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that Distort Signals — 11
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In this paper we study the recoverabilily of square-integrable bandlimited
signals (with arbitrary frequency bands) that are distorted by a frequency-
selective time-variable nonlinear operator and subsequently are bandlimited
to the original bands. The distortion operator characterizes a very general
class of systems containing linear lime-invariant elements and a single
time-variable nonlinear element. The subsequent bandlimiting of the sys-
tem’s output signals can be thought of as being due lo lransmission through
a channel that performs filtering.

Our principal result asserts that, under cerlain conditions that are satis-
fied by many realisiic systems, it s possible to uniquely delermine the band-
limated input to the system from a knowledge of the bandlimited version of
the output, in spile of the inlermediale distortion which generally produces
signals that are not bandlimited to the original frequency bands. We show
that the input signal can be determined by a stable iteration procedure in
which the approximating functions converge lo their limit at a rate that is
at least geometric.

I. INTRODUCTION

In this paper we study the recoverability of square-integrable band-
limited signals (with arbitrary frequency bands) that are distorted by a
frequency-selective time-variable nonlinear operator and subsequently
are bandlimited to the original bands. The distortion operator character-
izes a very general class of systems containing linear time-invariant
elements and a single time-variable nonlinear element. The subsequent
bandlimiting of the system’s output signals can be thought of as being
due to transmission through a channel that performs filtering.

Our principal result asserts that, under certain conditions that are
satisfied by many realistic systems, it is possible to uniquely determine
the bandlimited input to the system from a knowledge of the band-
limited version of the output, in spite of the intermediate distortion
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which generally produces signals that are not bandlimited to the original
frequency bands. Of course the distortion operator is assumed to be
known. We show that the input signal can be determined by a stable
iteration procedure in which the approximating functions converge to
their limit at a rate that is at least geometric. When the physical sys-
tem consists of only a single nonlinear element, our result reduces to
that of Landau and Miranker,' and Zames.?

In the electronic circuitry of a communication system, it is often the
case that an ideally linear amplifier is supplied with an approximately
bandlimited input signal and that the circuitry subsequent to the ampli-
fier introduces approximate bandlimiting. Under the assumption that
the bandlimiting is ideal, our results imply that in many cases it is possi-
ble to completely reverse the effect of nonlinear distortion that may be
introduced by such an amplifier due to the malfunctioning of, for ex-
ample, a transistor or its bias supply, even though, as is typically the
case, the transistor may be in a feedback loop. Of course it is necessary
to know the properties of the distorting circuit. Results of this type may
be useful in situations in which received signals are recorded and the
time delay introduced by the recovery scheme is not important. For
example, it is conceivable that this type of result may be useful in im-
proving the quality of distorted signals obtained from a transmitter in
a space vehicle containing a television camera, in which the distortion
is due to a faulty video amplifier.

Section IT considers some mathematical preliminaries. In Section I1I
we state our principal results after discussing in detail a mathematical
model of the physical system to be considered which focuses attention
on the influence of the time-variable nonlinear element. Sections IV
and V are concerned with the proof of the results. In particular, Section
V considers the rate of convergence and stability of the recovery proce-
dure. Section VI is concerned with some results that relate to the neces-
sity of the conditions introduced earlier.

II. PRELIMINARIES

Tt is assumed that the reader is familiar with the contraction-mapping
fixed-point theorem stated in Part .34

As in Part I, £, denotes the Hilbert space of complex-valued square-
integrable functions with inner product

(f9) = j::fg dt
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in which ¢ is the complex conjugate of g. The norm of f [i.e., (f,f)i] is
denoted by || f||. The intersection of the space £, with the set of real-
valued funetions is denoted by £qp. .

We take as the definition of the Fourier transform of f(¢) in £, :

Flo) = [: £(1) ™ dy

and consequently

1

50 = = [ Fe) ¢ o,

With this definition, the Plancherel identity reads:

-]

2 [ j0g(0) dt = [ F)G() do.

As the notation above suggests, lower and upper case versions of a letter
are used to denote, respectively, a function and its Fourier transform.
We shall be concerned with the following subspace of £ap :

®(Q) = {f(t) | /(1) € L2r; Flw) =0, w9

where € is a union of disjoint intervals. The measure of Q is denoted by
©(Q), which, unless stated otherwise, is not assumed to be finite. In par-
ticular, @ may be the entire real line.

The operator that projects an arbitrary element of £, onto G(Q) is
denoted by P. In electrical engineering terms, P is an ideal filtering
operation.

The symbols I and O denote, respectively, the identity operator and
the null operator (i.e., Of = 0 forall f& £.).

III. MATHEMATICAL DESCRIPTION OF THE PHYSICAL SYSTEM AND STATE-
MENT OF PRINCIPAL RESULTS

Consider a nonlinear time-variable element imbedded in a linear phys-
ical system. Let s, and s., respectively, denote the system’s input and
output signals, and let » and w, respectively denote the input and output
signals associated with the nonlinear device, which is assumed to be
characterized by the equation

w = o(v,t) = ¢lv], (1)

where ¢(v,0) is a real-valued function of the real variables v and t.
It is assumed that v, w, s £ Lo, $1 € B(Q), and that there exist well-
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defined linear operators T and A, with domain ®(2) X £2z, such thatf
p = I[s;, w] and s, = Als, w].

We shall be concerned throughout with the four linear operators A,
B, C, and D derived from I"and A in the following manner:

v = sy, w] = Tls1, 0] + T[0,w]

= ASI + Cw (2)
s2 = Als;,w] = Alsy, 0] + Al0w]
= Ds; + Bw. (3)

3.1 Representation of the Operators A, B, C and D
We assume throughout that

ar = [Lalt = far,  Bi= [ b=

cf = [ et = sir, Dy = [ e =) srrin

where each of the real symbolic functions a(t), b(2), c(t), and d(f) is
most generally the sum of an element of £z and a delta function. It
is assumed throughout that | C(w) | and | B(w) | are uniformly bounded
for all @ and that | A(w) | and | D(w) | are uniformly bounded for all
w & Q. Tt follows that C and B are bounded mappings of £, into itself
and that A and D are bounded mappings of ®() into itself.

3.2 The Projection Operation and the Basic Flow Graph

We shall suppose that s, , the system’s output signal, is the input to a
device that projects signals in £:z onto the subspace ®(2). This device
may be thought of as representing an ideal transmission channel of the
low-pass, bandpass, or multiband type. If the output of the device is
denoted by s; , then clearly

53 = Ps; = T PTs, (4)
where
P=Puw =1 weQ
=0, w e

and Ts.; denotes S: , the Fourier transform of s, .

f This assumption is almost invariably satisfied in mathematical models of
physical systems of interest.



DISTORTED SIGNALS 95

Fig. 1 — Signal-flow graph characterization of the relation between s, , 52, 83,
v, and w.

The equations we have introduced give rise to the signal-flow graph
shown in Fig. 1 which summarizes the basic situation.

Our primary interest is in (7) obtaining conditions under which s;
uniquely determines s; , when s; is known to lie in the same subspace as
8 [Le., in B(Q)], and (77) obtaining a technique for recovering s; .

3.3 The Time-Variable Nonlinear Element

We shall denote by ¥(w,f) the inverse nonlinear characteristic; that
is, ¥(e[v],t) = v for all v and ¢. It is assumed throughout that (0,{) = 0
for all f, that ¢ [w(#)] is a measurable function of ¢t whenever w is measur-
able, and that there exist two positive constants « and 8 with the
properties that 3(a 4+ 8) = 1 and

alwy, — ws) = Ylwi, 1) — Plws, 1) = Blwr — wa) (5)
for all £ and all w, = w. . Of course no loss of generality is introduced by
the normalization 1 (« 4+ 8) = 1, which happens to be convenient for our
purposes. Observe that 0 < o = 1.

It follows from (5) that

Bl (m — ) £ (v, 1) — e, t) £ (0n — w)

for all ¢t and all ; = v, . Observe that w ¢ £., if and only if v £ £ap .

3.4 Assumplions Regarding | A(w) |, | B(w) |, and | D(w) |

In addition to the uniform boundedness of | A(w) |, | B(w) |, | C(w) |,
and | D(w) | mentioned earlier, it is assumed, unless stated otherwise,
that there exists a union of disjoint intervals @5 such that 2, C @,

| D(a)| =0
lB(W)l kypw e Qp,
| A(w) | 2 &

v
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and
|D(w) | = ks, we(2— D)

where ky , ks, and k; are positive constants. In most cases of engineering
interest either @, = @ or Qp is the null set.t

3.5 Statement of Principal Resulis

Our main result is
Theorem I: Let A, B, C, D, a, and ¢ be as defined in Seclions 3.1, 3.3, and
3.4. Let
inf |C —ADT'B—1|>1—a

we(R—0p)

nf|C—1]>1— a
wifl

Then to each s3 ¢ ®(Q) there correspond unique functions s, ¢ B(Q) and
w, v, Sz € Lop such that

53 = Psy
ss = Ds; + Bw
v = As; + Cw
v = Yuw]
[7.€., such that (1), (2), (3), and (4) are satisfied). Furthermore 1f
§ = P&
§ = D§ + Bw
7 = A5 + Cw
b = y[w]

where W, 7, § & Lop and &, § ¢ B(Q),
st — 8|l £ kall s — |
where ky 18 a posilive constant that depends only on A, B, C, D and .
Suppose that ¢[w] = Cw + As; {ie., (2) with v = Y[w]} possesses a
unique solution w & £.r for any s; ¢ &(Q) and that if ¢[w] = Cw + A
t The assumptions in this section facilitate a common treatment of these two
important cases. Observe that, with the exception of these cases, it is assumed

here that | D(w) | is discontinuous on ©. However, as indicated in the Appendix
this is by no means a necessary condition for the recoverability of s; .
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in which 5 ¢ ®(Q) and @ £ Lo, ||w — W || = ks || 81 — & ||, where ks
is a constant that does not depend on s; or 5. [A direct application of
Theorem IT (in Section IV) shows that this is the case if inf |C — 1| >

(1 — «).] It follows directly from the properties of ¢ and the assump-
tions regarding A, B, C, and D that if s; ¢ ®(Q), there exist unique
functions v, sz, 53 £ £z such that (1) (2), (3), and (4) are satisfied.
Let @ denote the operator that associates with each s; ¢ 3(Q) the corre-
sponding s, . The assumptions regarding ¢[w] = Cw + As, together with
the boundedness of B and D imply that @ is a bounded mapping of ®(Q)
into itself. Under the conditions stated in Theorem I, @ possesses a
bounded inverse.

The invertibility conditions are established in Section IV and the
boundedness of @ is considered in Seetion V.

The method used to establish the invertibility conditions is construc-
tive. In particular, @ 's; can be computed in accordance with a stable
iteration procedure for which the successive approximations converge
in the £., norm at a rate that is at least geometric. The approximations
converge also in the supremum norm at a rate that is geometric or
greater if u() is finite.

As indicated earlier, in most cases of engineering interest either
Qp = Q (the single-loop feedback system case), or Qp is the null set
(i.e., the magnitude of the “direct transmission” D(w) is uniformly
bounded away from zero on @). The invertibility conditions stated
above are satisfied in many cases of practical interest.

The situation considered by Landau and Miranker," and Zames® cor-
responds to one in whichA = B=1I D = C = O, and @p = @ The
inequalities are obviously satisfied in this case. In fact they are satisfied
when @, = Q@ and C(w) = 0, w £ Q. More generally, observe that the in-
equalities are met if and only if (¢ — AD™'B), forall w £ (@ — Qp), and
(', for all w £ Q, are bounded away from the disk centered in the complex
plane at [1,0] and having radius 1 — a where 0 < a = 1.

IV. DERIVATION OF INVERTIBILITY CONDITIONS

In the following discussion we shall denote by Pp the operator that
projects elements of £.; onto B(2p). That is,

Pof = T'PoTf, feLu (6)
where
Pp = Pplw) =1, w & Qp

=O, CdZQD
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and, as before, Tf denotes the Fourier transform of f. Recall that D is
an invertible mapping of ®(Q — @p) into itself, that A and B are in-
vertible mappings of ®(Qp) into itself, and that D annihilates ®&(Q2p).
We shall denote by D" the inverse of the restriction of D to (2 — Q5),
and by A™" and B, respectively, the inverses of the restrictions of A
and B to ®&(Qp).

From (3) and (4)

83 = DSl + PB'LU, 81 € (B(Q) (7)
and from (2) and ¢[w] = »
Ylw] = Cw + As;. (8)

Our objective is to determine w in order to find s, from (7) and (8).
The corresponding functions s, and v ean of course be computed from (3)
and v = Y[w].

Since D annihilates B(Qp), Pps; = PpBw and, since Pp and B com-
mute,

in = E—IPDS;; . (9)

The problem therefore reduces to the determination of (I — Pp)w.
Before proceeding it is convenient to set w, = Ppyw and w, = (I — Pp)w,
and to introduce

Definition I: Let

n(z) =8 — a, v =1
= — a r=1
From (8),
(I — Pp)¢lw, + ws] = Cw, + A(P — Pp)sy, (10)

since C and A commute with (I — Pp). From (7),
(P — Py)s; = D(P — Py)sy + (P — Py)Buw,
and
(P — Py)s; = D'(P — Pp)s; — D'(P — Pp)Bw.  (11)
Thus,
(I — Pp)¢[w. + w] = Cw, — AD™'(P — Pp)Buw, + ADT/(P — Pu)s

from which
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(I — Pyp) [Ylwa + ws] — dows}
= [C — AD (P — P,)B — @ljus + ADTH(P — Pp)s;

where  is a real constant to be chosen subsequently.

Thus, regarding [C — AD™(P — P,)B — ¢d] as a mapping of the
orthogonal complement of ®(2,) into itself, and assuming that it pos-
sesses a bounded inverse [C — AD (P — P,)B — ],

Rwy, = wy
where
Rw, = [C — AD (P — P,)B — Yl (I — P,){¢fw. + wy] — wown)
— [C — AD (P — P,)B — I 'AD /(P — Pyp)s;.

The operator R is a mapping of a complete metric space into itself.
We next establish a condition under which R is a contraction. Let H =
[C — AD (P — Pp)B — ¢, and let f and g belong to the orthogonal
complement of ®(2p). Then

| Rf — Rg|l = || H(I — Po) ||| ¥lwa + 71 — ¥lwa + gl — %(f — 9) |
< ||HI = Po) [[ 2 IF =g,

since
\b[wn + _? - \b[wa + gI _ \l/n é 1‘,‘(\!/0)-
- 9g
Thus R is a contraction for some v if
r = i?f [[H(I — Py) || n(¢o) < 1. (12)

It turns out that the optimal choice of ¥, is unity, the median of « and
8. Consequently we could have simply set ¥ = 1 at the outset. However,
we prefer to establish the significance of this choice.

4.1 Evaluation of | H(I — Pp) ||

Let H = [C — AD™'(P — P»)B — 4] with the understanding that
DHP — Pp) =0, w ¢ (2 — Q). Our result ist

Lemma I:

H(OI — Pp) || = ess sup | H(w) |.
welp

t The notation ess sup Q(w) denotes iJI%f BugI Q(w) where JU is an arbitrary zero-
w H wf

measure subset of the real line.
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Proof:

The norm of H(I — Py) is sup{|| z||; || /|| = 1} where z = H(I —
P,)f and f £ £12 . An application of the Plancherel identity yields, in
terms of the frequency domain representation of H,

Iz = %r [ H@P| P [ do,

Hence

supll| 2 [l; 1711 = 1} < ess sup | H() |.
wilp

However if ess sup | H(w) | < o, for any e > 0 there exists a set of
willp
nonzero measure & which is disjoint from Q5 and such that | H(w) | =

esssup | H(w) | — ¢ w € &. Since | F(w) | is permitted to be nonzero only
wilp
on &, it follows that
sup{[[z[; [ fll =1} = €58 Sup |H(w) | — e
wtlp

Thus if ess sup | H(w) | < <,

wiQp
|H(I — Pp) || = ess sup | H(w) |. (13)
willp
It is clear that (13) remains valid if ess sup | H(w) | = . This proves
wilp
the lemma.

It follows from (12) and Lemma I that
r = infesssup |[C — AD™(P — Pp)B — |7 | (). (14)

Yo willp

4.2 Determination of ¥, and Statement of Theorem 11
The following lemma indicates that the optimal choice of ¥ is inde-
pendent of [C — AD™(P — P,)B].

Lemma II: Let £ be a complex number and suppose that

£ — o | "n(d) < 1.
Then
& — do|™n(¥e) = | £ — 1[n(1).

Proof:
Suppose first that ¥ = 1 and that

£ —o| > k(B — %), k>1
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Then, since | & — o | S |[E— 1|+ |1 — ¥,
[E— 11+ [1—do| — k(1 —do) >k(B—1),
and hence | § — 1| > k(B — 1). Suppose now that ¥, = 1 and that
[ &€ — | > kiyo — a), k> 1.
Then,
[E— 1]+ 10— 1] = k(o — 1) > k(1 — @),
and hence | § — 1| > k(1 — a).
It follows from (14) and Lemma IT that if r < 1,
r=esssup | [C — AD™(P — Pp)B — 1]7" |5(1)

willp

esssup | [ — AD™(P — Pp)B — 117" (1 — a).

ulﬂp

At this point we are in a position to state

Theorem II: Let A, B, C, and D be the bounded linear operators defined in
Section 3.1. Let D, bul not necessarily A and B, have the properties staled
in Section 8.4. Let D™ denote the inverse of the restriction of D lo B(Q),
and let Py, denote the operator that projects elements of Lo onto ®(2p). Sup-
pose that

r= max[rn,r) <1,
where

ro=esssup | [ — ADT'B — 17| (1 — «)

we(2—0p)

re = esssup | [C — 17| (1 — a).
wiQ

Then for any w. and g, respectively elements of ®(Qp) and its orthogonal
complement with respect lo L. , there exists a unique wy in the orthogonal
complement of B(Qp) such that

(I — Py)¢lw, + w] = [C — ADT(P — Py)Blws + g.

In faet, w, = lim wy; where

wyien = [C — ADTHP — Pp)B — I ™I — Pp){¢fw. + whi] — wsi
—[C— AD(P - P,)B - Iy

and wyo ts an arbitrary element in the orthogonal complement of ®(Qp).
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If by 18 a solution corresponding to W. and g,

— r _ r =
| ws — s || ér_j|lwa—wa|[+mi|9_g|]-

Proof:

With the exception of the last inequality, the proof follows from the
fact that if » < 1, R (with s = 1) is a contraction mapping of a complete
metric space into itself.f The inequality is obtained as follows. Let
J=[C—AD(P - P;)B — I (i.e., let J be H with ¢4 = 1). Then,
since

wy = J(I — Po){Ylwe + wi] — we} — Jg,
wy, — Wy = J(I — Pp)i{ylw. + w] — Y[iba + @] — (wa + w)
+ (@ + @)} — J(g — 7).
Therefore
[wp — || £ || (L= Po) [ 2(1) [[wa — Ba + wy — B |
+ 1 TJA=Py) [-|g—qll,
and since r = || J(I — Pp) || (1), n(1) = (1 — a), and
| wa — e 4wy — W || < [[wa — Ba || + [| w5 — B [,

r
1—r

With regard to the “essential supremum’ notation used in the state-
ments of Lemma I and Theorem I1, it is of course true that

| we — 10 || <

- r -
I!wa—wull-i-m_—a)”g—gﬂ-

esssup | H(w) | = sup | H(w) |
willp willp

in at least almost all cases of engineering interest.

4.3 The Complete Recovery Scheme

Let us now consider our over-all objective, the recovery of s, . From
(8) and (11), using the definition of A

(P— Py)sy =D (P — Py)s; — D' (P — Py)Bw
Pps; = A 'Ppiyw] — Cuw}.

t In particular, our assumption regarding the inverse of [C — Aﬁ‘l(P — Pp) —
B — I] is satisfied, since | C — AD'(P — Pp) — 1| is bounded away from zero
for all w in the complement of Qp .
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Therefore,
si= (P —Py)s; + Ppsy = [D(P — P,) — A'CB'PyJs,
+ A'Puly[B'Poss + wi)] — DT'(P — P,)Buy

where we have used (9), the fact that (P — P,)Bw, = 0, and the
identity A"'P,CB™'Pys; = A'CB'Pps; . This proves the first part of
Theorem I. The second part, which is concerned with the boundedness
of @', is considered in Section 5.1.

We define sy, , the nth approximation to s; , by

s = [D7(P = Py) — A 'CB'Pylss + KA Po{y[B'Poss + wil)
- D(P — P,)Bun.

(15)

(16)
where wy, is the nth approximation to w, as defined in Theorem II. Ob-
serve that
St — 1 = ATPo(W[B ' Posy + wi] — ¢[B ' Posy + ws))

— D7Y(P — Py)B(wi, — wy),
from which, using the right inequality of (5) satisfied by ¢,
s —sill S {IA7Po |8+ | DTUP — P)B |} || uns — wy

. (7)

An argument very similar to that used in the proof of Lemma I suffices
to show that

AP, || = esssup | A" | (18)
wellp
|D(P — P,)B| = esssup | DB (19)
we(R—0p)

Our assumptions regarding A and B imply that the right-hand side of
(18) and the right-hand side of (19) are bounded. Therefore, since w, =
lim wy, , (17) implies that s, = lim sy, .

-+ n—+um

The convergence of s, to s established in the last paragraph is in
the mean-square sense. If p(Q2) < =, it is also true that s;, converges
to 8; pointwise uniformly in ¢, that is

lim sup |8, — s | = 0.

n—>0 |

This result follows from the inequality :{

t This inequality is proved in Ref. 1 for the case in which @ is a single interval
centered at the origin. The extension to arbitrary sets of finite measure is trivial.
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[57'(P-P,) -A"' cB'P, |

Ln Wbn -b (P-P)B
Sa T Sin

Fig. 2 — Idealized recovery scheme.

3
ap 15015 (B2) 151, e ata)

and the fact that s, , s; £ ®(Q).

Wa

-AD"'(I-P,)
Fig. 3 — The iterative operation L, .

4.4 Signal-Flow Graph for a Complete Recovery Scheme

One complete idealized scheme for obtaining the nth approximation to
s1, based on (16) and the solution for w, given in Theorem IT with ¢ =
AD(P — Pp)s; and wy = 0, is summarized in Fig. 2. The iterative
operationt L, is shown in detail in Fig. 3 in which, as defined earlier,

t In the special case in which @p is the null set and ¢ — AD7'PB = 0identically
in @, w = ¢[AD's;] and hence the iteration stage is not re uired. The condition
that € — AD-'PB vanish identically in w, under which @ is by no means a trivial
mapping of ®(Q) into B(2), is equivalent in engineering terms to requiring that
the feedback transmission, for « ¢ @, and the null feedback transmission, for w £
Q, both vanish.
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J=[C—-AD(P—-P,)B 1" Fig. 4 shows a flow-graph representa-
tion of J in terms of [C — AD(P — P,)B] and elementary operations.
The flow graphs in Figs. 2 and 3 simplify in obvious ways in the impor-
tant special cases in which D = O on ®&(2) or D possesses a bounded
inverse on ®(Q).

The analog implementation of the scheme presented in Fig. 2 requires
consideration of the time delay inherent in the approximation of the
impulse response funetions corresponding to the nonrealizable operatorst
P and Py, as well as the time delay that might be required in the ap-
proximation of J. These considerations imply that time delay sections
must be inserted at various points in the recovery system and that the
time variation of the nonlinear elements must be staggered. Of course
the output of the recovery system will be a delayed version of an ap-
proximation of s,(¢).

-1 1

[C-AD™'(P-P,)B]
Fig. 4 — Flow-graph representation of the operator J.

There are many variations possible in the implementation of the re-
covery system. For example, the iteration can be performed with a
recording device and a single typical stage of the type used in Fig. 3.

V. RATE OF CONVERGENCE AND STABILITY OF THE RECOVERY SCHEME

The key element in the recovery scheme is of course the iteration pro-
cedure. We show first that the approximating functions wy, converge to
their limit ws at a rate that is at least geometric. This type of convergence
is a direct consequence of the fact that ws; = R, where R is a con-
traction mapping.

Since

Wi = Wyo + (Wi — who] + [wee — wp] + -+ + [wei — waeipy),

“ Wy — Wy ” ” [wﬁ(i+l) - 'w-'u'I + ['H-’b(i+2) — wf,(.-+1,] 4+ e ”

lIA

[ woiqny = wei || + | wogiqny — woggn || + + -
Repeated applications of the inequality:

1 Of course we are ignoring the cases in which P = I or P, = O.



106 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

| wsr — woa—y || = || Rwng—ny — Rwp ||
< 7 || weieny — Wea—n ||, [ =2
lead to
ri
| wee — wy || = = | wer — wio ||. (20)

If Wpo = O, Wn = JfI —_ PD)\(/[E_IPDS;;] — JAﬁ_](P —_ PD)Sa 3 and
hence

A

| we: — w || L; | J(I = P,) (¢[B 'Puss) — B'Poss

1 —
- AT)—I(P - Pu)&i}“

r
1—-r

+ [|ADT'(P — Py) ||} [ sl

P | AD(P — P,) | s |
1 =7 l —« ’
where, in accordance with the arguments used in the proof of Lemma I,
| B7'P, | = esssup | B |

welp

1A

| J(X = Py) || {n(1) | BTP, |

IIA

{1571+

| AD™Y(P — P,) || = esssup | AD™|.
we(—2p)
5.1 Stability of the Recovery Scheme

We consider here the degree of immunity of the recovery scheme to
two important types of errors.

It is assumed first that the input to the recovery system, which we
shall denote by &, differst from s;. Let overbarred symbols denote signals
due to the input 5. We have from (15)

s — 5| = | [D(P — Pp) — A'CB7Py)(ss — &)
+ AT'PLIYB ' Posy + wy)] — YIB ' Pois + Wi}
— [D(P — Pu)Bl(wy, — ) ||
<|DYP — Py) — A'CBP, ||| s — &
+ | AP | 8L B7Po || sa = Sl + [[ws — s |}
+ | D7HP — Po)B ||| ws — s ||.

t The departure of 85 from s; might he due to the presence of noise in either
the transmission channel or the initial stages of the receiver.

(21)
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However, from Theorem 11 with g = AD (P — Pp)sy,

I BPo [ s — 5

| we — | = i
(22)
,

taona—w

In view of our earlier assumptions which imply the boundedness of all of
the norms in (21) and (22), it iz evident that there exists a positive
constant Ly such that

|AD P — Py)[- || 85 — 5 [l

s =& = k|l s — &) (23)

for all s3, 5 ¢ ®(2). In other words, our assumptions imply that o'
is bounded. This means that the error in the recovered signal is at most
proportional to the error in the input to the recovery system. In par-
ticular, the recovered signal depends continuously on the input to the
recovery system.

We show next that the recovery scheme is not critieally dependent
upon either an exact knowledge of the operator J or the projection prop-
erty of P, . Specifically, we shall compare the functions w, and €,
defined by

wy = Rwy, Rwy = J(I — Pp)iglw, + wi] — wy)
- JAﬁil(P — Py
@y = Ry, Riby = Qlylw. + @] — @) — SAD™(P — Py)s; (25)

(24)

where Q and S are bounded linear mappings of £. into itself. We assume
that » < 1 and that

F=1Q g1y < 1. (26)

Henee R is assumed to be a contraction mapping of £ux into itself. Note
that inequality (26) is satisfied if » = || J(I — Py) || (1) < 1 and
| J(I — Pp) — Q| is sufficiently small. A comparison of w, and 1,
yields an estimate of the error, due to the departure of Q from J(I — Py)
and to the departure of S from J, in the limit function approached by
the iteration procedure in the recovery system.

TFrom (24) and (25),

w, — Wy = (S — J)Aﬁ—l( P—P,sy + J(I — PD)H’['wa + wy] — 'wh]
= QiYlws + w] — wi} + Qlglw. + ws] — ws}) — Qllwa + ws] — W},

from which
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lwe — ]| < || (S — DADP — Po)ss | + | [J(T — Po) — Q]
{plw] — w || + 1 Q[ n(1) [ we — b |,
and

1_1_1“ | (S — DAD (P — P)ss ||

IIA

[[ 0o — s |

+r;ﬂuu_pg—mwm—mw.

Therefore, if the departure of Q from J(I — Pj) is not too large (ie.,
if # < 1), the error in the limit function approached by the iteration
technique is, for fixed s; (and hence fixed w), at most a linear combina-
tion of two terms, one that approaches zero as | S — J || approaches
zero, and another that approaches zero as || J(I — Pp) — Q || approaches

Zero.

VI. SOME NEGATIVE RESULTS

In this final section we consider some results that relate to the neces-
sity of the conditions introduced earlier.

The equation Y[w] = Cw + Asi, in which s, ¢ ®(Q), plays a central
role in defining the mapping ®. As stated in Section 3.5, Theorem II
implies that this equation possesses a unique solution w & Lor if

inf|C—1]>1— a (27)

It is of interest to note that there exists a function ¢ such that the
equation Y[w] = Cw 4+ As; possesses no solution w & £q- for any non-
identically zero As, if (27) is not satisfied, @ is a bounded set, and C =
¢l where ¢ is a real constant. This follows directly from the fact that if
(27) is violated, « = ¢ = (2 — a) = B. Specifically, throughout a
neighborhood of the origin let ¢ be independent of ¢ and linear in w with
slope c. Then clearly, y[w] — cw = 0 whenever | w | < e where ¢ is some
positive constant. Since As, is assumed to be nonzero almost everywhere,
the validity of our assertion is evident.

Let U denote the mapping of the orthogonal complement of ®(2p)
into itself defined by Uw, = (I — Pp)¢[w. + ws] — Ews, where wa €
®(9) and E = C — AD™(P — P,)B. Theorem II asserts that U
possesses a bounded inverse if E(w) = C — AD™Y(P — Pb)B, for all w
contained in the complement of Qp , is bounded away from the disk in
the complex plane centered at [0,1] and having radius (1 — «).
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Theorem III: Let v be a real constant and let E; denote an open interval
contained in the complement of Q, such that E(w) s continuous on =, and
inf | E(w) —y| =0.

weZ)
Let  be independent of t and continuously differentiable with respect to x
on an interval Es where

dy(z)

nf .

reZa

'y|=0.

Then U does not possess a bounded inverse.

Remark: Note that the hypotheses regarding y are satisfied if ¢ is inde-
pendent of {, continuously differentiable with respect to z, and vy is any
point on the real-axis diameter of the disk mentioned above. Of course
we assume that

edp(x)
“:f dx

Proaof of Theorem Il1:
We need the following lemma.

dy(z) _
dx

B.

= a, and sup
£

Lemma IIT: Let A, denote the real interval [—T,T), let ¢ and e be real
positive constants, and let h(t) be a continuous real function defined on A, .
Then there exists a function g(t) in the orthogonal complement of ®(Qp)
(assumang that Qp is a proper subset of the real line) such that

[h(t) —g(t) | £ e, te (A — Ag)

where Ay 18 a sel of poinls contained in disjornt inlervals of total measure
not exceeding e; .

Proof:

If the complement of @, contains an interval centered at the origin,
the result is known and in fact is true with A, the null set. The following
very direct argument makes use of the known result to treat the case in
which the complement of @5 does not contain an interval centered at the
origin.

Let w; and «; be real positive constants such that the interval [w; — ws,
wy + wo], where w; > w., is contained in the complement of Q, . Let Q'
be an interval of length 2w, centered at the origin. Let @’ be an interval
of length 2w, centered at the origin. Let {&,, &2, --- , &} = [{|{ € Ay
cos wit = 0}, Let I; denote an interval of length e/n centered at ¢; . For
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any e > 0, there exists a function I(t) ¢ ®(Q’) such that

h(t
l(t) —_ ( ) é €3, tE‘(Al“-Az)
cos wii
where A, = U I;. Choose ¢ such that & = & inf  cos wi. It is
i=1 te(Ay—Aq)

evident that I(f) cos w ! possesses the properties of g(t) stated in the
lemma.

To prove Theorem I11 it suffices to show that for any e > 0, there exist
two funetions wyp and wy , belonging to the orthogonal complement of
®(2p), such that || ww — we || = 1 and || Ylwe + wu] — Ylw. + wa] —
E(wy — ws) || < e

Let e, €, and ¢ be arbitrary positive constants. Since inf | E(w) —

weZy
v| = 0 and E(—w) is equal to the complex conjugate of E(w), there
exists an w; ¢ = such that | E(2w;) — v | = %e. Let I, and II, denote
two finite intervals of equal length p(II;) contained in =, and centered,
respectively, at —wsand ;. Let (wp — wa) & G(I U IIy) with || wy —

wa || = 1. Choose u(II;) and 7' such that
sup | E(w) — 7| £ &, [ ww — wa |ljy>r S e
welly tedg

where A; is any subset of A, = [—T,T] with measure not exceeding ks ,
a sufficiently small positive constant. The second inequality can always
be satisfied since, in accordance with the inequality stated in Feetion
4.3, sup | wp — wy | = [« (1))
t
Sinee inf | [d¢(a)/dx] — v | = 0, there exists a real constant xo ¢ Hp

TeZg

such that

‘b['wﬂ + ’wlb] - Hb[wa + w"’h] — v é € (28)

Wi — W

whenever | w, + wp — 0| and | wy, — wax | are sufficiently small. We
may assume that u(TI;) is so small that the condition on [ wy — wy | is
satisfied. Choose wy, in accordance with Lemma IIT so that (28) is
satisfied on (A; — A,) where A; is a set of measure not exceeding k.
Let (A, — As)™ denote the complement of (A; — A,). Observe that

” Ylw. + wi] — Y[w. + wa] — E(wy, — Way) ”
< || Ylwe + wi) — Ylwe + wa] — y(we — wa) ||
+ || (E = AL) (wy — wa) ||
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= & | wy — wy || || Ylws + wi] — Ylwe + wa) — y(wy — w‘-‘-b)“(apay-
+ H (E — ~I)(wy — wu) !'
é & T (.B -+ |'Y| ey T+ | (E — ’YI)(I{‘H, —_ fwizb') H

§€ﬁ+(_ﬁ+|71)55+f4-

This completes the proof.

APPENDIX

The purpose of this appendix is to briefly indicate an alternative
technique for determining sufficient conditions for the recoverability of
81 .

Instead of the assumptions stated in Section 3.4 suppose that for some
real constant ¥ :

inf | D — Blyy— )74 >0

well

(gl — C)7' m(o) = esssup | (Yo — C)7' | n(g) = ¢ < L.

These inequalities imply that {PD + PB(yJ — C)'A} possesses a
bounded inverse on ®(Q) and that for any g ¢ £., the equation Y[w] =
Cw + g possesses a unicque solution w & Lo .

From

Ylw] = Cw + As, sy = PBw + Ds,, (29)
and Y[w] = Y + Ylw] we have
{PD + PB(¥J — C) 'Alsy — PB(yI — C) '"¥lw]. (30)

S
Equation (30) can be written as
s = Ms; + {PD + PB(yI — C)'Al 7 's,
where
Ms, = {PD + PB(yI — C) 'A} 'PB(¢d — C) 'Ju].

Of course the dependence of the right-hand side on s is throngh w.
Let @ be the =olution of y[w] = Cw 4 As, corresponding to s, = § .
Then by arguments similar to those leading to Theorem 1I,

S 10— O™ AP |- [[5 — 5 .

| w —w®
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Thus M is a contraction mapping of ®(2) into itself if
p = || {PD 4+ PB(yI — C)7'A}'PB(¥%I — O)7' |
2(Y)[1/(1 — @] || (yI — C)TAP|| < 1.

Hence if the received signal s; is known to be related to the transmitted
signal s; ¢ ®(2) by (29), s can be recovered if our assumptions are
satisfied and if p < 1. Using arguments similar to those leading to
Lemma I,

p = ess sup B (%) 1 e sup 4 ‘
wea | D¢y — C) + BA 1—q e [¢—C
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