The 80 Diperiodic Groups in
Three Dimensions

By ELIZABETH A. WOOD
(Manuseript received December 10, 1962)

The low-energy electron diffraction work of L. H, Germer, J. J. Lander,
A. U. MacRae, J. Morrison and others is resulling in new information
about surface structures. These three-dimensional structures have pertodicity
only in two dimensions. The 230 triperiodic space groups are not applicable
to the solution of these structures. The 17 strictly two-dimensional groups
do not admit the existence of a third dimension and may therefore not be
appropriate for these structures which are not stricily planar. The useful
space groups for these siructures are the 80 diperiodic groups in three
dimensions.

Nowhere in the literature have these been put into a form convenient for
use, as have the other lwo sets of space groups. This has now been done and
the tables are available on request from the Circulation Manager, Bell
System Technical Journal, Bell Telephone Laboratories, Incorporated,
463 West Street, New York 14, N. Y. Sample tables are given in this paper.

I. BACKGROUND

Crystals grown under favorable conditions acquire an external shape
whose symmetry has long attracted attention. Nineteenth century
mineralogists systematically described the symmetry of these shapes in
terms of symmetry operations. For example, the operation of rofation
of a cube through 90° around an axis normal to a cube face brings the
cube into a position indistinguishable from its original position. An
operation that achieves this indistinguishability is called a symmetry
operation. In this example the cube will present an identical appearance
four times during a rotation of 360° around the axis, which is therefore
called “an axis of 4-fold symmetry” or simply “a 4-fold axis.” A cube
has three 4-fold axes, four 3-fold axes (corner-to-corner) and six 2-fold
axes (mid-edge-to-mid-edge) (I'igs. 1a and b). Such axes are called sym-
metry clements. The terms “tetrad,” “‘triad” and “diad” are also used
for them.
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Another type of symmetry element is a mirror plane, across which the
operation of reflection produces an object indistinguishable from the
original. Such a plane through the center of a cube parallel to two
opposite faces reflects the left half into the right half and vice versa;
that is, the two halves are mirror images of each other. Since there are
also diagonal mirror planes in a cube there is a total of nine planes
(Figs. 1c and d).

There is also a center of symmetry in the center of a cube which re-
lates any feature located a given distance from it in one direction to an
indistinguishable feature located the same distance away in the opposite
direction. The operation is called inversion.
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Fig. 1 — The symmetry elements of a cube: (a) the three 4-fold axes and the
four 3-fold axes, (b) the six 2-fold axes, (¢) three mirror planes parallel to the
faces, and (d) six diagonal mirror planes.



80 DIPERIODIC GROUPS IN THREE DIMENSIONS 543

An 7nversion axis combines the operation of rotation with that of
inversion. The familiar regular tetrahedron which has neither a 4-fold
axis nor a center of symmetry has a 4-fold inversion axis because after
a rotation of 90° plus an inversion through the center point it occupies
a position in space indistinguishable from its original position. A center
of symmetry is equivalent to a one-fold inversion axis.

Note that during the entire group of “operations’ on the cube, one
point (the center of the cube) remains unmoved. Another way of saying
this is to say that all of the symmetry elements pass through a single
point. This group of operations or the symmetry elements which repre-
sent them therefore constitute the point group symmetry of the cube.
When similar groups of operations are determined for all possible
crystals, it is found that there are only 32 possible crystallographic
point groups.

The symmetry of shape is the outward expression of the inner orderly
atomic arrangement of the crystal. Any property of any piece of the
crystal must obey the point group symmetry even though the piece be a
ground sphere a few tenths of a millimeter in diameter.

When we consider in detail the erystal structure — that is, the posi-
tions of the atoms relative to each other — we find that the symmetry
elements occur at well-defined positions in space and do not all go through
the same point. This is readily illustrated by Fig. 2, the projection of
the structure of calcite (CaCOj) onto a plane normal to its 3-fold sym-
metry axis. Note that the 3-fold axis cannot be randomly placed, normal
to the paper, but must pass through the black spots representing the
carbon atoms, and further that there is a 3-fold axis through every
carbon atom. There are also mirror planes in calcite. We could make a
3-dimensional model of the array of symmetry elements of calcite,
and the operation of any symmetry element would shift every other
symmetry element to a position indistinguishable from its original
position.

Such a self-consistent array of symmetry elements in space is called
a space group. Since location in space (not orientation alone) is of signifi-
cance here, two other kinds of symmetry operations become meaning-
ful: operations which combine translation with either rotation or reflec-
tion. The resulting symmetry elements are called, respectively, screw
axes and glide planes.

As in the case of point groups, the space groups are limited in num-
ber. There are 230 possible space groups, i.e., 230 possible self-consistent
arrangements in space of all the symmetry elements mentioned above.

Diagrams of these are given in the International Tables for X-ray
Crystallography (edited by Henry and Lonsdale, 1952; see References).
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Fig. 2 — The structure of caleite projected onto a plane normal to its 3-fold
symmetry axis.

The one appropriate to the structure of calcite is shown on the next
page.* It is identified by the symbol R3c which states that the unit cell
(the repeat unit of the structure) is rhombohedral in shape (R), that it
has a 3-fold inversion axis (3) with a glide plane parallel to it in which
the translation is in the ¢ direction. Of course the 3-fold axis operating
on this glide plane generates two more. Additional symmetry elements
which are found to exist whenever the stated symmetry operations are
performed are also shown in the calcite space group diagram.

The space group of a erystal can in many cases be uniquely deter-
mined directly from x-ray diffraction data. Since, in any given space
group, the possible atom positions will be related in a well defined manner
by the symmetry operations, a knowledge of the space group is a very
powerful aid in determining the arrangement of atoms in the crystal,
1.e., the erystal structure.

One could repetitiously extend the space-group symbols in the dia-
gram, as we have the calcite structure in Fig. 2, by translation which
would be in three dimensions if we were not limited to the printed page.
(The translation vectors define the edges of the wunit cell, the repeat
unit of the three-dimensional structure.) The three-dimensional lattice
of translation vectors which would represent this operation is called
a space lattice. There are only 14 such lattices possible.

If we limit our attention strictly to two dimensions we find that,
instead of 230 space groups, we have 17 plane groups and instead of 14
space lattices we have 5 nets. Here the periodicity no longer extends in
three dimensions (triperiodicity) but only in two dimensions (diperio-
dicity).

* Fractions on the diagram refer to positions of symmetry elements along the ¢
direction (normal to the paper). The unit is the unit length of ¢, i.e., the ¢ di-
mension of the unit cell.

t For a very brief discussion of space group symbols see the Crystallographic
Data section of the American Institute of Physics Handbook.
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It is with still a third set of groups, the 80 diperiodic groups in three
dimensions, that the present paper is concerned.

II. DISCUSSION OF THE 80 DIPERIODIC GROUPS

The International Tables for X-ray Crystallography (1952)
(“ITXRC") give two different sets of space groups: the familiar 230
triperiodic space groups and the 17 two-dimensional space groups in
which all operations are confined strictly to two dimensions. In the
latter set, any operation which admits the existence of the third dimen-
sion, such as a two-fold axis lying in the plane, is forbidden.

The existence of a set of groups which admit such operations, but
still refer to arrays that are infinitely periodic in only two dimensions,
was recognized by several authors at about the same time (Speiser,
1927; C. Hermann, 1928; Alexander and K. Herrmann, 1928; L.. Weber,
1929; Alexander and K. Herrmann, 1929). These and subsequent authors
(see references at end of this paper) have used a wide variety of nomen-
clature, some giving some diagrams. C. Hermann gives point positions,
but in many cases chooses a different origin and in some cases a larger
cell than that given in ITXRC. This work and others contain errors
and omissions and none of the authors has given the groups in the form
currently used in the International Tables so that they could be con-
veniently used for structure determination. This has now been done.

Consideration of the restrictions imposed by the loss of periodicity
in the third dimension leads to the exclusion of the following symmetry
elements: (7) serew axes normal to the plane of diperiodicity, (#) glide
planes with glide directions out of this plane, and (#%) n-fold axes not
normal to this plane, with n > 2. Since the upper side of our diperiodic
array may be like or unlike the lower side, mirror planes, glide planes,
two-fold rotation and screw axes may lie in the plane.

It is possible to choose the 80 diperiodic groups in three dimensions
from the pages of the existing International Tables for X-ray Crystal-
lography by using some of the “lst setting” monoclinic groups and some
of the “2nd setting” monoclinic groups as well as various orientations
of the orthorhombie groups, without deletion or addition of any sym-
metry operations. In the diperiodic-group case we always have a unique
direction in the plane-normal. Placing this direction along each of two
nonequivalent directions in a single (orthorhombic) triperiodic space
group gives us two nonequivalent diperiodic groups. This, of course,
requires the appropriate permutation of point coordinates and indices
of forbidden reflections.

Special positions of atoms with a fixed coordinate expressed as a frac-
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tion of the unit-cell length in the z-direction, other than zero, are not
allowed since fractions of a period are meaningless in this nonperiodic
direction.

The five nets (comparable to the 14 space lattices in three dimensions)
for these diperiodic groups are the same as those for the 17 two-dimen-
sional groups, namely, oblique (a # b, v # 90°), primitive and centered
rectangular (¢ # b, ¥ = 90°), square (¢ = b, v = 90°), and hexagonal
(@ = b,y = 120°), where v is the angle between the a and b axes.

Alexander and Herrmann became interested in these groups because
of their work with the smectic state in liquid erystals where only two-
dimensional periodicity obtains. Cochran’s interest in them grew out of
his use of “generalized erystal-structure projections” (Cochran, 1952, b)
and Holser’'s (1958, b) out of his investigation of the structure at the
boundary between two parts of a twinned crystal (1958, a).

The interest of the writer in making these groups available in con-
venient form stems from cooperation with those members of Bell
Laboratories who have been investigating surface structures by means
of low-energy electron diffraction, in particular, L. H. Germer, J. J.
Lander, A. U. MacRae and J. Morrison.* These structures are infinitely
periodic in two dimensions but lack periodicity in the third dimension
(normal to the surface).

Which set of diperiodic groups is appropriate for surface structures?
Certainly the struetures are not strictly planar: the atoms of the surface
strueture in many cases do not all lie in the same plane. But would an
atom above some plane (parallel to the surface) be symmetrically
related to an atom on the other side of the plane? Strictly speaking the
atoms could not be symmetrically equivalent since one is closer to the
substrate than the other and is therefore in a different foree field. From
this point of view one would say that only the seventeen strictly two-
dimensional space groups would be useful. However, it is frequently so,
in triperiodic erystallography, that the symmetry of a crystal structure
closely approximates a symmetry that is higher than its true symmetry
and that the use of the higher-symmetry space group is of great help
in determining the structure. From this point of view one would say
that the 80 diperiodic groups in three dimensions are likely to be useful
in the solution of diperiodic surface structures. Their application to this
field was suggested to the writer by A. L. Patterson.

There follow (i) a summary table, Table I; (¢7) a diagram of net
types, Fig. 3; (#7) an explanation of terms and symbols used in the

* For a survey of some of this work, see Low-energy Electron Diflraction, by
A. U. MacRae, Science, 139, 1963, pp. 379-388.



TABLE I —SuMmMarY TaBLE oF THE 80 DripEriopic GROUPS
IN THREE DIMENSIONS

Diper-
iodic
Grou Full H _ Tnperlodu: Group Schoenflies Symbol, Symbol Pro- Weber
Net (]i)lﬁgj Maltllguinegmy;nﬁjﬂls otheE l}]\]I:;n 'i.)he:ta;dwonr::u:t[ﬂm it uslfl?g: i Nb::t'l-
ber
Oblique 1 g% gll -1 III;% é
2 - 2 1
3 P211 Cat- 3 1st setting 1P2 8
4 Pmll Ct- 6 1st setting mP1 3
5  Pbll cr-7 1st setting aP1 4
6 P2/m11 Ci;-10 1st setting mP2 12
7 P2/b11 Ci,-13 1st setting aP2 13
Rectangular 8 P112 Cy - 3 2nd setting 1P12 9
9 P112, C2 - 4 2nd setting 1P12, 10
10 c112 Cs? - b 2nd setting 1012 11
11 Plim c.! - 6 2nd setting 1P1m 5
12 Plla e -7 2nd setting cha 1P1g 6
13 Cllm c3 - 8 2nd setting 1C1m 7
14 P112/m Ci, -10 2nd setting 1P12/m 14
15 Pl112,/m 2, - 11 2nd setting 1P12,/m 15
16 Cl12/m 3, - 12 2nd setting 1C12/m 16
17 Pl12/a Ct, -13 2nd setting ¢ba 1P12/g 18
18 P112,/a Cs, - 14 2nd setting cha 1P12,/g 17
19 P222 D, - 16 1P222 33
20 P222, 2 - 17 bea 1P222, 34
T Dis 21 102 30
2" - 1
23 P2mm Cl, - 25 1P2mm 19
24 Pmm?2 i, -25 bea mP12m 23
25 Pm2ia 2, -26 tha mP12,g 24
26 Pbm2, Ct, - 26 ath aP12m 25
27 Pbb2 ci, -27 ach aPl12g 26
28 P2ma Ci, - 28 1P2mg 20
29 Pam?2 i, -28 atb bP12m 27
30 Pab2, Cs, -29 acb bP12,g 28
31 Pnb2 cs, -30 bea nP12g 29
B Poe chimo Thae o
3 a fv -3 g9
34 C2mm C"“é - 35 1C2mm 22
gg gmmZ g +.38 gca mC12m 31
am2 F-39 ca aCl2m 32
37 P2/m2/m2/m D n - 47 mP2mm 37
gg £2§a 2%:1.22/#; Di, - 49 cab aP2mg 38
2/n 2 a Di, - 50 nP2gg 39
10 ;gfmzm//m 2//a D "5l ath mP2mg 40
a2;/m2/m - 51 aP2mm 41
42 P3/m2/m2ja  Di, - 53 azh nPamg 42
43 P2/a2/b2,/a D, - 54 cab aP2gg 43
44 P2/m2,/b2/a Dby - 55 mP2gg 44
45 P2/a2,/b2,/m D1} -57 bea aP2gm 45
46 P2/n2,/m2,/m D1} -59 nP2mm 46
47 C2/m2/m2/m D1} - 65 mC2mm 47
48 C2/a2/m 2/m Dz} - 67 aC2mm 48
Square 49 ;% Ce -75 1P4 58
50 Sg -81 1P1 57
51  Pi/m Ci, -83 mP4 61
52 Pi/n Ci, -85 nP4 62
53 P422 D, -89 1P422 67
54 P42,2 D2 -90 1P42,2 68
55 P4mm Ci, -99 1P4mm 59
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TasLe —CoNTINUED

Diper-
iodic -
, G Full H ~ Triperiodic-Group Schoenflies Symbol Symbol Pro- Weber
SO T T
ber
Square (cont.) 56 P4bm C%. - 100 1P4gm 60
57 Pi2m D1, - 111 1P12m 63
58 PA2m D3, -113 1P42,m 64
59 ﬁ%gr.‘z ggd - 115 1P%m2 65
G0 2 1a- 117 1P4g2 66
61 I};4/m 2/m2/m D}, -123 mP4mm 69
62 4/n2/b2/m D3, - 125 nPdgm 70
63 Pi/m2,/b2/m Dt -127 mPigm 71
64 Pi/m2,/m2/m Dj,-129 nPdmm 72
Hexagonal 65 P3 Ca - 14.5 1P3 49
66 P3 Cy; - 147 1P3 50
67 £352 gsl - 149 1?312 54
68 1 32 - 150 1P321 53
69 P3im1 i, -156 1P3m1l 51
70 P3lm 3, - 157 1P31m 52
71 P31 2/m D}, - 162 1P3lm 55
72 P32/m1 Diy - 164 1P3m1 56
73 P6 Cg - 168 1P6 76
74 P8 (:5,, - 174 mP3 73
P oAe =, o
) D [ i
77 Pemm 1, - 183 1P6mm 77
il N H .
{ m i - 18¢ mP32m 75
80 PG/m2/m2/m DIy - 101 mPémm 80

* Useful for cross- con:]pmison of this list with those of Weber (1929), C. Hermann
(1928) and Alexander and Herrmann (1929) since the equivalence among these three is
given in the last reference.

tables, Table IT; (#v) samples of the systematic ITXRC “tables” for the
80 diperiodic groups in three dimensions, adapted from the three-dimen-
sional space groups by making the appropriate modifications; and (v)
an annotated list of references.

The full set of 80 diperiodic groups in three dimensions has been
bound separately and is available from the Circulation Manager, Bell
System Technical Journal, Bell Telephone Laboratories, Incorporated,
463 West Street, New York 14, N. Y. It is anticipated that these groups
will be included in a later volume of the International Tables.

I1I. TABLES OF THE 80 DIPERIODIC GROUPS IN THREE DIMENSIONS

In the sample tables, the usage and notation of the International Ta-
bles for X-ray Crystallography for the three-dimensional space groups
have been followed as closely as possible. Chosen directly from the
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OBLIQUE RECTANGULAR, RECTANGULAR,
PRIMITIVE CENTERED

SQUARE HEXAGONAL

Fig. 3 — The five nets.

ITXRC Tables for the 230 space groups, these tables carry the same
atom-position lettering. Letters of forbidden positions will therefore be
missing.

In the oblique and rectangular system, the ITXRC convention of list-
ing the symmetry symbols in the order a, b, ¢ has not been retained.
Holser (1958,b) chose to permute these so that the first symbol referred
to the ¢ axis. The justification for this is that in the plane groups the ¢
axis is unique and therefore should be put first as in, for example, the
tetragonal system (e.g., 4mm).

The possibility of confusion with the 230 three-dimensional groups
will probably be avoided in all cases by the context. However, to aid
in the distinction, the plane groups have been numbered, DG1, DG2, ete.
The same letters could be used to distinguish DGPmm2, for example,
from the three-dimensional Cy,' - Pmm2, but since, in all cases, the two
groups do in fact comprise the same symmetry operations, such a
distinetion may be undesirable.

The order of the DG list is that of the ITXRC which, in turn, is the
Schoenflies order.

After this paper was in galley form a communication was received from
A. Niggli to whom a manuscript copy had been sent. Niggli favors plac-
ing before the lattice symbol (P or C) that symbol referring to the glide
plane or mirror plane which lies in the plane of diperiodicity and there-
fore oceurs only once. This occurs in 37 of the 80 groups. This would be
another way of distinguishing these groups from the triperiodic groups.
The symbol proposed by Niggli is also listed in Table 1.
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TasBLE IT— SymBors Usgp 1N THE 80 DG TABLES

Symmetry Elements Di r;mic 7 Symbol in the Symmetry Diagram
Symbal Normal to the Paper Parallel to the Paper

nirror m J— | / 7
lide plane* a i 1

b -

n not allowed i
-fold rotation axis 2 ' — T
-, 4- and 6-fold rotation axes | 3, 4, 6 A ¢ 0 not allowed
-fold screw axis 2 not allowed -— r
enter of symmetry 1 o o
-, 4- and 6-fold inversion axest | 3,4, § | A ¢ @ not allowed
lenter, on 2-fold axis | [ e §

* This operation combines reflection with translation of } the length of the cell in the
irection indicated by the letter. The diagonal glide, n, combines reflection with transla-
ion of % of the length of the cell in both the a and b directions.

f Combined rotation through 360°/n (for @) and inversion. Not equivalent to the two
perations performed separately.

1IV. EXPLANATION OF TERMS AND SYMBOLS USED ON THE 80 DG SHEETS
(These are the same as those used in the ITXRC)

1. Top of sheet, left to righl: Net-type, full Hermann-Mauguin di-
periodie group symbol, diperiodic-group (DG) number. The Hermann-
Mauguin symbol begins with a letter which indicates whether the net is
primitive or centered and is followed by symbols for symmetry elements
that relate to the ¢, @ and b axis, in turn. The ¢ axis is normal to the
paper in the diagrams, the @ axis is directed toward the bottom of the
page, and the b axis is directed toward the right. In DG 46 (P 2/n
2,/m 2,/m), for example, the lattice is primitive, there is a two-fold axis
parallel to ¢ with a diagonal-glide plane normal to ¢, a two-fold screw
axis parallel to a with a mirror plane normal to @, and a two-fold serew
axis parallel to b with a mirror plane normal to b. In DG 16 (C 11 2/m)
we have a centered net with a two-fold axis parallel to b and a mirror
plane normal to b.

2. Diagrams: On the right, the distribution of the symmetry elements
in the unit mesh. On the left, the distribution in the unit mesh of the
points in the ‘“‘general position” (r, y, # and points symmetrically
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equivalent to it). Here, the value of x is taken, arbitrarily, to be a very
small distance and y, a slightly larger distance, except in the oblique
groups where the reverse choice has been made. The sign of z is indi-
cated beside the “point” (small cirele). In both diagrams, the 4z
direction (a) is down the page, +y (b) toward the right. A comma
within the cirele indicates that that point is of opposite handedness to
the points without commas, as when derived from these by mirror plane
or inversion operation. Where two points are related by a mirror lying
in the plane of the paper, half of the circular symbol is marked with a
comma, half left blank.

Below the diagrams are the lists of all possible points in this diperiodic
group and equivalent point positions.

First column: Number of positions that are symmetrically equivalent,
given the first position in the series.

Second column: Arbitrary identifying letter, conventionally the same
as that first used by Wyckoff for this position.

Third column: The symmetry of each point in the group (if each
point lies on a two-fold axis, this will be “2”; if each point lies in & mirror
plane this will be “m”; ete.). This will always be “1” for the “‘general
position” which, by definition, is the position of a point not lying on
any symmetry element.

Fourth column: Coordinates of equivalent positions. Note that not
every group has “special positions.” Special positions occur when a
particular value of x, y, or z results in a reduction of the number of
equivalent positions due to symmetry.

Fifth column: Conditions on hk which must be satisfied, for x-ray
reflection to occur when the point positions in column 4 are occupied.

(References on page 559)



Oblique
+O

P211
O+

FT

+O

+O

/

O+

Number of poaigions,
Wyt:kpﬁ notation,
and point symmetry

2 e 1
1 d 2
1 c 2
1 b 2
1 a 2

Co-ordinates of equivalent positions

T,Y,2;

== e
=1 =1
[

I,

i

+O

2.

553

4

Conditions limjting
possible reflections

General :

hk:

h0:} No conditions
0k:

Special :
No conditions

DG3



Reetangular ci112/m DG16

© O -0 O-
+(O | O+ + | O+

——O = —O——

Number of positions,

t e . . Conditions limiting
a:lv ;l;lolﬁ I;;lg.“trllcél;l]:y Co-ordinates of equivalent positions possible reflections

(0,0,0; 3,3,0)+
B General:
8 J 1 zyz xbz LyE B hk: h + k = 2n

Special: as above, plus

1 ; ”2’ ﬁ:g:ﬁ: ﬁ:g:ﬁ }No extra conditions
4 e T 1,50 L0 hk: h = 2n; (k = 2n)
g g 5%; ([;’)3:8 }No extra conditions
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Reetangular

+O

O+

+O

O+

+O | O+

+i\€) /D+

Number of positions,
Wyckoff nota-
tion,and point

symmetry
8 ¢ 1
L n
1 e n
I e

2 b mm
2 a mm

.
|
%Y
b
I

T
03|

P2/m2/m2,/m DG46
+O O+ ! 1
+() | O+
P — o] o h—
 — o o —
+(O) | )+
+(0) O+

555

Conditions limiting
possible reflections

General:

— o, %+ .z hk:h+ k= 2n

hO: (h = 2n)

7 — 1z 0k: (k = 2n)

Special: as above, plus

%_',%vzv ;+J“,§,- L.
Jhm extra conditions
3=y, 5 i+, 2

hkl: h = 2n; k = 2n

}no extra conditions



Square P 422 DG53

/
o —
/N

{7 \4?/

N ol o u o
QL o2 AN N A

Number of positions, Conditi "
i i ; . it limitin,
Wyckoff notation, Co-ordinates of equivalent positions pg;iblz’::ﬂecti“f

and point symmetry

N 7N

General:
8 P 1 z,y,2; 7,25 0,25 7,25 No conditions
yli'é ‘. y’zlz’ y)I,z, ?-)I,z'
Special:
4 O 2 I,*’O; jl%,o; %JI’O; %!f,o'
4 l 2 x00; £00; 030; 0,0 No conditions
4 J 2 x,x0; z,%,0; i,1,0; x,%,0.
4 T 2 04,25 0,4,2; 1,0,z; 1,02 hk:h 4+ k = 2n
% g' i %'3’2"_ 3’3’; }No conditions
Ehat Lt} E it i
2 e 222 1,00, 03,0 hk: h + k = 2n
i f; ig (%)'3’8' }No conditions
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Hexagonal

DG65

O+

Number of positions,
Wyckoff notation,
and point symmetry

3 d 1

1 c
1 b
1 a

oo W

O+

Co-ordinates of equivalent positions

Conditions limiting
possible reflections

) General :
IY,25 g — y,2; y — r7T,z No conditions
31352 STpecuLl :
0,0,z No conditions
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Hexagonal P6 DG73

Number of positions Conditi g
t . . . . onditions limiting
Wyckoff notation, Co-ordinates of equivalent positions passible reflections

and point symmetry

General:
6 d 1 xy,2; i — y,2; Yy — T,8,2; No conditions
Z,7,2; Yy — T, 27 T — YT, 2.
3 c 2 3,0,z 0,%,2; 13z
2 b 3 13z 23z Special :
1 a 6 00,z No conditions
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