Optical Maser Oscillators and Noise

By EUGENE I. GORDON

(Manusecript received September 5, 1963)

The transmission line malriv formalism so useful for describing the
transfer propertics ol microwave networls is extended lo the electromagnetie
fields associaled with oplical masers. The spontaneous emission noise of
the optical maser is examined and shown to be amenable to a thermal de-
seription. Taking the point of view, well accepled al microwave frequencies,
that a weakly nonlinear oscillalor is a saturated amplifier of moise, the
power and linewidth of the noise radiation emailted by the optical maser is
calculated using the transmission line formalism. The significant param-
eters for any optical maser are shown to be the frequency, the single-pass
gain of the maser medium, the effective mirror reflectivity and the population
ratio. The pre-oscillalion characteristics of the maser are examined and
the reason for the extremely sharp oscillation threshold of the gas masers
is discussed. Some observalions concerning semiconductor oplical masers
are also made.

I. INTRODUCTION

This paper represents an attempt to deseribe the optical maser or
laser from a microwave circuit point of view and is largely tutorial,
since many of the results obtained froma circuit viewpoint are already
known. The generality of the method of approach enlarges their area of
validity, however.

Many of the people working on optical masers who do not have a
background in microwave theory and techniques may find a fresh point
of view. In particular, they may find a very modest introduction to an
extremely well developed store of computational techniques which are
applicable to optical masers. This may save them the trouble of in-
venting their own.

On the other hand, those who have previously been working in the
field of microwaves may find that the analogies between optical masers
and more conventional microwave devices are more cogent than they
had appreciated. Finally, it is hoped that some of the distinctions be-
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tween oscillating and pre-oscillating or subthreshold masers will be
clarified.

I1I. THE CONVENTIONAL OSCILLATOR

Excluding strongly nonlinear oscillators with periodic but non-
sinusoidal waveforms, it is often stated that an oscillator is a device
having an internal gain which exceeds its total losses. Supposedly,
noise triggers it off and it then continues to put out oscillatory power at
a level determined only by saturation effects. The steady-state satura-
tion level is defined as that for which the internal gain just equals the
loss. An extensive discussion of microwave oscillators, based on this
point of view, is given by Slater.

Although this point of view often constitutes a good working defini-
tion of a feedback oscillator, it is incomplete in that it neglects the
continuing presence of the noise. As a result, when the internal gain of
the oscillator exactly equals the losses, so that the effective lifetime of a
photon in the feedback loop is infinite, the noise power output of the
oscillator must increase without limit. Similarly, the associated line-
width of the noise output must be zero. Since this situation is physically
unrealizable, it is clear that the noise must be taken into account and
that the steady-state gain could never exactly equal the loss and must
always saturate at a slightly lower value. As a result, there could be no
continuing, self-sustained oscillation which starts from noise.

I'rom these considerations, it appears that a better, but still incom-
plete, description of an oscillator would be to say that a steady-state
regenerative oscillator is a feedback amplifier driven to saturation by
a noise input. Internally produced noise is usually the driving force;
however, an additional source may be the noise entering through the
output port. The external gain of the amplifier, that is, the gain ex-
perienced by any input signal, is usually extremely large unless the
amplifier is saturated by the input signal. Since the amplification is
obtained regeneratively, that is, by the use of feedback, the bandwidth
of the gain is limited; the higher the gain the more limited it is. The
amplified, narrow-band noise output is the output signal of the oseil-
lator. When the large gain can be obtained without regeneration, the
noise output need not be narrow-band.

This concept of the oscillator as a saturated amplifier of noise is not
new and is well known in the microwave art. More recently, this concept
has been employed by Gordon, Zeiger and Townes? in their treatment
of the microwave maser osecillator, and by Wagner and Birnbaum,?
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Schawlow and Townes,* Shimoda,® Blaquier® and Fleck? in their treat-
ments of the optical maser oscillator.

While this definition of an oscillator is somewhat more satisfying, it
implies that an oscillator is merely an extremely narrow-band filter
with gain. As a result, the statistical properties of the noise input should
be preserved, except for the spectral narrowing. For example, a filtered
Gaussian noise input® would remain Gaussian. Sinece a narrow-band
Gaussian noise process shows amplitude fluctuations with a time con-
stant approximately the inverse of its spectral range,? the output of a
filter with gain should exhibit this property also. The fact that a true
oscillator does not indicates that a correlating mechanism is operative.

Gain saturation is one mechanism that operates to eliminate fluctua-
tions in the output intensity. The action is similar to that of a limiter.
In an optical maser, gain saturation arises almost entirely from deple-
tion of the population inversion rather than from any nonlinearity in
the stimulated emission process. To a very high degree, the output wave-
form is sinusoidal and the saturation depends only upon the time-
average power, the time average extending over a time long compared
to the period of the output waveform but short compared to any relaxa-
tion mechanism or pumping rate.

Suppose now that the filtered output has a spectral range Ay so that
the input noise has power fluctuations with a time constant approxi-
mately Ay . If the gain of the maser medium has a relaxation time
7, < Av7', then the input fluctuations will be virtually absent in the
output. On the other hand, if =, > A»™' the input fluctuations will
appear in the output.

Thus, for a true oscillator

A < 1 (la)
while for an amplifying filter
TgAv > 1. (1b)

As will be seen later, for a weak optical maser Av can be quite large,
while for a strong maser Av becomes vanishingly small. The cavity
bandwidth Av, represents an upper limit for Av. For example, in a gas
maser Av, &~ 10° eps and 7, &~ 107", so that for unsaturated gains less
than the loss, Av &~ Aw,, Avr, = 1, and the device acts like an amplifying
filter. When the unsaturated gain exceeds the loss, A» becomes much
less than Av, and the device becomes an oscillator.

In the semiconductor maser, the lowest reported value is Ay =~ 3 X 10°
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cps, corresponding to 0.1A. Unless 7, < 3 X 107", it is quite probable
that the device acts like an amplifying filter rather than a true oscillator.

The interested reader will find a short discussion of the effect of noise
on oscillators in a book by van der Ziel.® His discussion indicates a
method of approach to obtaining a quantitative solution to a very
complicated nonlinear problem. However, the concept of the amplifying
filker probably yields a good first approximation to the spectral width
of the oscillator output.

In the following sections, the foregoing concepts will be exploited to
exhibit the cireuit formalism and to study linewidth and threshold be-
havior. The basic results are applicable to any uniformly pumped, single-
mode maser or any multimode maser for which nonlinear mixing or
coupling of modes is not significant. Some remarks concerning the lack
of extremely narrow linewidths in the semiconductor maser will also
be made.

III. SINGLE MODE REPRESENTATION FOR AN OPTICAL MASER

The electromagnetic fields associated with the optical maser are very
close to being plane waves. To a very good approximation, each mode
of the electromagnetic field can be represented by field quantities,
E(z) and I(2). These quantities can be normalized to have the dimen-
sions of voltage and current, respectively. The relationship between
E(z) and I(2) is obtained by specifying the value of the function Z(z) =
E(z)/I(z) at some point z. In the content of this paper, a mode is one
member of a complete set of transverse eigenfunctions which are appro-
priate for the geometry in question. No orthogonality with respect to
the z coordinate is implied.

If the various modes of the electromagnetic field are uncoupled and
E and I are represented as complex quantities, then a linear relationship
of the form

E(z)| _| A ZB||E(z)
I(z) |~ |zc D } I(2) (2a)
or
W(z) = T(21,2) W(22). (2b)

can exist for each mode.'”" The input side is taken at z and the output

side at 2 , as in Fig. 1. The quantity Z, is the characteristic impedance
associated with the transmission medium. The directions of E and I
are defined so that when the phase difference between E and I falls in
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Fig. 1 — Generalized linear two-port network for single mode representation,

the first and fourth quadrant, power is flowing in the direction z, — 2z,
while for the second and third quadrant, the direction z, — 2, . The
choice of directions makes it possible to determine the result of cascading
a number of sections by writing

‘F(Z]) = T(Zl ,2’2) 'T(ZQ ,23) L T(z,,_l ,Zn) ‘W(Zn). (3)

The complex quantities A, B, C and D are dimensionless and are
independent of time in the steady state. In general, they are functions
of frequency. For convenience, the characteristic impedance of the
transmission medium will be taken as unity, i.e., Z; = 1. The transmis-
sion medium between planes z, and z,,; will be referred to as a “net-
work.” The properties of the network are described uniquely by the
quantities A, B, € and D. General relations among these quantities
can be determined by specifying the transfer properties of the network,
These are reviewed in detail in Appendix A and are deseribed below. |
For example, a matched network which produces no reflection from
side 2z, when terminated by the characteristic impedance on side z,4,
can be written

A B

B A (4)

in which A and B are, in general, independent complex parameters.
A reciprocal network is characterized by the relation AD — BC = 1.
A reactive network has the transformation
a JB
Al §

(5)

in which the four independent parameters «, 8, v and & are real. A recip-
rocal reactive network, in addition, has aé + gy = 1, so that only three
of the parameters are independent. A matched reciprocal reactive
network has « = 6 and 8 = v, 2o that only one parameter is independent.
The network of this type can be written

1 The Appendix is ineluded because there is no single convenient reference.
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cos | sin ¢
gose J (6)
jsing cose

in which the real parameter ¢ is the phase shift from z, to 2,11 . A length
of transmission medium is an example of a matched reciprocal reactive
network. For this case, ¢ = 27»(2.41 — 2a)/¢/, in which ¢’ is the phase
velocity of the radiation.

The most general unmatehed reciprocal reactive network, which
has three independent parameters, can always be characterized as

a B cosgr jsingn||N 0O COS ¢y J sin ¢
P =|.". N . (N
Jjy 6 jsing, €oser 0 N jsing; cos e,
The network
N 0
0 N (8)

is known as an ideal transformer of turns ratio N. Thus, the most
general unmatched reactive reciprocal network, aside from phase shifts
¢ and ¢, , is an ideal transformer.

A resistive network produces no phase shift and can be characterized
as having A, B, C and D all real. A matched reciprocal resistive network
has only one independent parameter and can be written

cosh # sinh @
sinh 8 cosh @|° 9)

The matched reciprocal resistive network is known as an attenuator.
It is shown in Appendix A that the power attenuation is given by
exp —20. The parameter 4 is referred to as the attenuator line length.
The most general matched reciprocal network (resistance plus reactance)
has two independent variables and can be written

cos (¢ — jo) jsin (¢ — jb)
Jsin (¢ — j6) cos (¢ — jb)

(10)
cosh ¢ sinh 6

sinh @ cosh @

cos ¢ Jjsine
jsing cose

Therefore, the most general matched reciprocal network consists of an
attenuator with phase shift. Note that the attenuation and phase shift
commute. As a result, a matched network with distributed attenuation
and phase shift can be lumped into a network with attenuation in
cascade with a network having only phase shift.
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The transmission factor or transmissivity of the network, denoted as

L, is shown in Appendix A to have the value
4
L= .
[ATE+CTDF (1

Tor a matched reactive reciprocal network as in (6), L = 1. The factor
L is also known as the gain of the network. The transmission factor
equals the ratio of power transmitted to power incident when the net-
work is preceded and followed by matched terminations.

The reflection factor or reflectivity of a network is given by

R=1L|A4+B-C-D]|"% (12)

The reflection factor is the ratio of power reflected to power incident
when the input and output terminals are matched. For a matched net-
work, (A =D, B=C), R = 0.

The noise generated in a network can be represented by suitably
chosen current and voltage generators 7 and e at the input to the net-
work as in Fig. 2." The network itself can then be considered as noiseless.
IFor example, for a series resistor r, the noise generators are appropriately
i=0and |e| = [4p(»)dw]’ in which

hvdy

p(r)dy = exp he/kT — 1

(13)
is the thermally generated noise power in a frequency range dv centered
at frequency » when the resistor is at temperature 7." The phase of ¢
is a random variable. For a shunt resistor, r, the noise generators are
e =0and |7| = [4p(»)dv/r]'. For reactive networks, ¢ = i = 0.

Tor an arbitrary network containing lossy elements, the appropriate
values of ¢ and 7 can be expressed in terms of the components of the
transformation matrix, A, B, (' and D. Since an arbitrary passive net-
work can always be matched by suitable use of transformers and line
lengths, placed on either side of the network, the arbitrary network can

[—>
\?/ Q [ o ————m—

E NOISELESS E
1 NETWORK 2
') —

Tig. 2 — Equivalent external current and voltage generators for noiseless
petwork representation.
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always be made to appear matched and resistive. It follows that an
arbitrary lossy network can always be represented as a resistive matched
network imbedded in reactive networks.'" The reactive networks on
either side of the imbedded network are the inverse in reverse order of
the networks required for matching the original arbitrary network.

It follows, too, that if the appropriate values of e and 7 can be deter-
mined for any resistive matched network, then the values can be deter-
mined for the imbedded network. These values can then be transformed
through the reactive networks at the input side of the imbedded net-
work to represent the appropriate values at the input side of the original
network.

Thus, it is only necessary to have a general formula for e and ¢ perti-
nent to a resistive matched network. In Appendix B it is shown that the
appropriate values of ¢ and 7 for any matched resistive network are
given by"

le|* = |i|® = ABdp(v)dv

i ) (14
ei* = et = 1(A* + B — 1)4p(»)dv. )

The values of ¢ and ¢ without the factor 4p(»)dv will be referred to as
the normalized values. The quantities, |e|* |7|* and ei® commute
with a phase shift network (a length of transmission line). A value ¢
following a transformer of turns ratio N becomes, at the input side of
the transformer, Ne, while a current 7 becomes ¢/N. Thus, the procedure
in finding the values of ¢ and ¢ preceding any given network, T, is to
find the appropriate reactive transformations of the form

T = T(p) - T(N)-T(g2) T(r)-Tlgs) - T(M) -T(es) (15)

in which T(7) is the imbedded matched resistive network, and find the
values of e and 7 appropriate to T(r) using (14). The values of ¢’ and ¢’
appropriate to the input side of T are ¢’ = Ne and 7’ = i/N.

In Appendix B, it is shown that the noise power into a matched load
following any given network at uniform temperature T (considering
only the noise arising from the given network and ignoring the noise
originating in the matched loads at the input and output side) is given by

dP = L|e+ i|*p(»)dr (16)

in which L is the transmission or gain factor for the network, given by
(11), and e and ¢ are the normalized noise generators at the input to
the network. For example, for an attenuator with transmission factor
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L, (16) yields
dP = (1 — L)p(»)dv (17)

as is shown in Appendix B.

Since the noise parameters commute with a matched phase shift
network, attenuation and phase shift can be lumped with respect to
noise properties as well as transfer properties.

IV. THE OPTICAL MASER

The maser medium has the property that light passing through the
medium once is amplified by a factor (1(»). In addition, the light under-
goes a phase shift, ¢(v). Thus, the matched maser medium can be
characterized as an attenuator with a transmission factor G; in cascade
with a matched reciprocal phase shift network.

Since the spontaneous emission from the maser medium can be con-
sidered as thermal noise,"® the spontaneous emission power radiated into
a given mode by a uniform maser medium should be given by

dP(v) = [l = Gi(»)]p(»)dv (18)

as follows from (17). Since p(v) = hv/(exp hv/kT — 1), the question
naturally arises as to what temperature to associate with the maser
medium. In particular, one wonders whether a noise formula like (18),
which is valid for passive networks in thermal equilibrium, can be used
when the maser medium is active, i.e., when (7, > 1. Normally, the
radiation temperature of the uniform maser medium is defined by the
Boltzmann factor'’

ne(v)/mi(v) = exp —hy/kET (19)

in whieh n, and n; are the densities of upper- and lower-state atoms,
respectively. Using (19) as the definition of maser temperature, it
follows that (18) is precisely correct for a uniform medium.

To illustrate, one can write for the emission power, dP, into a given
mode in a frequency range dv, along the z-axis

AdP/0z = hvwdP(n, — ny) 4+ dwhvne (20)

in which w; is the probability per unit intensity per unit time for stimu-
lated emission into the mode and dw, is the probability for spontaneous
emission in either direction for the same mode into frequency range dv.
The population densities for the upper and lower maser levels, n, and
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ny, are assumed constant with z.1 Solving (20) subject to the initial
condition dP = 0 at z = 0 yields

$(dw,/wi) (1 — G)

PG) = == Ty — 1

(21)

in which
Gy = exp hyw;(ns — ny)z. (22)

Since the probability for stimulated emission is related to the probability
for spontaneous emission into frequency range dv by

dw, = 2whvdy (23)

for a given mode, (21) and (18) are identical.I It follows that (18)
correctly aceounts for the spontaneous noise into a single mode, so
long as one writes p(v) = hv/(ny/n. — 1). It also indicates the applica-
bility of the formalism described in the preceding section to maser media.

The fact that the maser temperature 7, as defined by (19), and p(»),
as defined by (13), are negative should not distract the reader from the
more signifieant fact that (18) or (21) correctly predicts the noise
power emitted by the maser medium. This quantity is never negative,
and varies smoothly as T goes from positive to negative values.

The noise output from the maser can be calculated using (16), and
this will be the aim of the following analysis. It is worth noting that the
only significant parameters characterizing the medium, assuming that
the maser medium is uniform and matched, are the total single-pass
gain, Gy, the population ratio and the phase shift through the medium.
The effective attenuator line length, 6, is given by the expression G, =
exp —26.

V. THE REGENERATIVE OPTICAL MASER OSCILLATOR

The mirrors forming the optical eavity, being reactive (except for a
small absorption loss which will be neglected) and reciprocal, can be
characterized as ideal transformers. The phase shift associated with the
mirrors on the cavity side can be added to the single-pass phase shift
of the maser medium, The mirror phase shift external to the cavity is
not significant to the problem at hand.

+ This implies no saturation or uniform saturation.

1 Equation (23) is equivalent to the statement that the total rate of spontane-
ous emission is related to the total rate of induced emission per unit intensity by

dw, = w;8rhi’dy/c?, since the total number of modes per unit volume per unit
frequency interval is given by 8m»?/c?. (See Ref. 16.)
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Since the reflection factor for an ideal transformer is, from (12) and (8)
R = (N* = 1)*/(N* 4+ 1)* (24)

it follows that the equivalent turns ratio for a mirror of reflectivity R
is given by

N = (1 + RY)/(1 — RY). (25)

The transmission factor L,, for the maser cavity with unequal mirrors
of reflectivity R and R’ is obtained by combining the cascade of trans-
former with turns ratio N, attenuator with loss parameter 8 = —3 In (i,
transmission line with phase shift ¢ = 27»L/¢’ + constant, in which
2L/¢" is the equivalent round-trip time,f and transformer with turns
ratio M ', M* = (1 + R'Y/(1 — R, as in Fig. 3. The noise power

TFig. 3 — Equivalent circuit for maser cavity with mirrors of unequal reflec-
tivity.

from one end of the maser is given by (16)
dP = L, |Ne + N7'% | *p(v)dv (26)

where the normalized noise generators for the maser medium are given by
2 . .
le|® = ]i|® = cosh 6 sinh @

eit = ¢*i = L(cosh® @ + sinh® 8 — 1)

as follows from (14) and (9)
The caseade of mirror, maser medium and mirror takes the form

N 0 cos (¢ — j8) jsin (¢ — )| |M™" 0

0o N jsin (¢ — 78) cos (¢ — j8) 0 M

(N/M) cos (¢ — j8) NDMjsin (¢ — j6)

(NM) % sin (¢ — j#) (M/N) cos (¢ — jb)

t The phase velocity ¢’ is a funetion of » and @, by virtue of the anomalous
dispersion of the maser medium.

(27)

(28)
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Using (11), the transmission factor is given by

4
|(N/M + M/N) cos (¢ — jb)
+ j(MN + [MN]7) sin (¢ — jb)[?
1
(1 — BR"Gy)?/Gi(1 — R)(1 — R")]
+ 4RIR/(1 — B)(1 — R')]sin’ ¢
Note that in the limit B = R’ = 0 (no mirrors), L, = G as would be

expected; while in the limit R = R/, G, = 1 (a transparent maser
medium)

L. =

(29)

1
T T+ ER/(1 — R sin’ e

which is the transmission factor for the Fabry-Perot or optical cavity
surrounding the maser medium.”*" Equation (29), or versions of it
with & = R’, has been derived before.” In these cases, however, it had
been necessary to assume that the maser medium uniformly fills the
region between the mirrors. No such restriction is necessary.

The noise power | Ne + N i | * has the value, using (27)

|Ne + N 7% |*= (N* 4+ N7%) |e|® + 2¢*
= (N* + N?) cosh 6 sinh 6 (31)
+ (cosh® @ + sinh® 8 — 1)

L., (30)

which after some manipulation yields
|Ne + N 7% |* = (1 — G))(1 + RG\)/Gy(1 — R).  (32)

Combining (26), (29) and (32), the noise power in frequency range
dv leaving the maser cavity through the mirror R’ can be written

(1 4+ RG)(1 — RH(1 — Gop(v)dy
(1 — RIRG))? + 4RR"G, sin o

In the vicinity of a cavity resonance at frequency », the phase shift
¢ differs from some multiple of = by an amount Ae = 27(» — w)L/¢".
The free spectral range of the cavity mode at frequency » is the range
w— ¢ /4L = v £ w + ¢//4AL as illustrated in Fig. 4; the mode spacing
is ¢//2L. Thus, the total noise power leaving the cavity through R’,
associated with one cavity mode, is obtained by integrating dP over

the free spectral range of the mode, yielding

dP = (33)
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vote! [4L
]) _ f p(V)Cr] du
o Cs + Cy sin® 27(v — wo)L/c’’
With the substitution ¢ = 27 (» — w)L/c¢’, (34) can be written
+r/2
’ C d{p

P = . 1P

Po0) 5.7, LGt Casin'y

in which the quantities ; , (> and ('3 are given by
C,=[(1 + RG)(1 — R)(1 — Gy)),
C, = [1 — R'R"G,)*

Il

and
(y, = 4R'R"G, .

519

(34)

(35)

Since the integrand is large only in a very small range of frequencies
near », it can safely be assumed that p(v), G5 and R are constant with

frequency and have their values at » = »,.

With this approximation the integral has the value #(;/[Cs° + CaCs)?

(see Ref. 18), yielding
P(R') = [(1 + RG)(1 — R")/(1 — RR'GY"))

(1 — Gi)p(w)(c'/2L).

| |
| |
}s——— c'/zL-fﬂ-i
| |
| |
| |
Vo Vo+ /4l
YV —

Vo -C'/4|_

Fig. 4 — Free spectral range of cavity mode at frequency »o.

(36)
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From (18) it may be noted that [1 — Gi(w)lp(w)c’/2L is the spon-
taneous emission power that would be emitted by the maser medium,
in the absence of the cavity, into the spectral range ¢'/2L if the gain
were constant over that range. When G; > 1, the spontaneous emission is
enhanced by stimulated emission. The noise power

[1 — Gi(w)]p(w)c'/2L

will be denoted as P,(#). The noise power leaving the cavity through
mirror R’ is, therefore

P(R') = P.(1 + RG,)(1 — R')/(1 — RR'GY"). (37)

The power leaving the cavity through mirror R is given by (37) with
R and R’ interchanged. The total power leaving the cavity is

P, = 2Pl — RR'G, + 3(Gh — 1)(R + R"))/Il — RR'GY] (38)

so that the cavity enhances the spontaneous emission by the factor
following 2P, .

It should be noted that the integration of (36), which leads to (37)
and (38), is valid even if Gi(») varies over the range ¢’/2L, so long as
the frequency range over which () has a significant variation is large
compared to the spectral range of the noise power. This will always be
so, providing the natural linewidth of the transition is large compared
to the spectral range of the noise, independent of whether the transition
is homogeneously or inhomogeneously broadened. Equations (37) and
(38) are valid even when the gain profile is saturated, providing the
maser medium is uniformly saturated with respect to the axial direction.
In general, the saturation will tend to be uniform, assuming uniform
pumping, since the power in the cavity tends to be uniform with length.
For very high-gain maser media the latter statement is not valid.

It should be noted that (38) contains an implication which is not
immediately obvious. In the limit ny = m, with G, = 1 and P, finite,
(38) states that P, = 2P, independent of R or R’. Thus the total
spontaneous emission noise power leaving the optical cavity is inde-
pendent of its bandpass. The spectral distribution of the noise is altered,
however, to correspond to the bandpass.

The preceding results can be used to determine the linewidth of the
oscillator. The spectral range or bandwidth of the noise power is ob-
tained from (33) by determining the frequencies at which dP falls to

+ In the limit ¢’/2L very much less than the inhomogeneously broadened line-
width, (38) implies that the total spontaneous emission power into all modes is
independent of the mirror reflectivity since Gi = 1 over the entire line.
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half its value at » = »,. This oceurs at frequencies »; defined by
A4R*R"Gy sin® 21 (vy — wo)L/c' = (1 — R'R’Gy)? (39)
yielding a spectral width Av = 2(»; — ») given by
Av = (¢//Lr) sin ' 1(1 — R'R"'G,)/(RR'G)
= (¢/2L7)(1 — R'R"*GY)/(RR'GY) . (40)

Equation (40) can be rewritten by substituting for 1 — (RR’)%Gl the
value given by (38)

1 — (RR'GY)* = 2(P,/P)[l — RR'G, + 3(Gy — 1)(R + R")]/
[1 4+ (RR'G).
The resulting expression is a function of the single-pass gain ;. For
the strong oscillator the gain saturates at a value such that RR'G)
differs from unity by a vanishingly small amount. Thus it is expedient,
in the expression for Ar found by substituting (41), to write for the
saturated single-pass gain
Gi=[l = (1 = (RR'G*)"))/(RR)* (42)
and then to replace 1 — (J"H?’(:'lgj5 by its approximate value obtained
from (41). In the reiteration, the approximate value ean be written

(R* 4+ R™M* (1 — (RR)Y)  2rhwiw,
H(RR} (RENYY (1 — na/na) P,

which follows by substituting in (41) the value ;, = (RR")™" and re-
placing P, by its value (1 — Gy)(¢’/2L)hv/(ny/n. — 1). The cavity
bandwidth Aw, is given by (40) with (, = 1.

Combining (40-43) and performing the necessary algebra yields

Av = 22(hv/P)(Av.)* (1 — ny/na) " '2[1 + (whvAv,/P))
(1 = m/m) (=2 4+ 3]+ 1+ a)/ah)

1 —(RR'G)' ~ (43)

(44)

in which
2= (R'+ R'MH*/4(RR"! (45)
is a term which is identically unity when R = R’ and remains close to
unity even for R and R’ differiug by a factor of ten, and the quantity
x = (RR")".
When hvAv./P, < 1 the linewidth is

Avp %QW%V (Av)* (1 — ny/ns)™" (46)
3
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and differs from the well-known Schawlow-Townes' formula by a factor
of two. The correction term (1 — ny/n.)”" approaches unity for the
ideal maser (n:/ny = 0). This term has also been found by Shimoda.’
It should be noted that n,/n, is the saturated value and in general may
be very difficult to evaluate. An approximate value may be found by
setting the single-pass gain given by (22) equal to the saturated gain
given by (42). Extracting the appropriate value of ni/ne requires a
knowledge of the transition probability, the time constants for the
upper and lower states and the mirror reflectivities. The degeneracy
of the upper and lower levels should also be taken into account.

For the 6328 A gas maser, typical values f01 a one-meter-long dis-
charge are P, ~ 10°° watts/mode Av. &~ 10° cps and ny/n. = 0.98,
yielding a linewidth of 107" cps.

For the sermconductm optical maser, (46) predicts a linewidth of
approximately 5 X 10° eps, taking . = 0.06 cm and P,/P, =~ 107
The latter numbers are taken from the data of Qulst et al." The cor-
responding wavelength range is 107* A. This estimate is probably a con-
servative lower limit because of the neglect of internal losses in the
derivation and the fact that the internal losses are significant in the
actual device. The lowest observed linewidths are about 107 A. The
relatively large linewidths arise from very short spontaneous emission
lifetimes ( <107 sec). The relatively large amount of enhanced spon-
taneous emission available produces saturation at small values of P,/ P, .

As has just been shown, it is possible to write formal expressions for
the power output and spectral width of the noise emitted in a given
mode. Since the power, and hence the spectral width, depend on the
saturated single-pass gain, it is necessary to take the dynamic prop-
erties of the maser medium into account. This is illustrated graphically
in Fig. 5, in which the curve of P vs (7 as represented by (38) is shown.
Also shown are a curve of Av and three dashed curves representing the
dynamic properties of the maser medium. The latter curves may be
found by solving the rate equations for the maser medium to obtain a
relation between the power taken from the maser medium and the single-
pass gain. When large power is taken from the maser medium, G; must
approach unity, since the population inversion must approach zero.
When the noise power taken from the maser medium approaches zero,
the single-pass gain approaches its small signal value Gy . The curve
representing the dynamics of the maser medium intersects the curve
representing the static characteristics of the cavity at some value
Gh < (1/ RR")Y. This is the operating point of the maser. The value of
(@, at the operating point determines the value of Av.
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Fig. 5 — Noise power vs single-pass gain as represented by (38).

For a gas maser with small single-pass gain, the dynamic properties
of the maser medium can be shown to be controlled by an equation of
the form™

G 1+ b/ (1 + kP/Ps) (47)

in which £y is the small signal gain parameter for the mode in question,
[ is the active length of the medium, «/F, is a saturation parameter
dependent on the Einstein A and B coefficients for the maser levels and
P. is the power in the cavity. In most maser media « < 1, so that G,
varies quite slowly with P./P, . It should be noted that P, is essentially
constant and can be evaluated for (+, = 1.

The gain parameter ki, varies with discharge current. For low cur-
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rents, ko is proportional to current.”” Thus, as the discharge current is
increased from zero, the output power increases. From Fig. 5 it would be
expected that as the discharge current approaches a value for which
1 + ko approaches (RR’)_*, the output power would show an extremely
sharp rise with current. This can be illustrated by writing for G, as a
funetion of discharge current I, taking R = R’ for convenience,

Gix~ 14 [(1 = R)/RI(I/10)/(1 + xPc/Ps) (48)
in which I, is the current for which G3R = 1 in the absence of satura-
tion. From (38), taking P. = P.,/2(1 — R)

P./P, = 1/(1 — RGy). (49)

Solving (48) and (49) for P./P, yields
P./P, = [AI/Ty + « + A/ (AI/T, + )* + 4«]/2x (50)

in which AT = [ — [,. Note that when (AI/I)) + « = 0, P./P, = K
When (AI/Iy) + « has the value (f — "), P./P, has the value fx
Therefore, the change in P./P, by a factor f is larger than the change in
Al/ Ty of x*(f — /") by a factor s Thus, when « << 1 the power output
shows a very sharp threshold with current. The value of « is of order
107" for the 6328 A gas maser.

Vi. THE NONREGENERATIVE OPTICAL MASER OSCILLATOR

Some maser media have such large single-pass gain that spontaneous
emission originating at one end can be amplified sufficiently to saturate
the maser medium at the opposite end. For example, the 3.39 p transi-
tion in neon, in a helium-neon gas maser, has gains of order 50 db/meter
in small-bore tubing.” The saturated output power is in the 1-10 mw
range. Xenon at 3.5 u has even larger gain.” Under these circumstances
the maser can behave as a saturated oseillator without an optical cavity.
The extreme line narrowing characteristic of the cavity oscillator will
be lacking, but the power levels and directionality will be comparable.

This type of oscillator is characterized by a peak output always at
the line center, independent of temperature and any physical dimension,
line narrowing over the inhomogeneously broadened line and an ex-
tremely stable output. The power per steradian per cycle will be much
greater than conventional light sources, and so these structurally simple
oscillators may be very useful as frequency standards and for calibra-
tion purposes.
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Some idea of the line narrowing possible with this type of oscillator
can be obtained by reference to (18), which describes the noise power
emanating from one end of the unsaturated maser medium in one mode

with no mirrors at either end, while (33) with R’ = 0 gives the noise
power when one end has a mirror, but the other does not
dP = [1 + RG\(v)][l — Gi(»)]p(v)dw. (51)
When R = 0, (51) properly yields (18); however, when B = 1
dP = [1 — G (»)]p(»)dv. (52)

Since G’ is the gain of a maser of twice the length of a maser of gain
(i, , the perfectly reflecting mirror placed at one end serves to double the
effective length of the maser medium.

Assuming no saturation, so that the gain can be written

Gi(v) = exp k(»)! (53)

in which [ is the effective length of the medium, and assuming further
that the gain parameter k(») has a Doppler profile

k(v) = koexp — [2(v — »)/Avy)* In 2 (54)

in which g is the frequency of the line center and Av,, is the full Doppler
width, the spectral width at half power of the spontaneous emission
Av can be determined by writing

1 — exp [kol exp — [Av/Avp]' In 2] = 4[1 — exp koll. (55)
In the limit kol 3> 1, (55) can be solved for Av/Av, to yield
Av/Avy = (ko). (56)

The 3.39 p maser is saturated by its own spontaneous emission by gains
of order 80 db, so that the maximum possible value of ki before satura-
tion is about 20, corresponding to I & 2 meters. This yields Av &~ Av/4.5.
The Doppler width at 3.39 p is about 300 me, yielding Av =~ 70 me.
It would be possible to decrease this value somewhat by using several
lengths of maser media separated by attenuators to prevent saturation.
The slow dependence on [ exhibited by (56) indicates the impracticality
of this scheme in achieving any more than a factor of four decrease in
linewidth unless ko can be increased drastically, Fortunately, there is
evidence that this can be done, and the nonregenerative oscillator may
turn out to be an extremely interesting device. In addition, it can be
tuned by application of magnetic fields.



526 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

VII. CONCLUSION

The output properties of an optical maser oscillator have been de-
rived subject to the supposition that the oscillator is a saturated ampli-
fier of spontaneous emission noise. The most significant new results
concern an expression for the linewidth of the oscillating maser which
differs from the commonly accepted value. Some techniques, well-known
in the microwave art and used only in a limited way in optics (stratified
media), have been generalized to apply to the transmission and noise
properties of optical masers.

VIII. ACKNOWLEDGMENT

The author is indebted to H. Seidel, from whom he learned most of
the circuit formalism herein, and to A. D. White, J. D. Rigden, and
J. E. Geusic for many stimulating discussions.

APPENDIX A

Network Representalions

The basic network of interest will be a linear two-port network which
will be represented schematically by Fig. 1. The major concern here will
be the relationships between the quantities 7, and E; at port 1 and I
and E; at port 2. The linear relationship among these quantities will be
represented by the transformation matrix

El A B E2

L =lc ol L (57a)
which will be abbreviated by
v, =T W, (57b)
in which
\p‘.=’E"l t=1,2, - (58)
I;
and
A B
T - | 4 Bl (59)

Note that the direction of positive current flow is defined to be into the
network at port 1 and out of the network at port 2. This choice sim-
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plifies the discussion of cascaded networks. It is clear that two net-
works in cascade can be represented by W, = T, Wy = T;-To-Wy.
The product T,- T, follows the usual rules of matrix multiplication. In
general, T;- T # T.-T,; that is, the two networks do not commute.
For a cascade of n networks

\1’11 = T]'T2 e TR“F,H.; . (60)

The determinant of the transformation will be a quantity of interest
and will be defined as A = AD — CB. The inverse of (57) is defined by

lp'-_g = T—l B 5 (61 )
in which

D -—B

T = (62)

=

—C A

is the inverse transformation matrix. Reference will sometimes be made
to the exchange network T, which is merely the network T with its
terminals exchanged so that port 2 becomes port 1 and vice versa. The
components of T are obtained by writing Wy, = T w, and noting
that for the exchange network the quantities FE,, I, become E,/, —I,
and E,, I, become E.), —I.,’. As a result, the correct description is
given by

By D B||E,
1
= 3 . ( 63)
I C AL
and
) D B
¢ A
The net power into port 1 is given by
Py = YELY + B*T) = 3%, 2w (65)
in which W is the complex transpose of W and
« |01
z= {1 0‘. (66)

Likewise, the net power out of port 2 is given by
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P, = %‘T"z'z"pn . (67)

Other transformations will be introduced as they are needed. In the
following, certain types of networks will be characterized in terms of
relationships among the components of the transformation matrix,
ie., A, B, C and D. These networks will form the basic “tools” of the

analyses.

A.1 Maiched Networks

If one of the ports of the network is terminated in a matched load
and it is then observed that the input impedance of the other port is
matched to the line, the network is said to be matched. First, consider
the input impedance of the network in Fig. 6. The line is assumed to
have unit characteristic impedance. The quantities B and C are thus
normalized with respect to the characteristic impedance and admit-

Fig. 6 — Terminating impedance for matched network.

tance of the line, respectively. Writing By, = AR, + Bl , I, = CE; + DI,
and

Ziwpury = E1/Iy = (AZy + B)/(CZ: + D) (68)

in which Z: = E,/I is the terminating impedance. The network is then
matched if Zinputy = Z2 = 1, yielding the requirement A + B = C' + D.
Likewise, the exchange network must also be matched, requiring
D + B = C + A. The two requirements yield the relations A = D,
B = (, and for a matched network

A B ’

T=1p 4

(69)

A.2 Reciprocal Networks

A reciprocal network has the same transmission properties in either
direction. It follows that for a reciprocal network T and T must have
the same transmission factor and phase shift, which from (84) and
(72) implies A = 1. The simplest nonreciprocal network can be written
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1
1

A0
n=[§ 0 (70)
with A = 1; and all nonreciprocal networks can be written
|4 B| _|a' ol |4/a' B/a'|
T=lc p|=|o & |c/ma pat| =TT (7D

The reciprocal network T, is known as the reduced network; all the
nonreciprocity resides in T, . The network T, , known as the abstracted
network, commutes with all networks.

In general, A is complex and can be written A = | A | exp j 2¢. Since
Al exp je 0 j

T. = | ) . 72)

0 | A" exp je (72,

and the exchange network

Al exp —jo 0 I
T, = | - . 73
: 0 A exp —jo (73)
it follows that argument ¢ is the nonreciprocal phase shift.

A.3 Reactive Networls

Since a reactive network is lossless, it would be expected that P, = P, .
It follows that WEwy, = W,TETW., so that for a reactive network
TET = Z. Performing the indieated matrix multiplication yields

A*C 4+ AC" A'D 4+ C*B| = 10 1
AD* 4+ ¢B* BD* + B*D 1 0/

It follows that A*C' and BD* are imaginary and A*D + C*B = 1.
Note that multiplication of A*D + C*B = 1 by CB" yields CB* =
(A*C)(B*D) + | € |'| B |*, which is real. Likewise,

AD* = |A ' D" + (AC*)(BD*)

(74)

is real. If the reactive network is reciproeal so that A = AD — BC =
1 = (AC*)(D/C*y — D*B(C/D*) = (A/B*)DB* — (B/A®)A*C, it
follows that both D/C* and A/B"* are imaginary. Since AC™ is imaginary
and C*B is real, A/B is imaginary. Thus B/B* is real, which can only
occur when B is real or imaginary. It follows that B and C are real
(or imaginary) while A and D are imaginary (or real). The question
of which set to choose real is decided by noting that the idemfactor
(no network) is a reactive reciprocal network. Thus, the appropriate
choice is A4, D real and B, (' imaginary, and the reactive reciprocal
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network can be written
a JB

v 6 (75)

for which a8 + By = 1. If the reactive reciprocal network is also matched
so that @« = & and 8 = v, the network can be written

cose jsinge

.. (76)
jsineg cosg

in which the parameter ¢ is known as the angular length or phase shift.
Note that the input impedance for this network is

Zy + jtane

1+ Z.jtang (77)

Zinput(l) =

which is recognizable as the impedance transformation for a transmis-
sion line of angular length ¢ and unit characteristic impedance.

Next, certain basic passive eircuit elements of interest will be charac-
terized.

A4 Series I'mpedance (Fig. 7)
Since I, = I, and E, = [,Z + E., the transfer matrix is given by

'z
T = 0 1 (78)
A.5 Shunt Admittance (I'ig. 8)
I'or the shunt admittance, £, = E.and [, = E.,Y + [, ; thus
1 0
=} - (79)

Both networks are reciproeal but not matched.

|
Ij—> !
|

ot e
N

Fig. 7 — Series impedance.



MASER OSCILLATOR NOISE 531

I,— r ‘ll [p—
| T I
| \

E| l Y | TEQ
I
I I |
T T
L J

Fig. 8 — Shunt admittance.

A6 Ideal Transformer of Turns Ratio N :1 (Fig. 9)
For the transformer I£, = NF, and [, = [./N, . Thus

, N 0
T = 0 Nt (80)

L — LN I,—

T T

I |
E,T ! ! 1‘52

| I

——— 7

Fig. 9 — Ideal transformer.

A7 Network Transmissivity

Consider a general two-port network which has a matched generator
on side 1 and a matched load on side 2. The cascade of networks may be
represented schematically as shown in Fig, 10, yielding

g, [v ot A4 B [0 B

I, _‘0 e p e o (81)
Ig—> - ;=0
T VAYAY, o <

< |
" C D

Fig. 10 — Circuit for two-port network with mateched generator on side 1
and matched load on side 2.

Performing the indiecated matrix multiplication yields

E, A+B+C+D B+D| |E
', C+D D

i. (82)
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The network transmission factor is defined as the ratio
L=|l‘fg|2/|Eeo|2 (83)

in which s is the voltage that would be measured if the network were
absent. In the latter case, the appropriate two-port transformation
must be the identity matrix, so that A = D = 1, B = ' = 0. Hence

T T 4 |
L=tissieosor/ & “AtBFcFoE Y

A transmission factor greater than one implies gain. The network trans-
mission factor for a matched network is

L =4|24 +2B|"=|A+B|™ (85)

A.8 Network Reflectivity

When a network is followed by a matched load, the input impedance
to the network is given by Ziput = (A + B)/(C + D). The power
reflectivity, R, is given by
R = (Zinpwt — D[ _|A4+B—C—-D’

Zingue + D 1A+ B+C+ D] (86)
=1L|A+B—-C-DF
in which L is the transmission factor of the network. Note that for a
matehed network, A = D, B = Cand R = 0.

A9 Matched Attenuator

An attenuator is a nonreactive reciprocal device. Thus, a matched
attenuator must satisfy the conditions A = D, B = C'and AD — BC =
1, with A, B, ¢ and D real. This is automatically satisfied by writing

_ | cosh # sinh 6

| sinh § cosh @] (87)

The parameter 6 is referred to as the line length of the attenuator. The
attenuator commutes with a matched reciprocal reactive network (a
transmission line, for example) and the resultant network

cosh 8 sinh @ l
sinh & cosh @

cos¢ Jsing
jsing cose

. . (88)
cos (¢ — j8) 7 sin (¢ — jO)
jsin (¢ — j#) cos (¢ — j0)
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is the representation for an attenuator with phase shift or angular length
¢. From the fact that a lossy transmission line would have a phase shift
of the form exp —jle — j#) = exp —6 exp —Jjg, it would be expected
that the transmission factor is given by exp —26. For an attenuator
the transmission factor is obtained by using (85) and (87)

L = |cosh 6 4 sinh 6 | * = exp —26. (89)

Thus, the attenuator matrix is specified completely by knowledge of
its transmission factor.

A.10 Isolator

An isolator is by definition nonreciprocal although it is matched.
Thus, an isolator with forward transmission unity and reverse trans-
mission exp —26 can be synthesized by caseading an attenuator of line
length #/2, having a transmission exp — 6, with a nonreciprocal network
with transmission exp 46 in the forward direction and transmission
exp —#f in the backward direction. In its most simple form, the non-
reciprocal network (70) is given by

exp —8/2 0
0 cxp —6/2|° (90)
Thus, the isolator can be represented by
T = | P —0/2 0 cosh /2 sinh 6/2 ‘
- 0 exp —0/2 || sinh /2 cosh 6/2
(91)

exp —6/2 cosh #/2 exp —8/2 sinh 6/2
exp —6/2 sinh §/2 exp —6/2 cosh 6/2

and the transmission factor is unity in the forward direction and exp —24
in the backward direction. An ideal isolator is one for which the line
length 6 approaches infinity, yielding

Il

B[ RS-
[ eE

(92)

APPENDIX B

Noisy Networks

In the following, the source of noise will be considered to be spon-
taneous fluctuations which arise because of the thermal properties of
the material. At extremely high frequencies, the thermal noise is more
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commonly called black-body radiation. The noise spectrum will be
characterized by the following statement of Nyquist’s theorem:* The
noise power available per mode at frequency » in a small frequency
interval, dv, is given by

dP = p(v)dr
p(») = hv(exp hv/kT — 1)™

for a passive circuit at temperature 7. The constant k is Boltzmann's
constant (1.38 X 107 joules/degree) and h is Planck’s constant (6.6 X
10~ joules-sec).

1t is sometimes convenient to write the noise power in terms of equiva-
lent rms voltage and current generators e and ¢ as shown in Fig. 11.
The internal impedance of the voltage generator is zero and for the
current generator it is infinite, and one ean write

le| = (drp(»)dv)t,  |i]| = (4gp(»)dr)*. (94)

In the following, both e and 7 will have the units of (power)? since r
and ¢ are normalized with respect to the line impedance and admittance.
A systematic method of handling the noise produced by a network
will be developed next. First, the following theorem will be stated with-
out proof: Any passive noisy two-port network can be replaced by an
equivalent noise-free network which has an added shunt current generator
and series vollage generator al the input or output terminals which represent
the noise contribution.® Therefore, any passive noisy network can be
replaced by the representation shown in Iiig. 2, in which the network
is now noise-free but the noise appears from equivalent voltage and
current generators at one of the terminals. A proof for the theorem can
be given, and although it is relatively simple, the proof is lengthy.
Next, a scheme for representing in a simple way the additional current
and voltage appearing at the terminal will be described. The following
technique is due to . Seidel.” It is clear that one may always write

E1=AE2+BIz+e
I, = CE; + DI, + 1.

£ 40

Fig. 11 — Noise-free representation of network with equivalent external
voltage and current generators at one terminal.

(93)

(95)
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The inclusion of the noise generators can be accomplished in an artificial
but, as will be seen, highly useful way by writing

El ;l B [4 Eg
Li=|C D il|-|IL|. (96)
1 0 01 1

This representation results from adding the trivial equation 1 = 0 +
0 + 1 to the set in (95). No new information has been added, but the
bookkeeping advantages afforded by this change will become apparent
shortly.

Equation (96) will be the general representation for a passive noisy
two-port network. The problem now is to learn how to characterize the
noise quantities ¢ and 7 in terms of the properties of the network repre-
sented by A, B, €' and D. Tt will be seen that this ean be done by com-
paring the network to some simple network whose properties are known.

First, it will be demonstrated that for any passive network, one may
take A, B, C and D either all real or all imaginary. This is equivalent
to saying that the network may always be taken to appear purely
resistive. This is clear since the input impedance is Z;, = (4Z, + B)
(CZy 4+ D). If Z, is real, then it would be expected that a resistive
network will have Zi, real also. The proof follows from the fact that the
input impedance can always be made real with a suitable length of
transmission line. In addition, with an ideal transformer one may
mateh the input impedance to the line. It follows, therefore, that for
noise caleulations, one only need consider matched networks (A = D,
B = (') with the ratio A/B real.

First, consider a matched network which is cascaded with a transmis-
sion line of arbitrary length 0. The latter network has no loss and has
no source of noise. In addition, the transmission line can change only
the phase but not the magnitude of the noise current and voltage
generators. Consequently, one expects that for a matched network

cosf jsind 0O A B e X X ecos@+ ijcosb
jsin® cosf® OB A i|=[X X e¢singd+ icosb
0 0 110 01 o 0 1

has the same noise properties independent of 8. Thus, it is required that
le|*=|ecos @+ ising|* = le|*cos’ 0+ |i]|*sin 6

+ e(5i)* + €*(ji) sin 0 cos 6
or

(le|*=|i]? sin® 8 + j(ei* — ¢*i) sin 6 cos 6 = 0.
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Choosing 8 = =/2 yields
le|* =] (97)
and it follows also that
e = e, (98)
Next, the passive matched network at temperature T' will be cascaded
with a shunt conductance at the same temperature and the open-circuit
noise voltage at the input terminals will be determined. The network

representation for the shunt conductance in the new formalism follows
from Nyquist’s theorem as is shown in Fig. 11

|| = (4Gp(v)dv)’

A B e 1 0 0
¢C D il=|G 1 i]. (99)
0 01 001
Thus, the network to be studied is as shown in Fig. 12 with
E1 A B € 1 0 0 EE
0l=|B 4 i G 1 ¢ -]0
1 0O 0 1 0 0 1 1
A+ BG B Bi' +e||E,
=| B+ AG A A +1|(0 (100)
0 0 1 1
yielding
Ey=(A+ BG)E,+ Bi' + ¢
(101)
0= (B+ AG)E, + A" + 1
so that
B — — (4" + 1)
O (B+4G)
(4 + BO) (102)
_ ./ . .
E, = BIAC (A7 +4) + Bi + e

At the open-circuited terminal at which the noise voltage E, is meas-
ured, one must have from Nyquist’s theorem, (94)

| By |* = 4Z:puip(v)dy (103)
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0 —
y @ @ é te.

oC Do

Fig. 12 — Passive matched network with shunt conductance for determina-
tion of open-circuit noise voltage.

since Zinput 18 resistive. Its value is

A+ BG

Zinput = m . (104)

Hence, it is required that

A + BG A+ BG\ 0 . ’ ’
— =| =|5—— B . 10
(A2 aporar = | - (5129) v +) 4+ B3+ o) (109
Remember also that | e |* = |7 |* and ei* is real. Since the noise arising

from the shunt conductance G is independent of the noise produced by
the network, cross terms like e’ 1%’ are zero, since their produet repre-
sents a time average which must be zero. Solution of (105) yields

uniquely the values'

[i]* = |e|® = AB
s 1 \ (106)
et = 3}(A*+ B — 1)

which are the desired relations measured in units of 4p(»)dv. The
veracity of (106) can be established by direct substitution into (105),
which yields an identity independent of the value of G.

The equivalent values of ¢ and 7 for an attenuator are given by

le|® =|i|® = AB = cosh 6 sinh # = } sinh 26

ei* = 1(A* 4+ B* — 1) = Y(cosh® 0 + sinh®§ — 1) = sinh® 4.

[

(107)

The phase angle between e and i* is cos™ tanh 0. Since the phase angle
is always positive, the implication is that the noise sources radiate more
power toward the attenuator than away from it. This is reasonable,
since the noise power leaving each end of the attenuator should be equal
and the noise radiated toward the attenuator by the noise sources is
attenuated before emerging from the output end. In the limit of large
g, the phase angle approaches zero.
The equivalent values for an isolator are given by
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= 1 exp —0 sinh ¢

(ST

e =]il" = exp —8 coshg-sinh
(108)

er* = %—[exp —0 (sinhﬂg + cosh® g) — l:l = —|el.
Therefore, the angle between e and ¢ is always m, the implication being
that the isolator radiates noise power away from the attenuator, i.e.,
only in the direction in which it attenuates.

The noise radiated into a matched resistor by any network is ob-
tained by considering the network shown in Fig. 13

@ -0 A Bo
< B A

Fig. 13 — Noise radiated into matched resistor.

Fy 1 0 0||l4A B el|ll 0 0] F
0|=1|110||C D z/|]1 1 0]0
1 0O 0 1/|]0 0 1;/0 0 1}J1
A" B ¢ || E;
=|C" D (|0 |. (109)
0 0 1|1

The noise contributed by the matched input and output resistors is

neglected since this is additive. The primed quantities result from matrix

multiplication. The noise output dP is evaluated by noting that
0=CE+1¢ and dP=|E|*=|¢|Y|C|%

Performing the matrix multiplication yields ¢ = 4 4+ B 4+ ¢ + D
and 7 = e + . Thus, the output noise power is given by

_ e + i 4p(») dv B .
dP_IA+B+C+Dp—L\@+'&iP(v)dv (110)

in which L is the network insertion loss [see (20)]. For a matched resis-
tive network (attenuator)

le +d|*=|e|®+|7]|*+ 26" = (24B+ A*+ B* = 1)
(A+B—1=L"—1

Il
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which follows from (9) and (21). Thus,

dP = (1 — L)p(v)dv (111)

is the noise power in frequency range dv emanating from a matched
resistive network. This result is well known in network theory. In
opties, it is known as one form of Kirchhoff’s law.
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