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A calculation is made of the maximum steady-state temperature rise due
to a small amount of dielectric dissipalion in a Luneberg lens which s
continuously illuminated by a powerful microwave transmitler, when the
surface of the lens is held al a conslanl lemperature. The temperature
distribution along the axis of the lens is computed both when the focus is at
the surface, and also when it is oulside the surface at a distance equal to
one-tenth of the lens radius. The numerical resulls are given in such a form
that the mazximum lemperature rise is easily deduced when the loss tangent
is any linear function of the refractive index of the lens material. In general
the maximum steady-state temperature occurs on the axis al some inlerior
poinl between the center of the lens and the focus. The lotal power dissipated
in the lens is also compuled. Finally, a brief discussion is given of the time
scale associaled with transient healing of the lens.

I. INTRODUCTION AND SUMMARY

When a Luneberg lens is to be used as an antenna for a long-range
radar,! it is important to know how much the lens will be heated by
dielectric dissipation when it is illuminated by a powerful transmitter.
This paper presents a calculation of the maximum steady-state tempera-
ture rise in the interior of the lens, when the surface is held at a constant
temperature and only a small fraction of the incident power is dissipated.
Since the maximum temperature rise depends eritically on the loss
tangent of the lens material, and since the loss tangent may vary with
index of refraction, the results are given in such a form that the maxi-
mum temperature rise is easily deduced when the loss tangent is any
linear function of the index of refraction. The index of refraction is
assumed to vary with radius in a manner appropriate for a Luneberg
lens of the desired focal length. Numerical computations have been
made for the case in which the focus is at the surface of the lens, and
also when it is outside the surface at a distance equal to one-tenth of
the lens radius.
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In the idealized problem to be studied, the temperature rise per watt
of incident power will be the same for a distant transmitter, which
illuminates the lens with an essentially uniform plane wave, as for a
transmitter at the focus, with a feed pattern corresponding to a uniform
plane emergent wave. In either case, if the lens is illuminated from a
particular direction, and if the index of refraction and the loss tangent
are functions of the radial coordinate only, the heat source distribution
and the temperature distribution will be axially symmetric, and in all
practical cases the maximum temperature will occur somewhere on the
axis of the lens. Hence to find the maximum temperature we need only
calculate the temperature distribution along the axis.

Suppose that the loss tangent of the lens material can be adequately
represented by a linear function of the index of refraction; thus

tand = An + B, (1)

where n is the refractive index and A and B are constants. Then we
shall show that the axial temperature distribution can be written in the
form

T(£) = (Po/EN)[AT4(8) + BTs(£)), (2)

where £ is axial distance in units of the lens radius, with £ = —1 corre-
sponding to the plane wave side and ¢ = +1 to the side nearest the
focus. P, is the total power incident on the lens, & is the thermal con-
duectivity, and A is the free-space wavelength. The dimensionless func-
tions T4(£) and T»(¢) are given in Table I of Section V and are plotted
in Figs. 2 and 3 for lenses with normalized focal distances of 1.0 and 1.1,
measured from the center. Note that the maximum temperature given
by (2) is independent of the lens radius.

The foregoing remarks apply to the case in which the lens is illumi-
nated from a single direction, so that the maximum temperature rise
oceurs on the axis. If the total power P, striking the lens comes from
several different directions, we ean deduce upper and lower bounds on
the maximum temperature rise in the “multiaxial” case from a knowl-
edge of the temperature distribution along the axis in the ‘“‘uniaxial”
case. Since the heat conduction equation is linear, the prineiple of
superposition guarantees that the temperature at the center of the lens
is the same in both cases. Also, the maximum temperature in the multi-
axial case is less than the maximum temperature in the uniaxial case,
since the maximum temperature point in the uniaxial case is on the
axis defined by the incident beam, and this point is not on the other
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axes in the multiaxial case. It follows that the maximum temperature
rise in the multiaxial case is at least as great as the rise at the center of
the lens in the uniaxial case, but not as great as the maximum rise in
the uniaxial ease. The numerical example in Section V indicates that
in practical situations these two bounds may be so close together that
a more detailed treatment of the multiaxial case would be superfluous.

The body of the paper is concerned with the determination of the
funetions T'4(£) and 7'5(£) which oceur in (2). In Section IT we intro-
duce a convenient approximation to the index of refraction of the
Luneberg lens, which is exact if the focus is at the surface, and show
that under this approximation the ray paths are ellipses. In Section III
we compute the power flow through every element of a lossless lens,
and the approximate rate of dissipation of heat, assuming small dissipa-
tion and a loss tangent of the form (1). An integral representation of
the temperature along the axis is obtained in Section IV, as well as an
expression for the total dissipated power. Results of numerical integra-
tions earried out on an IBM 7090 are given in Section V. Appendix A
contains a proof that in all practical cases the maximum “uniaxial”
temperature occurs on the axis, while Appendix B is concerned with the
nature of the mathematical singularity which oceurs in the idealized
model when the focal point is at the surface of the lens. The time scale
for transient thermal effects is briefly discussed in Appendix C.

II. RAY PATHS IN A LUNEBERG LENS

The path of a typical ray in a Luneberg lens of normalized radius
unity is shown schematically in Fig. 1. In general the path of a light

Fig. 1 — Typical ray path in a Luneberg lens.
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ray in a radially symmetric medium with refractive index n(r) is given
by?

k dr
rint? — 2

0 — 6 = % f (3)
where (r,8) are polar coordinates in the plane of the ray, and « is con-
stant for a particular ray, being determined, together with the ambiguous
sign, by the direction of the ray at the initial point (7,6). In the
special case where the rays are all initially parallel, « is equal to the
initial distance of the given ray from the axis of the system.

In principle, (3) may be integrated to find the ray path whenever n
is a known function of r. For a Luneberg lens with focal point offset
from the surface, however, the relationship between n and r is given
by two parametric equations® involving a function defined by a definite
integral, and it does not seem possible to obtain the equation of the ray
path explicitly in terms of known functions. An approximation to the
refractive index which does permit analytic integration of (3) is

n=[nd — (nd — D}, (4)

where 7, is the index at the center of the lens according to the accurate
theory; ny is a decreasing function of the focal length . The relation-
ship (4) is exact if the focus is at the surface (n, = 4/2), and is a good
approximation if the distance from the focus to the surface is small.

To find the equation of a typieal ray in a lens whose refractive index
is given by (4), it is convenient first to locate the “turning point”
(r*,6%) at which the distance of the ray from the center of the lens is a
minimum. The turning point is defined by”

r*n(r¥) = «, (5)

which yields, using (4),
) n' — [ng' — 4 (ng® — 1)14}% .
r*(x) [ g — 1) . (6)

The corresponding angle is derived from (3), setting # = = whenr = «
and noting that 6 and r decrease together. We obtain

oy Y okdr " x dr
6*(x) = T"‘L;(f.z—_'(‘z)_}—'_j: rn?(r) — «}

oone — 2%
2k(1 — &%)’

(7)

3T . —
:Ifsm Kk — 3 tan
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on substituting (4) into the second integral and carrying out some
straightforward integrations.

We can now determine the equation of the ray path inside the lens.
Proceeding along the ray in either direction from the turning point, we

have from (3) and (4),
" kdr
+ ',; .l — K2]§

1 21(2 - n|)2T2
12[ngt — 4x2(ng2 — 1)]¢’

6 — 8*(x)

(8)

= & % cos
or, by rearrangement,
F(r,0;) = r*{[ne' — 4 (nd — 1))} cos 208 — 6%) +ne’} — 2* = 0. (9)

Since 6*(x) is constant for a particular ray, it is easy to write (9) in
rectangular coordinates and to verify that it is the equation of an ellipse.

III. RATE OF INTERNAL DISSIPATION OF HEAT

If the total dissipated power is a small fraction of the incident power,
as it must be in a practical lens, then the heat losses may be regarded
as a small perturbation on the power flux in the lossless case, which we
shall now compute.

Henceforth we regard each ray as defining a surface of revolution,
although the ray itself lies in a plane through the axis of the system.
According to geometrical optics, the total power flow along the tube
bounded by the ray surfaces corresponding to x and x + d«k is constant.
Let dv» be the elementary distance normal to the ray in the direction of
inereasing . If « is regarded as a point function defined by (9), we have

) (10)

ax }al«‘/ap
al/ ok

_ } vF
aF /o

=
where VI is evaluated by differentiating I with respect to the coordi-
nate variables while holding « fixed.

Now let S(r,8) be the power flux along a ray at any point of the lens;

appropriate units for S with the present normalization of lengths are
watts/(radius)’. The total power flow along an elementary tube is then

dP = 2mr sin 6 S(r,0)dv = constant. (11)

The constant can be evaluated by considering a ring-shaped element of
area normal to the incident beam, where « is just the distance of the
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given ray from the axis. If P, is the total power incident on the lens,
then

dP = 2P d«. (12)
Combining (10), (11), and (12) yields
Srg) = —Lw_ VI (13)

arsin 6 | dF/ok |’

The attenuation constant « at any point of the lens is given by the
well-known approximate relationship

a = (mn/\) tan 8, (14)

where n is the refractive index, tan & is the loss tangent (assumed

small), and X is the free-space wavelength, measured here in units of

the lens radius. Hence the rate of energy dissipation per unit volume,

in watts/(radius)’, is

2Pwn tané | VF |
asin® | oF/dk|’

On the right side of (15), « is defined implicitly by (7) and (9) as a

function of » and 8. The refractive index n(r) is given by (4), and tan é
is supposed to be a known function of n. Differentiation of (7) and (9)

yields

Q(rg) = 2a8(r8) = (15)

‘Z_f = 2r{lne' — 4 (no’ — 1)1 cos 200 — 6%) + ne’), (16)
}%{; = —2r{[n' — 4*(me” — 1)]*sin 2(9 — 6%)}, (17)

H 2 —
oF _ F{ [ delng — 1) cos 2(8 — 0%)

a - net — 41(2(71.[;2 - 1)]%

18
4 2, 2 T * de* ( )
+ 2[n' — 4k*(ne’ — 1)]*sin 2(6 — 6 )d_x — 4,

do* 1 (n' —2) (' — 1) (19)
(1= &) nt —4(n? — 1) 7
Hence in principle the rate of heat generation Q(r,0) is a known fune-
tion of position within the lens.
To determine the power flux from (13) and (16)—(19) when x = 0
or x = 1 requires the evaluation of some indeterminate forms. Deriva-
tions of the following results are straightforward and will be omitted.
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The power flux along the axis is given by
s =2 il [, e
w Llnd — (nd — D&} — (n — 1)£]”°

where £ is the normalized axial coordinate defined helow (2) of Section
I. The power flux at the equator of the lens is

lim S(rx/2) = Po/wnd’. (21)

r>1"

If the focus is at the surface of the lens (ng = +/2), then
lim S(»,8) =0, 0<d<x/2 (22)

r>1-

In this case, particular interest attaches to the power flux in the im-
mediate neighborhood of the focal point. It is convenient to introduce
new polar coordinates p,#, with origin at the focus and polar axis in the
direction of decreasing ¢ (see Tig. 1). Then for small p the power flux
is

S~ Py cos 19- (23)

mp*

IV. AXIAL TEMPERATURE DISTRIBUTION AND DISSIPATED POWER

The steady-state temperature distribution inside the lens satisfies
Poisson’s equation,

VT = —Q/k, (24)

where T is the temperature above any convenient reference level, @
is the souree distribution, and k is the thermal conductivity, expressed
for the moment in units of watts/(degree-radius). Since the surface of
the lens is assumed to be held at a constant temperature, say by air
conditioning the space between the lens and the radome, the boundary
condition may be taken as

T=0 at r=1. (25)

The source distribution @ is a function of the coordinates r,# only, and
in all practical eases it decreases with increasing distance from the axis.
It is proved in Appendix A that the maximum temperature rise then
oceurs on the axis; and as shown in Section I, a knowledge of the axial
temperature distribution in this case enables us to put upper and lower
bounds on the maximum temperature rise in a Luneberg lens illumi-
nated from more than one direction.
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The temperature distribution on the axis may easily be written down
in terms of the Green’s function for the interior of a sphere; thus,

T(E) = %fr f Q(r,0) G (r0;£)2mr* sin 6 dr db, (26)
G Jo 0

where
G(r,0;8) = (1/4m)[(* + & — 2t cos )
— (1 + & — 2rt cos ).

If desired, one may think of (26) as representing the electrostatie
potential due to a distributed electric charge of density eQ(r,8)/k
inside an earthed, conducting sphere of unit radius, but the analogy
has nothing to do with the mathematics.

Before starting calculation, we shall assume that tan § is a linear
function of n, say

(27)

tané = An + B. (28)
Then making use of (15), we may write (26) in the form

T(&) = (Po/EN)[AT4(£) + BT 8(£)], (29)

47rfuwf]r(n2
ar [ [ o

The dimensionless functions T ,(¢) and T'5(£) are calculated numerically
in the next section. Note that although the radius of the sphere has
heretofore been taken as the unit of length, the factor Po/kX has the
dimensions of temperature, and any consistent set of units (e.g., MKS)
may be used for Py, &, and A in (29).

It has been tacitly assumed in the foregoing that the thermal con-
ductivity & is constant throughout the lens. But the conductivity of
polystyrene foam, out of which Luneberg lenses are usually made, is
known to increase with increasing temperature, and therefore it may
be greater in some parts of the lens than in others. However we know
from general theory that if in a body with a fixed distribution of heat
sources, the thermal conduetivity is increased at any point, the steady-
state temperature at each point either decreases or remains unchanged.
Hence the solution of the heat flow problem with a constant value of &

where

T4(§) G(rg:;8)r dr do,

Il

A\
alF/a
/ ‘ (30)

I

Te(£) G(r,0;E)r dr db.

ap/a
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less than or equal to the actual value of [ at all points, provides a tem-
perature distribution which is an upper bound to the actual tempera-
ture distribution at all points.

Finally, the fraction of the total incident power which is dissipated in
the lens is given by integrating Q/P, over the volume. We obtain, from
(15) and (28),

AP a AP, APy
— =_{A= "4+ B~ " 31
Py [ r. TPR, ] ' (81)
where @ is the radius of the lens in the same units as A, and
AP, T 2 | VF o
S 4 /; [o K aF/ox rdr df,
AP T vF (82)
e[ o] ]
P LA K aT ox rdr df

V. NUMERICAL RESULTS

The functions T4(¢) and T (&) were evaluated on an IBM 7090 by

a straightforward double application of Simpson’s rule to (30). The

value of x at each point was found by solving (9) by Newton’s method;

then | VF/(aF /ok) | was caleulated from (16)-(19) and G(r,6;£) from

(27). Two values of normalized focal distance, measured from the
center of the lens, were considered, namely,

r = 1.0, ne = V2, (33)

rg = 1.1 ng = 1.36025. (34)

b

The numerical results arve given in Table I, and are plotted in Figs. 2
and 3. Also the total dissipated power was computed {rom (32). For
To = 1.0,

(AP/Py) = (a/N)[16.914 + 13.97B); (35)
and forry = 1.1,
(AP/Py) = (a/N)[15.464 + 13.13B]. (36)
For the numerical integration a graded net was used, as follows:

Region I r = 0.00 (0.05) 0.40
6 = 0.0° (7.5°) 180.0°

Region IT  » = 0.40 (0.05) 0.80
6= 0.0°(3.0°) 12.0°
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Region ITI r 0.80 (0.02) 1.00
6= 0.0°(1.0° 12.0°

Region IV = 0.40 (0.05) 1.00
6 = 12.0° (3.0°) 30.0°

Region V. r = 0.40 (0.05) 1.00
6 = 30.0° (7.5°) 180.0°

Experimentation with a finer net, obtained by simultaneously halving
the intervals in » and # in Regions IIT and V, indicates that any errors
in Table T and (35)—(36) do not exceed a few units of the last figure
shown. The accuracy is therefore believed to be sufficient for all practical
purposes.

A few aspects of the calculation deserve comment. In the first place,
the Green’s function (27) is infinite when the field point coincides with
the source point; but the integrand of (26) does not become infinite as
the field point approaches the source point, provided that Q(r,0) re-
mains finite on the axis. The limiting value of the integrand may be
either zero or finite, depending upon the direction from which the field
point approaches the source point; but in any event the contribution of
the apparent singular point during a naive application of Simpson’s

TasLe I — TaE FuNcrions T4 (£) aAND T'5(£)

ro= 1.0 ro = 1.1
£
TA TB Ta TB
—1.0 0.0000 0.0000 0.0000 0.0000
—0.9 0.1060 0.0861 0.0985 0.0823
—0.8 0.2155 0.1727 0.1993 0.1645
—0.7 0.3241 0.2564 0.2981 0.2431
—0.6 0.4308 0.3369 0.3940 0.3179
—0.5 0.5345 0.4140 0.4860 0.3887
—0.4 0.6345 0.4876 0.5734 0.4553
—0.3 0.7298 0.5574 0.6553 0.5174
—0.2 0.8198 0.6234 0.7310 0.5749
—0.1 0.9037 0.6856 0.7998 0.6277
0.0 0.9809 0.7440 0.8609 0.6754
0.1 1.0493 0.7974 0.9123 0.7169
0.2 1.1090 0.8464 0.9535 0.7521
0.3 1.1588 0.8907 0.9831 0.7802
0.4 1.1984 0.9306 0.9997 0.8003
0.5 1.2267 0.9659 1.0005 0.8105
0.6 1.2386 0.9937 0.9785 0.8051
0.7 1.2317 1.0132 0.9255 0.7771
0.8 1.2040 1.0251 0.8243 0.7109
0.9 1.1521 1.0324 0.6206 0.5552
1.0 1.0000 1.0000 0.0000 0.0000
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Fig. 2 — The functions 1" 4 and Ty for a lens with focus at the surface (ro = 1).

rule is at most a finite quantity, which tends to zero as the interval of
integration is reduced. In the numerical calculation the contribution
from this point was omitted.

A discussion of the mathematical singularity at the foeus when
ro = 1is given in Appendix B. In the mathematical model, the tempera-
ture near the focus is given by

T(p,d) &~ 1y cos 9, (37)
where 7 is a finite constant and p,d are spherical polar coordinates in

the local coordinate system introduced at the end of Section ITI. The
value of 7 is determined by the source strength in an infinitesimal

1.4 T T T
1.2
o=
1.0 T —y
‘ TA / \
0.8F— | / —_— —
. ‘ v -= ~

| / _—'—‘ TB S
0.6 | - \\

0.4 -
Pz \
4
1
|
0.2} — ¢ T . 1 A

>
4

-1.0 -0.8 -0.6 -0.4 -0.2 (o] 0.2 0.4 06 .08 1.0
NORMALIZED AXIAL DISTANCE é

Fig. 3 — The functions 7'y and Ty for a lens with focus outside the surface
{Tu = ]1).
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region around the focus; in the limit this region makes no contribution
to the temperature at other points of the sphere. Hence T,(¢) and
Ts(£) were caleculated, for £ % 1, by setting the integrands of (30)
equal to zeroatr = 1, 8 = 0; and T.4(1) and T'5(1) were evaluated as
in Appendix B.

It goes without saying that in a physical lens the temperature at the
focus will be well defined, which the limit of the expression (37) is not,
and that the temperature distribution will not have an infinite gradient.
The actual distribution will be determined by the amount of heat that
the air conditioning can carry away from the immediate neighborhood
of the focus, as well as by the physical structure of the feed, if the antenna
is being used for transmission. Since, however, the numerical example
at the end of this section suggests that the maximum temperature rise
in a Luneberg lens with surface cooling will be well inside the lens, we
shall not attempt here a more elaborate analysis of the conditions near
the focus.

If ro > 1, so that the focal point is outside the lens surface, then (4)
is not an exact expression for the index of refraction. However, when

ro = 1.1, the maximum difference between the exact index calculated
according to Ref. 2 and the approximate index is about 0.0055 at about
r = 0.87, the approximate index being smaller. As a second test, we

have calculated the distance from the center of the ‘“‘approximate”
lens at which various initially parallel rays intersect the axis. The
distance varies from 1.0881 for paraxial rays (¢ = 0) to 1.1205 for rays
with x = 0.95, compared with the design value of 1.1. It tends toward
infinity for marginal rays, but such rays are insignificant so far as the
heating problem is concerned anyway, since by hypothesis the surface
of the lens is in contact with a constant-temperature heat reservoir. We
therefore feel well justified in using (4) to compute the ray paths for
o = 1.1.

To give an idea of the size of the numbers involved, Fig. 4 shows plots
of the axial temperature rise in degrees Fahrenheit per watt of incident
power, as calculated from (29) and Table I for a lens with the following
parameters:

Py = 1 watt
BTU watts
= 025 — ——~ — = (). —-—
k=025 hr-ft2- (°F/in) 0.036 m-°C
A = 60 em (500 me) (38)
tand = [1 + 25(n — 1)] X 107*

a = 40ft
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Fig. 4 — Numerical example of axial temperature distribution in two Lune-
berg lenses.

The assumed values of thermal conduetivity and loss tangent are more
or less representative of polystyrene foam loaded with metal slivers.
The maximum temperature rise is roughly 0.06°F/watt, and occurs
about a third of the way from the center of the lens to the surface, in
the direction of the focal point. Tt is of interest to note that the maxi-
mum temperature differs from the temperature at the eenter of the lens
by less than 15 per cent, even when the focus is at the surface.

The power dissipated in the lens is easily calculated from (35) or
(36). Forry = 1.0,

(aP/Py)

0.1777 or 0.85 db; (39)
while for 7o = 1.1,
(AP/Py) = 0.1450 or 0.68 db. (40)

Equations (39) and (40) give the dissipated power when a uniform plane
wave is incident on the lens. Observe, however, that this is not quite
equal to the power loss when the lens is being used as a transmitter,
since in that case there is usually a deliberate illumination taper
across the lens aperture. With a conventional taper, in which the power
density is higher at the center of the lens than at the edges, the loss
will be higher than that obtained with uniform illumination; but one
cannot deduce the total loss from the numbers given in this paper.
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Note Added in Proof

A recent paper by Lerner! is concerned with essentially the same prob-
lem as the present paper. On the basis of a considerable number of ap-
proximations, Lerner calculates the temperature distribution along the
axis of a surface-focus lens when the thermal conductivity and the loss
tangent are constant. The “Average” curve of his Fig. 6 is therefore
comparable to the plot of Tz(¥) in our Fig. 2. The two curves do in fact
lie close together except for points less than a quarter of the lens radius
distant from the surface focus. Lerner’s approximate analysis predicts
that the maximum temperature rise will occur at the surface focus and
will be equal to 1.25(Py/kA\) tan 8. Our caleulations give a maximum
rise of about 1.03(Py/k\) tan 6 at a distance of about one-tenth of the
lens radius from the focus, while the temperature rise at the focus is
(Pu/l\k) tan 8.

APPENDIX A

Position of Temperature Maximum
We consider the steady-state temperature distribution which satisfies
VT = —f for r < a,
(41)
T=0 at r = a.
The source function f (= Q/k) is assumed to be axially symmetric
and nonnegative, and to have continuous first derivatives in the region
r < a.

We shall use rectangular coordinates (z,y,z), cylindrical coordinates
(1,¢,2), or spherical coordinates (r,0,¢0) as convenient. It is assumed
that f is independent of ¢, and that it is a nonincreasing function of
distance from the axis, i.e.,

(af/or) = 0. (42)
Now consider the function

W= —(aT/ay) = —(aT/dr) sine (43)
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in the hemispherical region S defined by
P+ 7 <d, 0=Z2¢=m (44)

From (41) and (42) it follows that 1 is superharmonic in the interior
of S, since

VW = (af/ay) = (af/dr) sineg = 0. (45)
IPurthermore on the eurved surface of the hemisphere we have
W = —(aT/ay) = —(y/r)(8T/or) > 0 for r =a, y >0, (46)
since
(aT/ar) <0 at r=a (47)

if f is nonnegative and does not vanish identically. A formal proof of
this physically obvious statement can be obtained using the Green’s
function representation of the solution of (41). On the base of the
hemisphere, (43) yields

W=0 at y=0. (48)

Let U be a harmonie function which takes the same values as W
on the boundary of S. Since W is superharmonie,” we have

Wz U (49)

in the interior of S. But U achieves its minimum value zero only on the
boundary of S8, so neither U/ nor W can vanish in the interior of S. It
follows from (43) that 87/dr cannot vanish in the interior of S, and so
7" cannot have a maximum there. Hence the maximum value of 7" must
oceur on the axis.

In the present problem the source distribution is given by (15),
namely

f(rp) =

Q(rf) 2Potand | «n vF
ko A rsin @ | aF/ok

An analytic proof that the right-hand side of (50) is a decreasing fune-
tion of distance from the axis would probably be very laborious. We
have, however, calculated the expression in braces numerically for the
two cases treated in this paper, using a square grid of about 600 points
in r and z, and have verified that on such a grid it is a decreasing func-
tion of t, except for a very small region near the surface of the lens
(where t is slightly less than 1 and 6 slightly greater than =/2 in Fig. 1).
On the other hand, the refractive index n is a decreasing function of r,

}. (50)
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and in practical cases tan § will be a sufficiently rapidly increasing func-
tion of n so that the whole source distribution will be a decreasing fune-
tion of r. In particular, we have verified numerically that (42) is satisfied
throughout the lens if tan § is given by (38).

It will be appreciated, of course, that (42) is a sufficient condition but
not a necessary one to make the maximum temperature rise occur on
the axis. Whether there could exist a hypothetical loss tangent, having
a sharp peak at a particular value of n, which would lead to a ring-
shaped temperature maximum instead of to a maximum on the axis is
still an open question, though not of much practical importance.

APPENDIX B

Temperature Distribulion near a Surface Focus

To determine the nature of the temperature singularity in the pres-
ent mathematical model at a surface focus, we investigate the tempera-
ture distribution T'(p,d) in the half-space 4 =< x/2 due to the source
function

Coosd g <p<,
Q(pY) = p (51)
0, p = b

Here b and C are constants, and p,9 are the polar coordinates introduced
at the end of Section II1. All quantities are independent of the azimuth
angle ¢. We seek a solution which vanishes on the plane ¢ = /2, re-
mains finite as p — 0 and as p — =, and is continuous, together with its
normal derivative, at p = .

Substitution of a function of the form

T(p,9) = R(p) cos & (52)
into Poisson’s equation (24) yields the following equation for E(r):
—C/k, 0<p<h,
4 (pz 5‘_}3) ~ 2R = (53)
dr dp 0, p = b

A solution which satisfies the boundary and continuity conditions is
easily found to be

o, %
o B (54)
R(P):BE‘?, p=D
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We observe that
lim R(p) = C/2k, (55)

p=>0

and this limit is independent of 6. On the other hand, if p has any fixed
value greater than zero,

lim R(p) = 0. (56)

bs0
It follows that the limiting value of the axial temperature is determined
by the source distribution in an arbitrarily small hemisphere around
p = 0, and that in the limit this hemisphere makes no contribution to
the temperature at other points of the lens.

If we make the constant (' agree with the source distribution given
by (15) and (23), then using (28) and the fact that n = 1 at the sur-
face of the lens, we have

20{})“ 2(.(4 +B)P(]

O = -
T A

Combining (A7) with (55) leads to the results given in Table I, namely
Iim T,(&) = lim Tg(g) = 1. (58)
Es1™ Es1m

APPENDIX C

Time Scale for Transient Healing

Suppose that in o Luneberg lens, initially at zero temperature through-
out, an internal souree distribution Q(r,0) is turned on at { = 0 and
then remains constant in time, while the surface of the lens is held at
zero temperature. The temperature within the lens must satisfy

EV'T + Q = pe(aT/dt), (59)
where & is the thermal conductivity, p the density, and ¢ the specific
heat of the medium. Conventional units, such as MKS, are used through-
out this section.

It is well known that the solution of (59) can be written as the sum
of a steady-state part and a transient part, i.e.,
T(r6t) = To(r,0) + Tu(r,6,1). (60)
The steady-state term satisfies

EVT, = —Q, (61)
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while the transient term satisfies
DV'T, = aT ,/a, (62
where
D = k/pc (63)

is the diffusivity. The transient term vanishes as ¢t — @« and cancels
the steady-state solution at ¢t = 0; that is,

T(r,0,0) = —T(r,0). (64)
At the surface of the sphere both terms vanish; namely,
T.B(ale) = T,(a,ﬂ,t) = 0. (65)

A transient solution sufficiently general for our needs may be written
in the form

T(r,0t) = Z(; > Apfn(xumr/a) Py (cos 0)e ™", (66)

where j, is a spherical Bessel function defined in terms of the ordinary
Bessel function by

@) = (n/22) (), (67)
P, is a Legendre polynomial, X.. is the mth root of j.(x), and
Qpym = DXnmz/Glﬁ- (68)

The Bessel and Legendre funections form complete, orthogonal sets,
so that at { = 0 any reasonable function of r and # may be expanded in
a double series of the form (66), where the coefficients A,. are given
by integrals similar to those which define the coefficients in a double
Fourier series. In particular, if we had caleulated the steady-state solu-
tion T.(r,8) at all points of the sphere, we could expand it in such a
series and thus satisfy the initial condition (64). We shall not compute
the coefficients A, ; we merely observe that in a transient solution of
the form (66), the individual terms decay exponentially with time, the
faster the larger a,., . The longest-lived term is the one with smallest
«, namely

—apnt — 1101 s (T?'/ﬂ;) G‘(DT“".’GIH. (69)

A01ju(XU17'/a)8 'ﬂ/a
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The rate at which this term decays permits us to define an approximate
“thermal time constant” for the transient solution, unless of course the
steady-state solution is such that A is zero or very small compared to
the other coefficients. Comparing the form of (69) with the expected
form of the steady-state solution makes it appear obvious that A¢ will
not be unusually small; and therefore an estimate of the time required
to establish the steady-state solution is furnished by the ‘“half-life” of
the lowest mode,

tn = 1/a0y = a’/7"D. (70)
Assuming for polystyrene foam the numerical values
p = 1.5 1Ib/ft,
¢ = 0.32 cal/gm-°C, (71)

BTU

k=02 ——————
)hr-ftz-(°F/1n) ’

we find after some conversions of units,
D = 1.12 X 107" m*/sec. (72)
IFor a sphere of diameter 1 ft,
fn = 35 min, (73)
and for a sphere of diameter 80 ft,
tn = 156 days. (74)

The heating time for a large Luneberg lens may thus be several months
after the transmitter is turned on, with a similar cooling time after it
is turned off.

REFERENCES

1. Warren, C. A., NIKE ZEUS, Bell Laboratories Record, 41, March, 1963, pp.
78-86.

. Morgan, S. P., General Solution of the Luneberg Lens Problem, J. Appl. Phys.,
29, Sept., 1958, pp. 1358-1368.

. Kellogg, O. D., Foundations of Potential Theory, Ungar, New York, 1929, pp.
315-316, 223.

. Lerner, D, S,, Calculation of Radiation Heating in a Microwave Luneberg
Lens, I.LE.E.E. Trans. on Antennas and Propagation, AP-12, January, 1964,
pp. 1622,

[5-]

= L






