Overflow Traffic from a Trunk
Group with Balking*
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A stream of telephone calls is submitted to a group of trunks, the first-
choice group, according to a recurrent process. We allow balking on this
trunk group; i.c., if a call finds k of the first-choice trunks busy it may be
served, with probability py. , or may fail to be served, with probability q. .
A call which fails to receive immediate service on the first-choice trunk group
18 submitled to a second-choice trunk group, the overflow group. We also
allow balking on the overflow group. Calls which fail to receive immediate
service on the overflow group are lost to the system. Holding times have
negalive-exponential distribulion.

We give methods for finding the joint distributions of numbers of busy
trunks on the first-choice and overflow groups, at overflow instants (i.e.,
instants al which calls are submailled to the overflow group), at arrival in-
stants, and ot arbitrary instants. We consider the transient as well as the
limiting distributions (and demonsirate the existence of the limiting distri-
butions).

The methods developed are illustrated by several examples. Numerical
results are given for the blocking in the particular case that the first-choice
group constitutes a random slip, while the overflow group is full-access
(common).

I. INTRODUCTION

1.1 Balking and Overflow Traffic

A telephone call is submitted to a group of m trunks, This call may
fail to occupy a trunk, even though not all m trunks are busy. There
may be a number of reasons for such a failure, e.g.: the calling line may
not have acecess to any idle trunks, some equipment other than the

* This paper represents part of a doctoral dissertation submitted to the Sub-
committee on Applied Mathematics, Columbia University.
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trunk itself may be required to complete a connection and this equip-
ment may be busy, or the m trunks may be merely first-stage links in
a connecting network and there may be no free path through this net-
work. Whatever the cause of the failure, we shall say that the submitted
call balks (although the word is perhaps more appropriate in queueing
theory applications). In this paper we shall restrict ourselves to the case
in which the probability of balking depends only on the number of
busy trunks: if an arriving call finds k trunks busy, it is served, with
probability p , or balks with probability gx (px + g = 1). If all trunks
are busy, an arriving call cannot be served, and therefore g» = 1. Thus
we subsume blocking under the term balking,.

The traffic which overflows from a trunk group with balking has
different characteristics from that which overflows from a full-access
group. [By a full-access trunk group we mean one for which ¢ = 0
(k < m), ¢m = 1.] Suppose recurrent traffic is submitted to a full-access
group (when we refer to recurrent input traffic we mean that the inter-
vals between arriving calls are independent, identically distributed
random variables). Suppose further that the holding times of calls have
negative-exponential distribution. Then, as Conny Palm' has shown,
the overflow traffic is also recurrent. This is not the case for traffic
overflowing from a trunk group with balking.

The traffic which balks on the first-choice group may be submitted
to an overflow group of, say, M trunks. There may also be balking on
the overflow group. Now L. Takdes® has treated in detail the process
of numbers of busy trunks in a trunk group with balking to which a
recurrent stream of calls of negative-exponential holding times is sub-
mitted. Thus, if the first-choice group is full-access, we know how to
describe what goes on on the overflow group. However, if the first-choice
group is not full-access, the stream of calls submitted to the overflow
group is not recurrent, and therefore further analysis is required to
describe the process of numbers of busy trunks on the overflow group.
We attempt to treat this problem in the present paper; in so doing, we
are led to consider the joint distribution of numbers of busy trunks on
the first-choice and overflow groups, which is also of interest in itself.

1.2 Mathematical Description of the Problem, and Some N otation

Calls are submitted to a group of m trunks, the first-choice group, at
successive instants 7y, 72, =+, Ta, - -+ . The interarrival times, 6, =
Tu — Ta (n = 2,3, 4, .- ), are independent, identically distributed
random variables with common distribution function

Pl6, < 2) = F(z),
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and we specify further that Pl £ 2! = F(2). We assume that the
{0.) are not lattice variables (i.e., that the interarrival times are not
confined to multiples of a constant), that #(0) = 0 and that

0 <a< m,

where

a = f: xdF (z)

is the mean interarrival time.

Note that the class of recurrent inputs just deseribed includes, among
others: Poisson arrivals, equally spaced arrivals, and, as previously
remarked, arrivals which are themselves overflows from a full-access
trunk group to which a Poisson process of calls with negative-exponential
holding time is submitted.

If the nth call receives service, then its holding time is a random varia-
ble, x.. The }x.} are independent and identically distributed, with
common distribution function

Il —e " fora = 0

(
Plx. <} = |
|0 forx <0

and are independent of the arrival process {r,}.

Note that we are measuring time in units of the mean holding time;
thus @ = 1/« is the submitted traffic in erlangs.

An arriving call which finds & trunks of the first-choice group busy is
served with probability p. , or balks with probability ¢.. We have

pk—i_qk:l- ('k’:OJ]l"'rnl‘)
gm = 1.

A call which balks on the first-choice group is immediately submitted
to a second group of M trunks, the overflow group (we allow the case
M = «). We denote the sequence of instants at which ecalls are sub-
mitted to the overflow group by {7y} (N = 1,2, 3, --- ). If such a
call finds K trunks of the overflow group busy, it is served, with prob-
ability (/x , or balks, with probability Hx . We have

G§+HK=1 (_I{=0,1,“‘,ﬂf)
Hy =1 (if M < =),

We make the following plausible restriction on the balking proba-
bilities
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pe >0 for B <m
Ge >0 for K < M.

A call which balks on the overflow group is said to be blocked. It im-
mediately disappears from the system and is not resubmitted; i.e., lost
calls are cleared.

We now define the following random variables:

£(t) = number of busy trunks on first-choice group at time ¢

&= E(Tﬂ _)

£.° = £(Ty —) (the superseript “‘o” means “overflow”.)
%(t) = number of busy trunks on overflow group at time ¢

En = E( Tn '_)

E(Tw —).
We also define the following probabilities, which it will be our object
to determine:

Pl&y = k, Ey" = K} = P°(k,K,N)
lim P°(k,K,N) = P°(k,K)

N>
Plt, = k, E. = K} = P(k,Kn)
lim P(k,K,n) = P(k,K)

n-—+w0

P{E(t) = k, E(t) = K} = P(kK,t)
lim P(k,Kt) = P*(kK).

t—>o0

I

When one of the variables k& or K in one of these probabilities is not
written, it is understood to be summed over, e.g.

P(kt) = i: P(kKl).

A quantity of particular interest in applications is the blocking

B = Z i qur:P(k,K:).

k=0 K=0

We shall also have occasion to refer to the blocking on the first-choice
group

b= 2 qP(k).
k=0
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Further notation will be introduced as it is needed. The notation will
as far as possible conform to that of Takdcs.” We shall, when possible,
use lower-case letters to refer to the first-choice group and the corre-
sponding capital letters for the overflow group. Equations of Ref. 2
will be denoted by a T: e.g., “(T44).” We note here only the following
definitions:

ols) = f " dF (x)

o1t e(d) _
¢ =Ur=G (Co=1
os) = [T -2t (Ca(s) = 1).

=0 1 — (s +7)

1.3 Previous Resulls

Let us denote the interoverflow times by Oy = T'% — Twy_1. As we
have mentioned, if the first-choice group is full-access, the {Oy} are
independent and identically distributed. In this case let us denote their
common distribution function by

G(x) = PiOy < 1}

with Laplace-Stieltjes transform
v(s) =f e " dG(x).
]

» 3 1 .
Takaes” solves a recurrence of Palm™ to obtain

£() et

T(S) = m+1r *
m + 1 1
;J ( r )CH(S)

A. Descloux' gives convenient recurrence formulas for caleulating
v(s) and the moments of ((x) in the case of Poisson input, i.e., when

1—e™(z20)

0 ($<0)‘

F(z) = {

Some results exist for P(k,K) in the case of Poisson input [for which,
and only for which, as we shall see, P*(k,K) = P(k,K)]. The first of
these is due to L. Kosten.” He considers a full-access first-choice group
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and an infinite full-access overflow group. Let us denote hinomial
moments with respect to the overflow group by

UGR) = 3 (‘g) P(k,K).

K=R
Then Kosten finds

Co"(a)Cr"(a)
Cr™(a)Cru™(a)

(See also the appendix by J. Riordan to a paper of R. L. Wilkinson.®)
The polynomials in (2) are defined by

k _k.i"'i'R_l a"’
cto =505 ey ®

so that C'(a) = a*/k!, if we agree that (d(l)) = 1. J. Riordan (Ref.

U(kR) = 3" (a) (2)

7, p. 120) remarks that these polynomials are closely related to the
Poisson-Charlier polynomials C,(z,a); in fact

Ci'(a) = Ci(—R,a).

E. Brockmeyer,® N. Bech,’ and K. Lundkvist" consider a problem
which differs from Kosten’s only in that M is finite (G = 0). Brock-
meyer finds

PO = 2 (~0es (S FF) @ @)

8=0

where

Ys=§3(—1)J_S(§: i)“’ (8 =1,2, -+, M)

1
Yo = tomraga)

1 1 AL =1) 4w
= Cr(a) C(a) Z (J — 1) ¢ a).

We do not consider here more complicated trunking situations (graded
multiples, alternate routing arrangements in which the overflow group
is at the same time the first-choice group for other sources of traffic).
See, however, Wilkinson,® and R. Syski (Ref. 11, chapters 7, 8, 10).

Takdes? gives, for arbitrary ¢, methods of finding P(k,n), P(k),
P(k,t), and P*(k). Thus in what follows we shall take the attitude that
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everything we need concerning the first-choice group only is, in principle,
known.

1.4 An Example

This paper grew out of the following problem, in which both balking
and overflow are involved. Subseriber lines are connected to the m
trunks of the first-choice group in such a way that each line has access
to only v of them. We refer to a particular set of v trunks as the access
pattern for a particular line or group of lines. Equal traffic is submitted

to each of the (?) possible access patterns. When a connection is made,

any idle trunk in the subseriber’s access pattern is equally likely to be
selected. This arrangement is referred to as a random slip, or Erlang’s
ideal grade. It is easy to see that the balking probabilities are

¢ =10, for 0=k <w, and

)

G = % for v =2k = m.

Traffic which balks on the first-choice group is submitted to a full-
access overflow group of M trunks. If a call is blocked on the overflow
group, it is lost.

Such an arrangement may be economically desirable. The average
traffic carried per trunk (for a given blocking probability, B) is less than
for a full-access group of m + M trunks, but the traflic per crosspoint
is greater. Knowing the costs of trunks and of crosspoints, and given
m + M and the desired value of B, one wishes to select v and m so as
to minimize the cost per unit of carried traffic. We shall give some nu-
merical results for this arrangment.

II. THE STATE OF THE SYSTEM AT OVERFLOW INSTANTS

2.1 Transient Behaviour

Unless the first-choice group is full-aceess, the overflow process { Ty}
is not recurrent and the sequence | Z4°} is not a Markov chain. However,
the sequence of pairs of random variables {£x°, Ey°] is a homogeneous
Markov chain. This may be seen as follows. Suppose we know that
§Tx—) = kand E(Ty—) = K. Ty is an arrival instant; because the
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arrival process is recurrent and independent of the holding times, the
history of the system before 7'y has no effect on the epochs of future
arrivals. Ty is an overflow instant; whether or not the overflowing call
is accepted by the overflow group depends only on the value of K. Be-
cause of the exponential distribution of holding times, the stochastic
behaviour of the system after Ty is independent of the ages of calls in
progress at Ty . Thus the values of £(Ty—) and E(7v—) determine the
whole future stochastic behaviour of the system. Therefore we are led
first to a consideration of the probabilities P°(k,K,N).

If (1) = k, E(t) = K, then we say that at time ¢ the system is in
the state (k,K). The values of £y” are limited to those k for which ¢, > 0.
We denote the set of such integers k by @. As initial conditions we take
£04) =1, 2(0+) = I < . (It is not required that ¢ € @) Under
these initial conditions, we seek P°(k,K,N) fork € @; K =0,1,2, ---;
N =123, ---.

Let us now define the following quantities:

.ij(.t') = Plivy” = k, Onn = 2 [ §(Th+) = Ji
= P{EN.HG = I, ®N+l = 1 Ev = .7]
PlE’ =k T, < x| £0+) = j)

with Laplace-Stieltjes transform

'ij(s) =f e " dGy, (x)

=

' -
U(k,RN) = 2 (h) P(k,K,N) (R=0,1,---,M)
K=R R
M /K
V(k,RN) = D ( )GKP"(k,K,N) (R=0,1,---, M)
K=R R
Vo(k,—1,N) = 0.

We may now state:
Theorem 1: The distribution P°(k, K N) ts uniquely determined by
the binomial moments U°(k,R,N); the latter are determined by
o I
U (](")le) = R 'Y”-(R) (5)

U'(BRN + 1) = 2 va(R)U'GRN) + V(GR—1N).  (6)

jea
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Proof: The transition probabilities for the homogeneous Markov
chain {£y°, Ey°} are given by

P’ B K) = Plgnn" =k, Evii’ = K| &° = j, Ex" = J}

=fn P {E,v+1n =K

It is easy to see that

ENU = J, 6A’+1 = 1] dek(I).
P{EN+1° = K[ END = J, ®N+l = .’t‘]

I\ .k o
+H,(K) (1 — ™)' %,

Thus

PGk K) = [ daa) [GJ(" ps 1) (L — )ThE

; (7)
+ HJ(I() e—:rK(l _ e—.:)J—K:I .
Now
m M
P (KKN + 1) = > > p"(5,Jk,K)P"(j,JN). (8)
j=0 J=0

Substituting (7) in (8), and taking the Rth binomial moment with
respect to the overflow group, we obtain

Uk, By N + 1) ZGZZf () [GJ(JJ’I)

+ H(é)] PG, T, N)

% Eww [(5) + o Y]

= 3 valR) UGG, R, N) + V°(j,R — 1, N)],

JEa

Il

H

which is (6).
For N = 1, we have
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P K1) = [ dgato) () 7 = e
so that

v,y ) = [ aea@ (B) e = () vl®),

which is (5).
From the definition of U’(k,R,N), we have

RZ; (=) * (2) Uk, R, N)

_ g{ (—1)* = @) 3 (ﬁ) P(k, J, N).

J=R

(9)

Now, for any finite N the double series on the right contains a finite
number of terms, even if M = . This is so because

Pk JN) =0 for k+J=i+1+N,

and we have assumed I < .
Thus the double series can be rearranged, and one obtains readily
that the binomial moments determine the probabilities according to

Pk, K, N) = ﬁx (—1)* " (I;é) Uk, R,N).  (10)

In (5) and (6), the quantities v;:(R) occur as coefficients. We regard
these coefficients as known because they can be expressed in terms of
certain quantities determined by Takdes.” Let

Mu(z) = E {number of 7, in (o,x] for which & = & | 8(0+) = 4},

with Laplace-Stieltjes transform
pi(s) = j; e T dMu(z).

Takées gives a method for finding the pi(s) [(T70), in which, however,
the index 1 is implicit]. The way in which the quantities u;:(R) deter-
mine the v;(R) is expressed in the following lemma (in which, it is to
be noted, values of the indices j,k, etc. are no longer restricted to the
set @).

Lemma 1: Define My°(x) = E {number of Ty in (0,2] for which £x° =
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k| £(0+) = 1}, with Laplace-Stielljes transform

pa(s) = fﬂ e AM 5 (2).

Let u”'" be the square matrix with elements p;°(R); 7,k = 0,1, ++- , m.
Let v" be the square malriv with elements y;(R); 5,k = 0,1, <+« , m.
Then, for R = 1,2, -+ |
v =+ )T (11)
where E is the (m 4+ 1) by (m + 1) unit matrix.
Since, obviously
pi' (R) = quui(R), (12)

(11) provides the desired relation between the v;:(R) and the pu(R).
Proof: We shall first show that

wie'(R) = v,(R) + g'le(R)#lku(R) (13)

forR=1,2 -,

Suppose £(0+) = 7, and consider a given R-tuple of trunks on the
overflow group which are all busyat ¢t = 04, If 7, = z, the probability
that the overflow at 7, will find this R-tuple still busy is e~ ™.

Thus

vie(R) 2]; e " dG ()

is the probability that this R-tuple is still busy at 7 and that £(T,—)
= k.

Again, if this R-tuple remains busy just until { = 2, the expected
number of overflows from k to find it busy is M ;."(x). Therefore the
unconditional expectation of the number of overflows from % to find
it busy is

j; Mat(z) d(1 — ) = fo T AM 0 (2) = ppt(R).

Denote (temporarily) by [u,"(R) | ] the expected number of overflows
from % to find this R-tuple still busy, on the condition that £(7,—) = I
and the R-tuple is still busy at ¢ = 7,—.

Then, by the prineiple of total expectation,

it (R) = 32 ' (R) |ty R). (14)
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Now because of the exponential holding-time distribution
" (R) | 1] = pu’(R) for 1=k (15)
and
[’ (R) | K] = 1 + pu’(R). (16)

Substituting (15) and (16) into (14), we obtain (13). Equation (13)
may be written

e i o 2T (17)
Thus, to prove the lemma, it remains to show that (E + u”®) is
nonsingular,
From (17)
(B — y")u"" ="
Therefore

(B —~")-(E+ ™) = E

det (B — 4") - det (E 4+ p”") = 1.
Since clearly both det (E — ~") and det (E + p’'®) are finite (for
R > 0), it follows that det (E — v") # 0 and det (E + "y # 0,

which completes the proof of the lemma.
We note, for later use, that we have also shown that

pt = (B =" (18)

We need a separate method for finding v;:(0), the above argument
being invalid because u;:’(0) = « forall k € G.

We notice that v:(0) = Gu(«) = P{E(Ti—) = k| £0+) = J}.

The quantities v,:(0) are determined by the following system of
equations:

vi(0) = Qkfn dr(z) (‘;c) e (1 — )7 4+ ;2, P vi+1.4(0) -
(19)

-f: dF (z) (Jl) el =) (G k=0,1,---,m).

This may be seen as follows:
The event {£(T,—) = k} can occur in these mutually exclusive ways:
(1) the first arrival after ¢ = 0 encounters k busy trunks on the first-
choice group, with probability
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fm dF(I) (‘i) eih(l _ e—z)j-k’

and overflows, with probability ¢ ;

(¢¢) the first arrival after ¢ = 0 encounters { busy trunks and does
not overflow [so that & T,+) = I + 1]; the next overflow following
this oceurrence is from k [probability vy, £(0)].

For each k, (19) is a set of linear equations in the v,;(0). These
equations determine the v;(0) uniquely if the coefficient matrix is
nonsingular (for each k). Call this matrix A®. If we can show that
A, > 22 A" for each j, it will follow from the theorem of Lévy-

=]

Hadamard-Gerschgorin (Ref. 12, p. 79) that det A® > 0. That is,
we want to show that

2 M [ dF (z) (J;) (1 —e7) T <1, (20)
=0 <0
The left side of (20) is evidently strictly less than
> f dF () @ (1 —¢*) =1, foreachj, QE.D.
=0 Y0
Equations (5) and (6) may he solved, in some ecases, by means of

generating functions.
Let

8

U(k,Rw) = Z U(k,RN)uw™

Ve(kRaw) = 3 V(kRN)u®

=

‘MR !T

—-

Note that it follows from (10) that

o0 M
SPUEKN)W = Y (—1)%F (ﬁ.)U"(A‘,R,w). (21)

N=1 k=K

From (5) and (6) we obtain

U(k,Rw) = w{(I)'m(R) + Z v R)[U(5,R,w)
(22)
+ V(5,R — 1@)]}-

We illustrate the use of (22) by a simple example.
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Example 1:
If the first-choice group is [ull-access (the only element of @ is m),
then U°(k,R,N) and V°(k,R,N) vanish except for k& = m. For sim-

plicity, we assume that ¢ = m; then the only relevant element of the
matrix v* is ¥um(R), and (22) becomes:

U(m,Rw) = w'y,,m.(R)[(é) + U(m,Rw) + V°(mR— Lw)],

whence

Us(m, R, w) = % [(‘{B) + V'(m, R — l,w)]. (23)
vum(8) is the Laplace-Stieltjes transform of the interoverflow-time
distribution, i.e., it is just the function y(s) given by (1). Thus (23)
is exactly equivalent to (T32), and merely serves to illustrate our remark
(Section 1.1) that if the first-choice group is full-access, we can use the
methods of Ref. 2 to describe the behaviour of the sequence {Z~°}.

2.2 The Limiting Distribution P°(k,K)
Theorem 2: The quantities P°(k,K) = lim P°(k,K,N) exist, are
N

strictly positive, form a probability distribution independent of the initial
state, and are uniquely determined by the binomial moments U(kR) =

M
Z(K)P"(k,K ); the latter are determined by

i=r\I
U“(k,R) = q;.jé wi(R)VGR — 1) (R =1,2 -, M) (24)
and

U'(k, 0) = 200 (25)
where

V(ER) = i (Ilg) GxP°(k,K).

Proof: We first show the existence of the lumtmg distribution.

In this section, we use theorems given in Feller,” chapter 15, sections
5 and 6.

The Markov chain {£y°, Zx°} is evidently irreducible (since p. > 0
for k& < m) and aperiodic. Therefore lim P°(k,K,N) exists. Since it is

N0
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irreducible, the chain has either all transient, all recurrent null, or all
recurrent non-null states.
If a state (k,K) is transient or recurrent null, thenlim P(k,K,N) = 0.
N-sw
Therefore, to show that all states are recurrent non-null it will suffice
to show that for some state (k,K), lim P°(k,K,N) > 0. It will then

No=

follow that this is so for all states, and that Y P°(k,K) = 1. We look

kea
at the state (0,0):
To see that lim P?(0,0,N) > 0, we compare our system (with arbi-

N->o
trary balking probabilities) to the special system for which m = 0,
M = = Hg = 0 (always assuming the same input process). For this
special system, write P{=Zy" = K} = P°(K,N), and take as initial
condition: Z(0+4+) = 7 + 1.
It is clear that for any system with M = e, and with the same
initial condition,
P(00N) = P(ON),

for each N, whence

lim P°(0,0,N) = lim P°(0O,N).

N—»w N—w
But it is known® that lim P°(0,N) > 0; thus
N-ow
lim P*(0,0,N) = P°(0,0) > 0
N—-w

and all states are recurrent non-null, Henee, since the chain is also irre-
dueible and aperiodie, it is ergodic.

We now know also that a unique stationary distribution exists and
that it coinecides with the limiting distribution. From (6), we must
have

U'(kR) = X vu(R)IU'G,R) + V'G.R = 1)), (26)
jEa

Denote by U°'* the row-vector with components U°(k,R),0 £ k < m.
Then (26) may be written

Uo.R — (Uva.R + IWIR_])'YR.
Thus, from (18),
UG,R — 1;0.12—1#9,2. (27)
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Writing out (27) in eomponents, and using (12), we obtain (24).
We now prove (25). Denote by '™ the event that the nth arrival
overflows. Thus,

b = lim P{C™}.

n-—»00

Now,
PY(kK) = lim P&y = &, 2y = K] = lim P{g, = k, B, = K | €™}
Newoo N+

_ o Plén = kB = K} P {C" | & = I, By = K|

—an PIC™] |
But

P{C(n) |£n =k B, = K} = Plc(ﬂ) ! .=kl = q.
Therefore

Pk, K) = 22520 P(;“’ K) (28)

and

M Qi i P(k, K)
U'(k,0) =2, P°(k,K) = _%_

K=0

_ g P(k)
=5 Q.E.D.

To complete the proof of Theorem 2, it remains to show that the
binomial moments U°(k,R) uniquely determine the probabilities
P°(k,K). This proof will be easier after we have discussed the stationary
distribution at arrival moments, P(k,K), and we therefore defer it

until then.
Tt is sometimes convenient to work with the double binomial moments

B R) = > (ff) U°(k, R)

k=r

=r

C(R) =3 (?’f) Vo(k,R).

In terms of these, (24) and (25) of Theorem 2 become
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B'(rR) = X [[w(R) = g:(R)IC°GR — 1) (29)

(R=1,2 -, M)

B*(r, 0) —%2()%1)(:’1) (30)

Here we have used the following definitions: f;,(s) and g,,(s) are the
Ith differences of &g, (s) and W, (s):

1
f(s) = X (—1) _,( )cp,,(s) 31)
j=0 J
!
auts) = 2 (= (D) w00 (32)
=
where @;,(s) and W ;,(s) are defined, following Takéces [(T59), (T60)], by
= [k
#(s) = 3 () mat) (33)
N
2,(9) = 35 (1) pusa(s) (34)
and must satisfy [(T61) and (T62)]
ey = els) -
q’Jo(S) = 1 — {p(s) (30)
and
o = o () + v »
Cr(s) (,r 1(8) + ‘IJ rfl(s) (‘5())
as well as the relations in r implied by their definitions [see (T25)],
m l .,
wi9) = 35 (1) @ pe. (37)

Examples of the application of the methods of this seetion will be
found in Section V.

III. THE STATE OF THE SYSTEM AT ARRIVAL INSTANTS

3.1 Transient Behaviour

The sequence {£,, =} is elearly a homogeneous Markov chain. We
assume initial conditions £(04) = i, Z(0+) = [, and =eek the dis-



62 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1064

tribution P(k,K,n). We no longer restrict our attention to states (k,K)
for which ¢« > 0, but consider all states (k,K), 0 = k = m = =,
0EK=MZEZ mw.

We shall prove the following:

Theorem 8: The distribution P(k,Kn) is uniquely determined by the
double binomial moments

B(r,Rn) = Z E ( ) ( )P(k,K,n);

k=r KE=R

the latter are determined by

i\ (1
B(rR,1) = ¢rin () (R) (38)

(r=0,1,--- ,m;R=0,1,---, M)
B(r,Rn + 1) = ¢.4rlB(r,Rn) + D(r — 1,R;n)
+ C(r,R — 1) — E(r,R — 1,n)] (39)
(r=0,1,---,m;R=0,1,--- , M;n=12--).

Here

k=r K=R

D(rR) i 5 ( )(g) P (6K n)

E(r,Rn) = i i ( )( )mGKP(k,K.ﬂ)

k=r K=R

ConRp) = 5 3 (’“) (g) GeP (kK n)

and all these quantities are defined to be zero if r < 0 or B < 0.

Proof: If the arrival at r, finds the system in the state (j,/), it may
either get on the first-choice group, with probability p;, or balk on the
first-choice group with probability ¢; ; in the latter case, it may get on
the overflow group, with probability G, or balk there too, with prob-
ability H,. Thus the transition probabilities are given by

p(.?:J;k’}I() = P[E"-I—l = k‘, ErH—l =K I Eﬂ = j, En = J}

= j;ndF(x) {p_, (J _Il; 1) eﬁr.&(l _ e—z)j+l—k (g('_) e—xx(l _ e—;)J—K

_|_ i (.;c) e—zk(l _ e—x)j—k I:GJ' (J }{i“ 1) e—:rK(l _ ef::).H-l——K (40)

b (D) e - o],
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Now

m M

P(EEn + 1) = 22 2 p(3,Jik,K) P(j,Jn). (41)

j=0 J=0

Substituting (40) in (41) and taking binomial moments with respect
to both the first-choice and overflow groups, we obtain:

B(r,Rn 4+ 1) = gin i i {p" (j B 1) (}I'ﬁ')

=0 J=0 r

v ()[4 ")+ ()] ram.

Note that the quantity in braces in (42) is

O@+2(2)E) +e QL)) o

Substituting (43) in (42), we obtain (39).
Forn = 1, we have

P(LK,1) = j;m dF (z) (1’) (1 = ) (II() (L — ¢ )E,

taking binomial moments with respect to both trunk groups, we obtain
(38).

I'rom the double binomial moments, one obtains the probabilities
P(lk,K,n) by using:

(42)

U(kRn) = g (—1)* (z) B(r,R,mn) (44)
and
POhKn) = 3 (—1)"F (f}) Uk Rn). (45)

Clearly P(k,Kn) = O0for k + K = i« 4+ I + n; it follows that the
sums in (44) and (45) contain a finite number of terms for finite n,
even if M = o, and there are no problems about convergence.

Equations (38) and (39) may be solved, in some cases, by means of
generating functions; we give an example.

Ezxample 2:

We consider the simplest possible case, in which

g =0 (k=0,1,--,m—1)

Im =1
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M
He=0 (K=01,2 ).

Il
8

In this case,
C(r,Rn) = B(r,Rn),
E(r,Rn) = D(r,Rn),

and
D(r,Rn) = B(r,Rn) — (T) B(m,Rn).

Substituting (46), (47), and (48) in (39), we get
B(r,Rmn 4+ 1) = ¢, xB(r,Rn) + B(r — 1,Rn)

—( m )B(m,R,n) + (m) B(m,R — 1,n)].
r—1 r
Let
B(r,Rw) = 2. B(r,Rn)w".
n=1

From (38) and (49):

The solution of (50) is

(%) o ‘(s
B(r,Rw) = Trye(w) {E%MZ (g) > (_;) W_ll(ur)

A0y (05

i \J/ Tipsa(w)

-(0) &0 vt

(46)

(47)

(48)

(49)

(50)
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where we have defined

r

We;
I, = — =012 ---
(w) ,I=Iu 1 — we;j (r )
I'i(w) = 1.

3.2 The Limiting Distribution P(k,K)
Theorem 4: The quantities P(k,K) = lim P(k,Kn) exist, are strictly

positive, form a probability distribution independent of the initial stale,
and are uniquely determined by the double binomial moments B(r,R) =
m M

E (f) U(k,R), where U(k,R) = Z (Ilg)P(k,K); the B(r,R) are given
k=r

by

B(r,R) = bCrir [Z
j=r

B°(j,R) _ 3 CUR = 1>]
Cj+;e j=r+1 CJ'+R*1 (51 )

(r=01,---,mR =01, ---, M),

Here

k=r

c*(r,R) = i (f) (g) GeP"(k,K).

Proof: That the limits P(%,K) exist and are independent of the initial
state again follows from the fact that the Markov chain {£,, E,} (n =
1, 2, ---) is irreducible and aperiodic. To show that the P(k,K) are
strictly positive and form a probability distribution, we must show that
there exists some state (&,K) such that P(k,K) > 0. This can be done
by a method similar to that used in the proof of Theorem 2; we omit the
argument. It follows that a unique stationary distribution exists and
that it coineides with the limiting distribution. We express this stationary
distribution in terms of the stationary distribution P’°(k,K) in the
following way:

Consider the arrival which oceurs at 7, (under equilibrium eonditions).

It either overflows, with probability b, or does not, with probability
(1 —0b).

If it overflows, the probability that it encountered the state (7,J) is
P°(5,J0).

If it does not overflow, let us denote the probability that it encountered
the state (7,J) by P(4,J).

We note that

P, J) = bP°(5,J) + (1 — b)P*(4,J). (52)
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Suppose that 8,4, = =.
If the arrival at 7, encountered the state (j,/) and overflowed, the

probability that the arrival at 7,,, encounters the state (k,K) is:

(,I];)e—rk(l _ efx)j—-k[GJ(J-JiK‘ l)e—ﬂ((l _ ck:z).H-l—K

(53)
+ H;(é)e""x(l — ¢ )™ = a(x), say.

If the arrival at . encountered the state (7,J/) and did not overflow,
the probability that the arrival at 7,11 encounters the state (k,K) is:

( + 1) (] — —:)J+1—L(K) K1 — )" = B(x), say. (54)

Taking account of both these possibilities, and removing the condition
on fuy1,

m

PULK) = 323 [ aF@OPGiat) + (1= DPGDRE.

7=0 J=0

Using (52),

PO = 323 [ ar @) P (Dlata) = 86)]+ PGB,

i=0 J=0

Taking binomial moments with respect to both trunk groups, and
using (53) and (54),

BOR) = ern 3o 3 {bP“(J,J) () (@’ Y, (}2))
(Jtl)()]“( ”(JH)(R)} (55)

= ¢rlB(r,R) + B(r — 1,R)
+ blC°(r,R — 1) — B°(r — LR)]}.
The solution of (55) is
B(r,R) _ B(m,R) + b[”f B°(jR) i c'(j,R — 1):|. (56)

j=r Cj+}a j=r+1 Cj+.r|!—1

Crir Cnir
Now note that, from (28),
bB°(m,R) = B(m,R). (587)

Substituting (57) in (56), we obtain (51).
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To complete the proof of Theorem 4, it remains to show that the
double binomial moments B(r,R) uniquely determine the probabilities
P(k,K). It is clear that the B(r,R) uniquely determine the U(k,R)
through the equation

U(hR) = 30 (—1) (k) B(rR) (58)

r=k

because m is finite. Thus we must show that
d R
P(kK) = > (—1)* (K) U(k,R) (59)
R=K

when M is infinite; it will suffice to show that the series on the right
converges absolutely.
From (39) we have

B(OR) = 12— [C(OR — 1) — B,k — D] (60)

Now

b

C(0,R) — E(O,R) = i: K)i (i) G;) aGxP(IK) < B(O,R). (61)

Therefore,
B(OR) = —¥% _B(OR — 1). (62)
1 - @r
Now
lim ¢, = lime(s) = F(0+) =0
R 80
whence
= = O
Thus
lim - BOR) (63)

R->o0 B(O,R - 1) N

Equation (63) is sufficient to insure that

) (113) B(O,R)

R=K

converges.
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Consider for simplicity the case m = 1. Then we have
B(O,R) = U(0,R) + U(LR). (64)

At least one of the statements

. UWOR)
lim —-—Q-E-l-f-@— =0 (66)

pow U(LE — 1)

must be true, for if both failed to be true, then for some ¢ > 0 there
would be terms for which

U(0,R)
UOR —1)
U(1,R)
ULR - 1)
for arbitrarily large R; it would follow that for arbitrarily large R

B(O,R) U(O,R) + U(1,R) >
BOR-—1) UOR-1) +ULR—1)" ¢
whiceh contradiets (63).
Say (65) is true. Then the series

3 (f) U(0,R)

R=K

> €

> €

converges; thus

M R M R M R
LR) = B(O,R) —
5 (@)oo = & (k) o - Z (§) vor)
converges, and this proves (59) for m = 1. The generalization to
arbitrary m is straightforward.

Corollary: We can now easily complete the proof of Theorem 2 by
remarking that [using (28)]

bU°(k,R) = bi (‘é) P(kyJ)
_y (3;) @P(kJ) < JZ; ('{a) Plkd) = U(kR)

J=R

so that the series
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P(kK) = RZ% (=" (2) U*(k,R)

converges absolutely, Q.E.D.
We again defer examples to Section V.

IV. THE STATE OF THE SYSTEM AT ANY TIME

4.1 Transient Behaviour

Let

B(rRy) = g KZ:; (i) (;) POE L)

with Laplace transform

=)

B(r,R,s) =f ¢ "'B(r,Rt)dt.

Let M4 (t) be the expected number of arrivals in (0] to encounter k&
trunks busy on the first-choice group and K on the overflow group, on
the condition that £(0+) = 7, Z(0+) = [, with Laplace-Stieltjes
transform

0

pi T (s) = f ¢ dM " ().
0

We also define several kinds of double binomial moments:

= d I\' K 'Y
1R _ _IK
2 = 35 3 () () wao)
m o Mg K
IR _ L
X '(s) = 2 2 (r) (R) Grpa (8)
2w (k) (K
" (s) = 2 ( R D (8)
k=r K=k \T
m M i] Ir
Ya(s) =2 X > ) PG (s)
k=r k=r \T R

Theorem 5:

o(s +r+ R)
1 —e¢(s+r+R)

I:(:) (2) + Wi, (s) + X N(s) — Y"’['R](S)jl~

‘i’ir”i(s) =

(67)
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Proof: Consider a certain set of r first-choice trunks and a certain set
of R overflow trunks. We shall call the union of these two sets an (r,K)-
tuple of trunks, and if the » first-choice trunks and the R overflow trunks
are all busy at time ¢, we shall say that this particular (r,R)-tuple of
trunks is busy at time . Thus, when the system is in the state (k,K),

the number of busy (r,R)-tuples is (f)(g) Let us make the conven-

tion that there is always one busy (0,0)-tuple. The expected number of
busy (r,R)-tuples at time ¢ is evidently B(r,R,l).

Let us now calculate the expected total number of encounters between
arriving calls and busy (r,R)-tuples in the interval (0,f]. Denote this
expectation by ;' "(¢).

If the nth arrival oceurs in (0], and if (¢, = &, E. = K), then the

nth arrival encounters (ic) (II;:) busy (r,R)-tuples. Thus
o m M o0
E-‘rm(t) = E Z E (k) (K)f dP{r, £ u, £, = k, E. = K}.
n=1 k=r E=R \T R 0

But

S Plra S u bw =k E = K} = Ma'"(u). (68)

n=1

Therefore
m M
pmw =5 2 () (§) e
k=r K=k \T R

with Laplace-Stieltjes transform
e F(s) = @, "(s). (69)

But ¢, %(s) can be found in another way. If (¢ = k, E, = K), then
at time 7,4, the system is in the state (k + 1,K) with probability p ,
the state (kK -+ 1) with probability g.Gx, or the state (k,K) with
probability ¢:Hx. Thus the expected number of busy (r,R)-tuples at
time 7.+, under the stated condition, is

() &) (Lo (75 7) e (R)
()@ () @) a0 ()5

and the expected number of busy (r,R)-tuples created by the nth arrival,
under the stated condition, is
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()0 -mer()(5)

Now the probability that the life of a busy (r,R)-tuple will be longer
than x is exp (—(r 4+ R)x). Thus the expected number of encounters
between arriving calls and created (r,)-tuples in the interval (0,] is:

o m M t
> % [P suws =5 =K
K=R—1 Y0

POE)E oGN] o

t—u .
: f I A0 ()
0

where M (x) is the expected number of arrivals in an interval of length
x, when there was an arrival at the start of the interval. 3/(2) has
Laplace-Stieltjes transform

Equation (70) is a convolution. Recalling (68), we see that (70) has
Laplace-Stieltjes transform,

2_1 xix [p" (r ! 1) (1};)

+ (1 — p)Cx (fl) (R I_i ]):I pi " (s)uls +r + R).

We must not forget the (r,R)-tuples which were busy initially; the
expected number of encounters between arriving calls and these is

(:) (IIB) ,;i;; j;‘ dP{r, £ uje " = (:) ({B) fﬂ‘ AM ()&= HR

with Laplace-Stieltjes transform

(:;) (1‘;) uls + 7 + R). (72)

Adding (71) and (72) we get

o(s +r+ R)
1l —e(s+r+ R)

I:(:) (é) + Wi (s) + X" (s) — Y.-r”H(S)]-

Now comparing (69) and (73), we obtain (67).

(71)

firIR(s) =

(73)
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Theorem 6: The distribution P(k,K,t) (t > 0) is determined by

1 —¢(s+r+R) 1

BInRs) = —r ¥R str+R

Qirlﬂ(s) . (74)

Proof: We have

P(kK\l) = (';) (1 — ¢ )T (II{) e (1 —e )T = F(1)]

%0 m M t
+ZZZ dl)lsrl:jrzn :J:Tu éu}
n=1 =0 J=0 0
'{p,- (.? ‘}; 1) Uk gty (}f{)
g WEC e—(l—u))J—K + g (.;c) oWk (75)

R P G T

.(1 _ eﬁ(t—u))J+I—K + HJ (}I{)c—(t—uh‘(

(1 — e“““’)”]} (1 — F(t — u)].

This may be seen as follows: either no calls arrive in the interval (0],
or the last call to arrive in that interval is the nth (n = 1,2, ---), ie.
the nth call arrives at time u and no calls arrive in the interval (). If
this call encounters the state (7,J/) it may get on the first-choice group
(probability p;), the overflow group (probability ¢,G.), or neither
(probability ¢;H ;). Then enough calls must end in the interval (w,] so
that the state at time ¢ is (k,K).

From (75), and keeping in mind (68),

s = (1) () o - ror+ % > [ an )

3=0 J=0

LW R {(-Z_) (}2) + p; (,. i 1) ({3) + a6 (f”)
'(R{- 1)} [ — Pt =),

and taking the Laplace transform,
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1 —e(s+r+R)[/i\[(I IR ®
) =LA LB I( (T) ) + i)

(76)
+ X:’r"R_l(s) — Y{rI'R_J(S):I-

From (76) and (67) we obtain (74).

It remains to show that the double binomial moments uniquely de-
termine the probabilities P(%,K,t). As in the proof of Theorem 4, it will
suffice to show that for all ¢ > 0

B(0,R,t)

M BoR -1 - b
From (67), for B > I,
Bo™(s) g CE R g rwiy (78)

1 — (s + R)
But, for all s > 0,
. els+R)
ol ey Bl

Therefore

L B (s)
W (s O (7
Now from (74),

BORs) 1 —p(s+R) ols+R—1)

BOR —1,s)  @(s+ R) 1—p(s+R—1)

s+ R -1 &2"(s)
s+ R li’m”ﬂ_l(s)

and so
. B(0,R,s) o By (s)
1 ——— e — —_—
M S00R — 1) — um g ramiggy = 0 (80)
since
. ols)
EEPOES VA

From (80), and the inversion formula for the Laplace transform, the
result (77) follows.
Example 3:
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Consider the case

g =0 (k=0,1,---,m—1)
Qm'__]-
M=

He=H,Gg=G((G+H=1) (K=01,2--).

This example may be of some practical interest. It represents a situa-
tion in which some equipment, other than a free trunk, is needed to set
up a connection on the overflow group. If this equipment is serving a
large number of trunk groups, the chance of its being idle may be sub-
stantially independent of the situation on the par ticular overflow group
being considered here, and may be represented by a constant, G.

In this case we have

XirIR(S} = G"I’frm(s)
Y,',-IR(S) — G\Pg‘ffn(s)

and
Vit (s) = @, " (s) — (T) Do " (8).

Equation (67) becomes

IR _ els +r + R) i I . IR
(I)l‘r (S) - 1 — ‘p(s + r + R) {(?') (R) + (pl,r—l (S)

(81)
- (T T 1) Qim”z(s) + G(T) ¢imI,R_1(S)} .
The solution of (81) is:
[ 5 (m ,
IR( ) (S) JET )C}+R(3) i (I) - (?f) 1
" r+R i 8=0 S j=0 ,? GSCH.S_1(S)
J=B GRCHR(S)

ARy O 50 gety ®

— 1 3=0 GSC,+3_1(S)
1=z(:1 ( ) G*Cirr-1(8)
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The expression for 8(r,R,s) can now be obtained from (82), using (74).
4.2 The Limiting Distribution P*(k,K)

Theorem 7: The quantities P*(k,K) exist, are strictly posilive, form a

probability distribution, are independent of the initial state, and are uniquely
determined by the double binomial moments

2 e (K (K P
B*(rR) =3 3 P*(k,K);
k=r E=r \T R
the latter salisfy

B*(r,R) = _a 1= e B(r,R), for 4+ R >0 (83)
r+ R Prir

B*0,0) = 1.

Proof: To prove the existence, we consider the limit of (75) as t — .
Clearly the first term goes to zero, and we have

M U m

P*IK) = lim Y, [ 3 dM ;" (u)

tsoo J=0 0 j=0

{ -
IR I ol A N T VTR e Te R Y
(L) e )
g WK (1 — e—{tw)).lu.ﬁ' + q; (.;v)

LR (] gl ik [G_, (J ;}{* 1)

LTUTIR (] Uy IR (i’)

(84)

_ef(l—ls)ﬂ (1 _ g—(f—ll))J—K]} [1 —_ ]f(ﬂ — u)].

It follows from Smith’s “fundamental theorem,”™* the assumption

that F(x) is not a lattice distribution, and the fact that P(5,J) > 0 for
all j and J, that the limit in (84) exists and is given hy
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PrK) = 3 20 PO [ aupt — pw)

j=0 J=0

{p} (J "}t 1) e—uk(l _ 6—u).5+1-'k

(;_') (1 =) g (Jk) e (1 — )" (85)
.[GJ (J ; 1)_6_ux(1 -

+ H, (‘;{) e F(1 — e_")"_x]}.

It is clear from (85) that P*(k,K) > 0 forall (k,K), since the integrands
are all strictly positive. (Note also that we have assumed « > 0.) The
dependence on (7,/) has disappeared, and it is easy to show from (85)
that

m M

> P*k,K) = 1.
k=0 K=0
Thus B*(0,0) = 1. To show (83), we take a different tack:
Consider any state (k,K). Transitions into the state (k,K) are of four
types:
(k — LK) — (kK) (type a)
(]C:K - 1) - (kaK) (t‘ype b}
(k+ 1,K) — (k,K)  (typee)
(kK 4+ 1) — (kK) (type d).

Transitions out of the state (k,K) are also of four types:

(k,K)— (k= 1,K)  (typea’)
(kLK) — (K — 1) (type b")
(k,K) — (k + 1,K)  (type ¢’)
(kLK) — (k,K + 1) (type d").

Denote by N, (1) the expected number of transitions of type y in the
interval (0,1].

If we consider the process only at times when the state (k,K) exists,
transitions of type (a’) form a Poisson process of density k, and transi-
tions of type (b’) form a Poisson process of density K. Thus,

Na(t) =k f‘P(k, K, t)dt (86a’)
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t
No(l) = Kf P(k, K, 1)dt. (861")
0
Similarly,
L
N(t) = (k + 1) fo Pk + 1,K,t)dt (86¢)
t
Na(t) = (K + 1)[0 Pk, K + 1, )dL. (86d)

Now {& = &k, E, = K} is a recurrent event, with mean recurrence
. - o 15
time [o/P(k,K)] > 0. Thus, from the “elementary renewal theorem,”

. M) P(kK)
lim = .

t-s0 o

But clearly,
N[p ( t) = q#GKﬂ[ik“t( {) )

so that
lim Nd:(f) - q.&-(I}(I(’.’,Il) _ bGKP (A‘,I() ) (Sﬁdl)
tsm i « o
Similarly,
lim No(t) _ GxabP(k, K — 1) (86h)
t-s0 o
lim N.(t) _ PP (1K) _ P(lK) — bP'(I,K) (86¢")
tso0 (a3 o
lim N,,t(t.) _ Pk —1,K) —abl (kb —1,K) . (86a)
t-»00

We now notice that in any interval (0,f], the number of transitions out
of the state (k,K) can differ from the number of transitions into the
state (k,K) by at most 1. From this remark, and all the equations (86)
it follows that

’

(k + K)P*(k,K) + aP(k,K) — abHgP"(k,K)
= ab[Gx 1P (kK — 1) — P'(k — 1,K)] + aP(k — 1,K) (87)
+ (k+ P*k + 1,K) + (K + )P*(k,K + 1).

Taking the double binomial moment of (87), one obtains
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(r + R)B*(r,R) = a {B(r — 1LR) — (m ': 1) B(m,R)
(88)

+b [C"(r,R — 1) — B(r — L,R) + (m j‘ 1) B"(m,R)]}.

We now note that, according to (51),

a [B(r —1,R) — ("’” N 1) B(m,R):I

- abc,m_l[ > BGR) 5 R~ 1)] (89)

j=r—1 CH.:: j=r CJ'+R—1
— ab (m j- ]) Bo(m,R).

Putting (89) into (88), we obtain (83).
It is now easy to see that the B*(r,R) determine the P*(k,K). For
from (83)

po BYOR) L+ R = Len B(O,R)
OB (0,R —1) e r+ R ¢z BOOOR—1)

.. BOR _
=lm e -1 "

Corollary: For Poisson input, P*(k,K) = P(kK).
Proof: For Poisson input, F(z) = 1 — e 0 <a< w;a=1/a
Thus

a a
‘.0(8) = m, er = m
B(rR) = ] TR perk) = BOR),

and since the double binomial moments determine the probabilities
uniquely, the result follows.
Examples will be found in the next section.

V. EXAMPLES FOR THE STATIONARY PROCESS

5.1 Categories of Examples

In this section we will try to find the stationary binomial moments
B°(r,R), B(r,R), and B*(r,R) for certain special cases, or categories
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of cases. In the easiest cases we will succeed in finding explicit expressions
for all these moments; in a harder case we will find explicit expressions
only when B = 1 or R = 2;in the most complicated example (the ran-
dom slip with overflow group, mentioned in Section I), the treatment is
numerical, and only the results for the over-all blocking, B, are reported.

If the first-choice group is full-access, the situation is particularly
simple, since overflow can only occur if £, = m; the vector equations

(24) for U°(Ek,R) then become scalar, and B°(r,R) = (T) U'(m,R).

If the balking on the first-choice group is arbitrary, but the overflow
group is infinite with no balking, or with constant balking probability,
as in Example 3 above, some simplification occurs. For then,

V(kR) = GU(kR)
and hence (24) becomes a recurrence relation, although the quantities
it relates are vectors. In such a case it is straightforward to find the first
few moments of the distribution on the overflow group.

In eases in which neither of the above simplifications occur, the form
of the balking probabilities may still he such as to facilitate caleulation;
an example of this is the random slip with overflow group.

5.2 Full-Access First-Choice Group
We suppose
g =0 (k=0,1,---,m—1)
qm = 1.
Equations (24) reduce to the single equation
U'(m,R) = pun(R)V(m, B — 1) (90)
and from (13),

o (R) = 1_“/(5)__ (R=1,2---).

— v(R)
() is given by (1); it easily follows that

) = Z_()J o
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Noting that, from the definitions,

Ci(R) = Zez, (92)
Cra
(91) becomes
= (m) 1
ymn(R) = 19N/ Cstnr, (93)
%(5e
i \J/ Cir
We also know [from (25)] that
U*(m0) = P_(;"l _ 1. (94)

Ezample 4:
We now consider a slight generalization of the system considered by
Brockmeyer (see Section I). Namely, let

g =0 (k=0,1,---,m — 1)
qm = 1
Hy=H (K=0,1,---,M — 1)
Hy = 1.

In this case we have
Ve (m,R) = G[U"(m,R) - (ﬂé) U"(m,]l-{)].

Thus, from (90),

U(mR) = tmn(R)E I:U"(m,R —1) - (Rj‘f 1) U"(m,M)] -

(R=1,2, -+, M).

The solution of (95) is

. INT & -
U°(m,R) = [Gﬂ ﬁ ymm(Q)}%((ﬂ;))%;I%::((s))]]_l_ (96)
p= o=

Now, from (93),
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ﬁlum(Q)=%;—)é (R=1,2,---). (97)
:';0 (J’) Cisr

Thus,

M
50 £ Wz

J

B°(r,R) = (m)G =R =0 08
() r i m) 1 M (98)
=0 J Cj+[g i J i(m) 1
= G N\G ) Oy
We notice [see (T54)] that
- [fm\ 1 1 1
(-t
Thus, from (51),
(7)
SN /& m\ 1
B(r,R) = G"Crir ! Cas)
()
XN\NT )& (m) 1
e xi)es (99)
(m) 1
1 J

e m 1 m
,Z=:u (J) Ciir =0 (J) Civra

B*(r,R) follows from (83).

When ¢ = 1, (99) is the generalization to recurrent input of Brock-
meyer’s result, (4). It can indeed be verified that (99), for Poisson input
and for G = 1, agrees with (4).

For infinite full-access overflow group (M = », ¢ = 1), (99) becomes

o fm\ 1 S m) 1
B(rR) = Cyy =) O (J) G _ 2 (j Cirat (100
’ r " m 1 = m 1 '
;‘Z=:D (J) Cirr Jgﬂ (-7) Cirra

Equation (100) is the generalization to recurrent input of Kosten’s
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result, (2). Again it can be verified that (100), for Poisson input, agrees
with (2).

5.3 Constant-Balking Overflow Group
We suppose that M = «
Gxg =G (K=0,1,2,--).
Then (24) becomes
U°(k,R) = @G j}e:(;p,-k(R)U"(j,R -1 (R=1,23,---). (101)
Example 5
Suppose further that
Q= q (k=0,1,---,m—1)
qm = 1.

This might describe a system in which some auxiliary equipment is
needed to set up a connection on the first-choice group, some other
auxiliary equipment is needed to set up a connection on the overflow
group, and the probability that the auxiliary equipment is idle is con-
stant, but this probability is different for the two groups. This is a rather
plausible system, except that the overflow group is infinite.

We note that the blocking for such a system is

B = ;; éq:.-HxP(k,K) = Hlq + pP(m)].

It is easy to show by the methods of Ref. 2 that in this example

B(r0) = p'C, &);—: (102)

()

1

C

1
piC;

so that in particular

Thus,
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Instead of (101), we use (29), which in our case becomes

B'(rR) = G 3 [fn(R) — g1(R)B'G.R — 1)
=0 (103)

In this case we have, from (37),
V,(s) = p l:‘f’;r(s) - (1:1) <I>,,,,(s):|. (104)
We can solve (35), (36), and (104) to obtain
P[50 wiwl [E () 5o
®ju(s) = o -
() i (m) 1 gﬂ I} p'Cia(s) z;, L) p'Ci(s)
I/ p'Ci(s)
s (m 1 1 s~ (i 1
[1; (l) p!C,(s)] [e;m (l) p‘Cz_.(S):I}'
It follows from (31) that

= (m 1
Z (]\) P”C};(S)_ 1

_ r k=r
Juls) = p'Ci(s) i(m); P'Cra(s)
k= \k/ p*Ci(s)

1 . ]
_ P—;‘Cz_l(s) if l>r}

i=0

(105)

0 if I=7r

From (105), fi.(s) — gi.(s) can easily be calculated by observing
that in this example

ftr(é - glr "'] = f]f!r(s‘ (?:‘l) flm(s}-

Then, from (103) one obtains
1
+ qp'C.(R) Z ( ) .
BO(T,R) = @G ( ) k Cic(B)
£ (1) et
=0 \F m

SUBGR =D o 3 BUR - 1)}_

(106)

iz pCia(R) i=rt1 piCia(R)
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Noting that, from (30) and (102),

gB(r,0) + p( )B(mO)
q + pB(m,0) (107)

oo E @) gnrrO)E @ sn 2]

we can use (106) to find B°(r,1), B°(r,2), ete., and in particular, the
first and second moments of the distribution on the overflow group only,
at overflow instants, B°(0,1), B°(0,2). The formulas are long; we quote
only:

B(r0) =

>0+ (7)o
BO(O)]-) = G qu + m ( p kC’k .
J‘r)

m
Mh1p+q2()km

(108)

5.4 Other Cases

Once B°(r,R) is known, it is straightforward to determine B(r,R)
and B*(r,R), using (51) and (83) respectively. [If B°(r,R) is known,
C°(r,R) can be determined, for use in (51), from the relation, which
follows from their definitions:

M
k) = 2 (F) (3 GOB D) (109)
J=R
see (T45).] The problem is thus to determine B°(r,R), from (29) and
(30), or equivalently to determine U°(k,R) from (24) and (25). We
consider the latter method.

To use (24) and (25), one must first of all determine p;x(R) for all
relevant j, k, and R [say, from (T70)], as well as P(k) [say, from (T44)
and (T45)]. Then the V°(k,R) must be expressed in terms of the
U°(k,R); in general V°(k,R) can be expressed in terms of the U’(k,J),
with J = R, by a relation analogous to (109):

M
Ve(k,R) = JZ (‘II%) (AF*GR)U°(K,J). (110)

=R
When (110) is substituted in (24), one obtains a set of simultaneous
equations for the U°(k,R). Equation (25) serves as a boundary condi-
tion. If M is finite, (24) can be used to express U°(k,M — 1),
U(k,M — 2), -+, U°(k0) successively in terms of U°(k,M), and

(25) can then be used to determine U°(k,M ).
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When the U°(k,R) are known, one finds the B°(r,R) by taking bi-
nomial moments, and then the B(r,R) from (51). The probabilities
P(k,K) then follow by inverting the binomial moments, and the over-all
blocking is determined by

m

M
B =3 > @HgP(kK).
k=0 K=0

FExample 6
We consider the system deseribed in Section I

(/€)oo

He=0 (K=0,1,---,M —1)
HM=1.

The IBM 7090 computer at Murray Iill was programmed to find the
blocking probability B for certain values of the parameters, namely:

m 4+ M = 10
v+ M = 6.

The calculations were carried out for two kinds of input:

(2) Poisson

(#7) That sort of recurrent input which is itself the overflow from a
group of my trunks to which a Poisson stream of ealls (with negative-
exponential holding times) of mean intensity a, is submitted. Note that,
since Poisson traffic is completely characterized by one parameter (its
mean, in our case ap), this sort of recurrent input is completely charac-
terized by two parameters (a, and my).

Note also that this program allows one to calculate B for certain more
complicated trunking arrangements, in the case of Poisson input, e.g.,
2 common trunks overflowing to a random slip of 3 on 7 which in turn
overflows to 1 common trunk. (This arrangement also involves a total
of 10 trunks and 6 crosspoints per line.)

The results (blocking probability B as a function of input traffic a)
are shown in Tables T and IT and Fig. 1. The cases treated were my = 0
(Poisson input, @ = a,) and m, = 2, in which case, of course,

3 2
a:‘fzi/(1+a0+%);

v was given the values 2,34 5,6. (Note that if v = 6, then M = 0; there
is no overflow group.)
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Fig. 1 — Blocking, B, vs submitted traffic, a.

Before commenting on the results, we mention parenthetically several
special features introduced into the calculation by the special form of the
balking probabilities and by the kind of input process considered in this
example. First, as to finding the P(k): (T44) and (T45) read, in our

notation

B(r0) = : f’w D(r — 10)

m

D(r0) = 2 (ﬁ) (A""p,)B(50).

J=r
In the present example,

©Or _ (_12 Crmo(ﬂo) (T
1 — e r C,+1""’(a.,)

(111)

(112)

-2) (113)
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and

()
N (j=rlr 42,00 (114)
()
Y
Also, since the overflow group is full-access (although finite), the
relation (110) becomes

Aj_rpr = -

V(kR) = U(kR) — (ﬂ{
R

In Tables T and II and Fig. 1, we have used the notation v/m + M
to describe a random-slip configuration in which each line has access to
~ out of the m first-choice trunks and all the overflow trunks, except that
the case v = 6, m = 10, M = 0 is referred to as 6/10. The curves in
Fig. 1 have been drawn, to avoid crowding, only for 4/8 + 2 and 6/10.

The following conelusions can be drawn from these results:

(i) The blocking is higher, for the same mean traffic, when mo = 2
than when mp = 0. This is consistent with the intuitive notion that
overflow traffic is “peaky”.

(1) In a practical range of blocking (B = 0.001 or 0.01), 4/8 + 2
is the “best” arrangement and 6/10 is the “worst” of those considered,
from the point of view of the traffic capacity of the system for a fixed
blocking probability. Tt can be seen from the curves that if one wanted
an arrangement using 6 crosspoints per line and 10 trunks, one would
gain about 8 per cent (for me = 2) or 6 per cent (for mo = 0) in traffic
capacity at B = 0.01, by using the arrangement 4/8 + 2 instead of
6/10. At a blocking probability B = 0.001, these gains would be about
16 and 11 per cent respectively. Such increases in traffic capacity are
not negligible; they seem to be larger for peaky traffic than for Poisson
traffic.

(#47) For higher blockings (“overload” conditions), the advantage of
4/8 + 2 relative to 6/10 diminishes.

A study for a practical case would involve calculations of the block-
ing for other values of v + M, a knowledge of the relative costs of trunks
and crosspoints, and of course many other considerations, such as the
relative costs of building and controlling 4/8 + 2 and 6/10 switches.
Also, in such a study, one would want to keep in mind the approxima-
tions implicit in the model used in this paper. For example:

(©) In reality, blocked calls may wait or be resubmitted.

(%) In reality, the number of traffic sources (lines) is finite, so that

) Ue(k,m). (115)
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the arrival process after any instant is dependent on the number of
trunks busy at that instant; thus the input is not, in reality, recurrent.
(497) As a further result of the finiteness of the number of lines, the

complete set of (::) access patterns required for a perfeet random slip

probably could not be used, and even if it could, equal traffic would not
be submitted to each access pattern (so that the blocking experienced
hy different subseribers would he different).
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