Propagation of Light Rays through a
Lens-Waveguide with Curved Axis
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The problem of the propagaiion of a light ray in a lens-waveguide with
arbitrarily bent axis is solved. The solulion can conveniently be expressed
in form of an integral if the waveguide is bent sufficiently gradually.

In general, a ray which is incident on the axis of the straight lens-wave-
guide follows an undulaling path after traversing the bend. The undulations
can be kept arbitrarily small if the bend is tapered and if its curvature is
sufficiently genlle. By properly dimensioning the bend, the undulations can
be made to cancel out complelely, so that a ray which follows the axis of the
straight waveguide can be made to leave the bend on the axis of the outgoing
straight waveguide.

The cases of eircular and lapered bends as well as tilts and offsets are
discussed.

I. INTRODUCTION

The invention of the laser has revived interest in light as a communica-
tions carrier. One of the many problems which have to be solved before
a light communications system becomes feasible is the propagation of a
light beam from transmitter to receiver. It is well known' that a sequence
of converging lenses can guide a light beam and keep it from spreading.
The losses of such a lens-waveguide can be calculated only by means of
wave optics. However, even geometric opties can demonstrate the guid-
ing properties of a lens-waveguide.? It can show that a light beam, once
it is injected into a sequence of lenses, follows an undulating path without
wandering away from the axis of the lens-waveguide.

The present paper is limited to describing the behavior of a light beam
in a lens-waveguide whose axis is not straight everywhere, but which
is allowed to follow bends of the transmission path or exhibit abrupt
changes like tilts of its axis or an offset of one of its lenses from the axis
on which all the other lenses are centered. The description is given in
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terms of geometric optics, so that no information about the losses of
light transmission through a lens-waveguide with bent axis can be ob-
tained. It is clear, however, that the loss of power from the light beam
is caused partly by diffraction losses at the edge of the lenses. These
Josses are certainly minimized if the center of gravity of the light dis-
tribution in the beam, which is described as the light ray, remains as
far from the edges of the lenses as possible. It is desirable, therefore, that
the light ray follow the axis of the structure as much as possible. The
mathematical deseription of the light ray presented in this paper shows
that a ray which follows the axis of the straight lens-waveguide will be
forced into an oscillatory trajectory whenever the axis of the lens-
waveguide deviates from perfect straightness.

Tt is necessary, at times, to lead the lens-waveguide through a bend
to circumvent obstacles which might lie in its path. If it is possible to
design a bend such that a beam which is incident on the axis of the
straight incoming waveguide will leave the bend on the axis of the out-
going straight waveguide, we will call such a bend one of optimum
design. Tt is, of course, equally desirable also to keep the deviations of
the beam from the waveguide axis on the bend as small as possible.

We show in this paper that one can inject a light beam into a circular
section of the lens-waveguide in such a way that it travels through the
bend at a constant distance from the waveguide axis. It can, further-
more, be readmitted into the outgoing straight section of the lens-wave-
guide so as to continue along its axis. An optimization of a circular
hend is thus possible.

Another way of reducing the oscillations caused by a bend is to taper
its radius of eurvature gradually from its infinite value on the straight
section to a minimum value and back to the infinite value of the out-
going straight section.

The theory of ray optics in a lens-waveguide with curved axis is a
generalization of Pierce’s theory.? The solution of the difference equation
can be approximated by a convenient integral expression in the limit
of a lens-waveguide whose axis changes direction only gradually.

II. RAY OPTICS OF THE CURVED LENS-WAVEGUIDE

The light ray is described by its distance r from the center of the lenses
at the position of each lens (see Fig. 1). The lenses are spaced a distance
L apart and have a focal length f = 1/C. The quantity ' is known as
the “lens power.”

If we assume that all angles are so small that tan « can be taken = a,
we obtain the following relations between the radii r, and 7.1 of the
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Fig. 1 — (a) Tlustration of the bent lens-waveguide and the radii of the light
beam at different lenses. (b) Relations among the various angles between the
straight lines connecting successive lenses and the light beam and these straight
lines. (¢) Illustration of the relation between the angle x by which a thin lens
deflects the light ray and the radius rn41 of the ray.

ray at the positions of the nth and (n + 1)th lens
Tﬂ+1 = Tn + anL (1)
Cratr = Ynt1 + @n — Qupa . (2)

a, is the angle between the ray and the straight line connecting succes-

sive lenses taken to the right of the nth lens. v, is the angle at the nth

lens between the two straight lines connecting the lenses. The geometrical

relations (1) and (2) can be read off Fig. 1(a) through (e).
Eliminating «, and a,; from (1) and (2) results in

T2 — (2 - LC)T:H-l + 1 = L’Yn+l = Yn+t2 - (3)



744 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1964

Equation (3) agrees with Pierce’s equation for the straight lens-wave-
guide in the case v.41 = 0. In this case the equation has the solution

ro = A cosné 4+ B sin nf (4)
with
cos § =1 — (LC/2) (5)
or equivalently
sin @ = VLC /‘/1-%. (6)

This solution shows that, in general, the ray oscillates around the axis
of the lens-waveguide.

From Fig. 2 it is apparent that the quantity y.4. oceurring in (3)
is given by

Ynyo = L‘Z/Rﬂ-}-l . (7)

Equation (3) is the mathematical description of the ray optics of the
curved lens-waveguide. It allows the successive calculation of the
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distances r, of the ray from the centers of the lenses for any distribution
of lenses and suitable initial conditions.

1I1. SOLUTION OF THE RAY EQUATION

By standard methods for solving difference equations,® a rigorous
solution of (3) was obtained:

. I} Ssinb(n —m —1)
w=Acosnd + B no - .
r co + B sin nf + Sn 6 ;ﬂ fr

(8)

The sum in (8) is defined only for n > 1. The constants 4 and B are
determined from the initial position of the ray at 7, and

A =To (9)
— rpcos

B="1"
sin &

The validity of (8) can be checked by substitution into (3).
Equation (8) can be converted to a convenient integral expression.
We use the identity

(10)

(4

sinf(n —m — 1) = 5en

m+2
f sin 8(n — z) dx (11)

and obtain instead of (8)

r, = A cos nf + B sin nd

BLi n—2 1 fnl+2 . (12)
— 8(n — 2.
+ 2 sin® 6 7= Ryy1 Im sin 6(n — ) dx
Now let us assume that R, varies so slowly that we can write
Rn. = R(x). (13)

The value R,, defined in Fig. 2 has become the radius of eurvature R(x)
of a curve f(z) which smoothly connects the centers of the lenses. With
the use of (13) the sum of (12) can be changed into an integral, and we
obtain

rn = A cos nf + B sin né

L’ {cos(n — 1) —cosnd , 1 — cos@

2 sin? # R] + Rn—l (14)

n—1 - _
n 20[ sin 8(n x)}da:.
1

+

" R(z)
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Equation (14) holds for arbitrary values of L and C as long as
0<|1—(LC/4)| <1 (15)

Its validity is restricted to the extent to which the approximation (13)
holds. That is, (14) holds as long as the lens-waveguide is bent only
gradually.

For completeness let us state the result in the limit L — 0. It follows
from (6) that § — +/LC in that case. If we introduce the length s = nL
or ¢ = xL as the new coordinate, we obtain from (14) in the limit of
closely spaced lenses

o R BV G \
r(s) —Acos:cs—i—Bsmas_i-E‘/;R—G-)smx(s ) de  (16)

with
« = lim (C/L). (17)
L0
The solution (16) could have been obtained by first converting the
difference equation (3) into a differential equation. Equation (16) is
the solution of this differential equation.

1V. BENDS, TILTS AND OFFSETS

We study first the problem of transmitting a light ray along two
sections of straight lens-waveguide which are connected by a circular
bend. To make the problem more general we assume that the straight
sections are not tangents of the circle at the point of contact and that
the axis of the straight section of the guide does not go through the cen-
ter of the first lens which is located on the circle. In other words, we as-
sume that the cirele is tilted by an angle « and offset by an amount “a”
with respect to the incoming and outgoing straight lens-waveguides (see
Tig. 3). For the solution of this problem we go back to the exact equa-
tion (8) and limit ourselves to a beam which enters the bend on the axis
of the incoming straight guide (A = 0, B = 0). A study of the geometry
shows that

R, =R

I’ 2L'R
a’ R. = R”*z_L=+2aLR — 2aR’
m#1,2,N—1,N — 2

R1 = RN—I =

Using the identity
k sin (n - E)B s'm%(k-k 1)

sin 8(n — m) = 2
0

1
=0
Slll2
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Fig. 3 — A ecircular bend to which the straight lens-waveguide is conneeted

by an offset ¢ and a tilt «.

we obtain from (8) on the circular bend

12 ( cot .l—ﬂ
Ty = ;ﬁh@{ T sin 6 — 5 cos 0(n — 2)
1 cot %6 (18)
+ E[a — % (1 — cos b‘):| sin 0(n — 2) + 5h
2<n=N-2
and on the straight Uutgoiug section
1
o= 2 L sin @ nmlN) —%inﬂ—wt——ég
" Tsing” 2 : 2R
1
.smﬂ( )—I— [a_'f (1 — LD‘:B)] (19)
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By properly adjusting tilt and offset we can assure that the beam will
continue to travel on the axis of the outgoing straight lens-waveguide
without undulations. We adjust @ and « so that both expressions in
brackets in (19) vanish simultaneously. This leads to

1
2 cot o0
o= _ 2 _ L (20)
2R sin 6 RC
and
a = (a/L)Y{(1 — cos ) = L/2R. (21)

These values for the tilt and offset, by which the circular bend is con-
nected to the two sections of straight line, provide us with an optimum
circular bend — that is, one which guides the light ray around a curve
without causing it to undulate. It is apparent from (18) that these
optimum values for tilt and offset assure simultaneously that the light
heam traverses the circular section of the bend at a constant distance
from the center of the lenses which is equal to the amount of offset (20).
It is clear that the offset injects the beam into the circular bend just at
the spacing at which the beam can travel around the cirele without
undulating.

There are other ways to design a bend to guide a light beam without
introducing undulations of the outgoing beam. For example, if we con-
neet the circular bend smoothly to the straight sections (¢ = 0 and
a = 0) we can still suppress undulations by choosing the length of the
bend and the properties of the lenses such that sin 8(3N — 2) = 0.
However, such a design is more complicated and depends on the length
of the bend.

As a second example, we consider the case of a bend with tapered
radius of eurvature:

48 N
. ‘ﬁzLU 0§?}'§§
F: (22)
v Yeys<w,

D g SUS

Here, N is the number of periods L which fit on the bend (Iig. 4), 6
is the angle through which the bend leads, and D = NL is the total
length of the bend.

The trajectory of the ray can be computed with the help of (14). We
assume that the ray is incident on the axis of the incoming straight
waveguide (A = B = 0).
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nl < 1 i
For2 =n £ IN + 2,

L

"= Dt sin® 6

{(n — 2)(1 + cos 8)

+ 52 [sinf — sin8(n — 1)]};

foriN+2=n=N + 2

2517

T = m{(N —n 4+ 2)(1 + cos )

2
+B:[28i118(n— 1 —

N) — sin #(n — 1) — sin S:II;
forN +2 =2n < =,
25L°

Tn = ma{gsillﬂ(ﬂ -1 - N)

—sinf(n — 1 — N) — sin8(n — 1)}.
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(23a)

(23b)

(23¢)

Equation (23¢) can be rewritten to show the amplitude of the undula-

tion more clearly
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3
Tu :#ﬁ:gﬁsiuzﬂi]\’ sin@(n— 1 —%N). (24)
As in the case of the cireular bend, the undulations can be made to
cancel out if we design the lens-waveguide and the length of the bend
such that sin 1N = 0. It is also apparent that the amplitude of oscilla-
tion decreases rapidly if the length D of the bend is increased.

T'inally, we state the equations for the ease of a tilt and for an offset
of one lens in the waveguide (see Figs. 5 and ). Assuming, as always,
that the incident ray follows the axis of the incoming straight waveguide,
we obtain from (8) in case of a tilt which is spaced a distance from the
lens,

Pa = 551—9\/(15-— @) + a* + 2a(L — a)-cosfsin[0(n — 1) — ] (25)

with

a-sin 6
= t. .
¢ = arctan T —a) + acosb (26)
If one lens is offset by an amount A and if the incident ray follows the
axis of the incoming straight waveguide

r, = .-jﬂ_ gin® 1 # sin B(n - 2) (27)
sin # 2

describes the ray on the outgoing straight waveguide.

V. DISCUSSION AND NUMERICAT, RESULTS

In the preceding section we have found that a light ray which is
incident along the axis of the incoming straight waveguide, in general
leaves a bend, an offset or a tilt undulating around the axis of the
straight outgoing waveguide. We have found that these undulations
can be suppressed by properly designing the bends. In this last section
we will discuss the maximum undulations of the outgoing light ray if
no provision for canceling the undulations has been made.

If one does not intend to use an optimum design, one would not
include a tilt or an offset in the bend but would connect the circular
bend smoothly to the straight sections. If we take a = o« = 0 in (19)
we see that the maximum amplitude which the undulations can reach
is given by

1
scot =6
Lot (28)

R sing RC®
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Tig. 5 — The lens-waveguide tilted by an angle § a distance a from a lens.

The same equation describes the maximum deviation of the beam on

the circular section of the bend.
The maximum deviation of the ray from the axis on the tapered bend
can be obtained from (23). We assume that N >> 1 and find that the

maximum deviation on the tapered bend is
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Fig. 6 — One lens of the waveguide is offset by an amount A.
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while the maximum amplitude of the undulations on the straight out-
going section is given by (24)

N 168L° 648L°
T D¥sin?g " (30
s D* [arccos (1 — J%C’—):I C(4 — LC) (30)

A comparison of (29) and (30) shows that the maximum deviation on
the tapered bend is considerably larger than the maximum amplitudes
of the undulating beam after it has left the bend. The maximum devia-
tion on the tapered bend is larger than the maximum amplitude of the
undulating beam leaving the bend by a factor of roughly FzDC. The
taper has the effect of canceling some of the oscillations which build
up in the bend.

Equations (29) and (30) show that the amplitudes become infinitely
large if LC = 4. This failure to guide the beam around a bend is not
apparent from (28) for the circular bend. In fact, a beam which enters
the circular bend on the axis of the incoming waveguide tangentially to
the circle does not experience such a catastrophe. However, we see
from (18) or (19) that this geometry is rather unique, since in general
both (18) and (19) become infinite for sin 8 = /LC(1 — LC/4) = 0.
Only in the case considered (¢ = a = 0) can the beam be confined even
if LC = 4.

Table I lists the values of .. for the circular and the tapered bend
for the case LC' = 2 (confocal geometry). It is further assumed that
hoth bends lead the waveguide through an angle of § = 90°.

The maximum amplitude of undulation of a ray which has traversed
a tilt is, aceording to (25),

VI2 — alC(L — a)
Tmax = 28 (3])
VILC V4 — LC
and the amplitude after an offset is, from (27)
_ o AVIC (32)

Tmax = —_——
Vi —LC

TABLE I — VALUES OF rmax FOR CONFOCAL (GEOMETRY

D/L

fmax/L

10 100 1000 10,000

Circular bend 1.57 107* | 1.57 107* | 1.57 1073 1.57 10~

on bend 1.57 10~ | 1.57 102 | 1.57 10~ | 1.57 104
Tapered bend | J¢0 "Vbend | 1.60 10~ | 1.60 10~ | 1.60 10-5 | 1.60 10~
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Both of these amplitudes become infinite for LC = 4. However, if the
tilt is placed exactly halfway in between two lenses (2a = L), (31)
becomes 7max = 8L/2 if LC = 4. In this way even a lens-waveguide
with concentrie geometry can be tilted without loss of the beam.
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