARY OF TRANSFORMATIONS
rFor UprErR CuTorF FREQUENCY CASE

5 ¥ x w
0 0 0 0 0
B K, 1 1/(sn K,r mod k) Ko + iK.'
g A_KII\ , —/l —1/(sn K;r mod k) —K: + iK'
(1 + 1K 1/ky :

D —K: 1Ky 1k } not of interest
A Kyr sn Kyr mod Fk 1 K.
F —Kir —sn Kyr mod £, -1 —K,

ky = sin 6,

ke = sin 62

8. = ¢ = sin-! [sn Kyr mod k, or 6]

Tables the Legendre notation (34), (35), (36), and (37) is used. Entering
these tables with z = Ky and the angle 6, , a value of ¢ in radians is
found. This value ¢ is converted to degrees and renamed 6. .

(b) From the y plane to the x plane.

This is a change of seale and is accomplished by dividing all values by

sin¢ = ks = sn Kyr mod 6, . (40)

After this step the arrangement of the points OBEAF on the real axis
is the standard one for transformation of the upper half plane into a
rectangle.

() From the x plane to the w plane.

This transformation finally shapes the original electrode geometry
into the desired parallel plane geometry. The transformation is indi-
cated in Table I. However, since the interest centers only on the im-
pedance — that is, the length-dimension ratio of this final rectangle — it
is not necessary to carry out this transformation in detail. This ratio
W/D" = K,'/2K, is obtained from Fig. 19 by entering it with the
modular angle ; = ¢ = sin~ k..

Following these steps in the case r = }, the curve of Fig. 10 was ob-
tained,

A short-cut is possible if 6, < 30°; that is, if W/D > 0.65. In that
case the sn funetion can be approximated by a sine function and K ~
w/2. Then ¢ = 6, = rx/2; in particular, for r = %, ¢ = 6, = 45° and
W'/D" = 3.

A4 Mapping of the Lower Cutoff Frequeney Configuration

The procedure is quite similar to that used for the upper cutoff fre-
quency geometry. It is summarized in Table IT and Fig. 21.
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TABLE II — SUMMARY OF TRANSFORMATIONS
rorR Lower Curorr FrREQUENCY CASE

z y x w

0 0 0 0 0
g _II& _%} not of interest
C K, + 1K, 1/k; 1/(k: sn Kyr mod k) K. + 1K.'
D —K]_ + fK]r —I/kl —1/(’01 sn Kﬂ’ mod k;) '—Kz + I‘K:g’
A rK, sn Kyr mod k&, 1 (2
F —rK, —sn Kyr mod % -1 — K>

A’] = sin 01

k2 = sin 02

@, = sin-! [(sn Ky X sin 6;) mod k; or 8]

(a) From the z plane to the y plane.

This step is identical to the first transformation of the upper cutoff
frequency configuration.

(b) From the y plane to the x plane.

This scaling is also the same as that used before. The difference is,
however, that now the points C and D are of interest, whereas before the
points considered were B and E.

(¢) From the x plane to the w plane.

Here the transformation differs; now a different modulus

s = ky sn Ky mod ky

is used. The resulting complete integral values K, and K.’ are not to be
confused with those obtained for the upper cutoff frequency case. Since
the interest centers only on the impedance value K»'/2K, = W’/D’ of the
resulting rectangle, it is not necessary to evaluate this transformation in
detail. The numerical evaluation is quite similar to the one of the upper
cutoff situation. Using Fig. 19, one finds the first modular angle 6, from
K\'/2K, = W/D of the original geometry. Entering the tables with z =
Kyrand 6, , an integral value ¢ is found. This value is obtained in radians.
Then form
ks = sin 6, = sin 8; X (sn Ky mod %)
(41)
= sin #; X (sin ¢ mod 6,).

Using this formula, the angle 6; is evaluated in degrees. Then the graphs
(Fig. 19) can be used again to obtain from 6, the length dimension ratio
W’/D’ of the transformed rectangle.

Following this procedure for the case r = 3, the graph of Fig. 12 was
obtained.
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