Circular Electric Wave Propagation
in Periodic Structures
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TEqn propagation in helix waveguide and spaced-ring guide is ana-
lyzed for frequencies where the wavelength is comparable to the period of the
structures. By conformal mapping the boundary value problem is reduced
lo that of a waveguide with smooth walls but inhomogeneous dielectric lining.
The lining modifies the magnetic field near the well and changes the dis-
tribution of eddy curvents and heal losses in the wires. As frequency in-
creases, the field penetrates more into the space between wires, the eddy
currents are more evenly distributed and the heal loss decreases from its
quasistatic value of, for example, 10 per cent more than in plain waveguide
to only 5 per cent more. Any substaniial increase in heat loss oceurs only
when the wavelength is shorter than the period of the structure. Due to the
pertodicily, there are stop-bands when any nwmber of half wavelengths
just fit into the period. The relative width of the stop-band and its maxi-
mum attenualion per period are independent of waveguide diameter and
period length and are only functions of the relative geomelry of the section.
Because of the stop-bands being so narrow and their attenuation being
quite modest, one may well accept them within the range of operaling
Sfrequencies,

I. INTRODUCTION

Low-pitch helix waveguide closely wound from insulated wire has
been shown to be a good transmission medium for circular electric
waves.! Likewise, spaced-ring or spaced-disk guides have been con-
sidered for TEy, transmission.? All these structures are periodic along
the axis of propagation. In analyzing them, however, the period has
always been assumed short compared to the wavelength of propagation
and the periodic structure then replaced by an anisotropic but homo-
geneous model.?-®

Recently, measurements have indicated that the TEy loss is low
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enough at very high frequencies — perhaps up to 300 ge — for the helix
waveguide to be operated there.” At these frequencies the period could
no longer be assumed to be short compared to the wavelength. Further-
more, a detailed study of the optimum jacket for most efficient unwanted
mode absorption over wide frequency bands has indicated that the
helix wire diameter and spaeing should be nearly a third of the wave-
length at the upper band limit.® Both these results point out the need
for a more accurate analysis of circular electric wave propagation in
periodie structures, taking into account a period comparable to the
wavelength of propagation. It is to be expected that the distribution
of electric surface currents around the helix wires or rings and disks
will depend on frequency. The losses associated with these eddy cur-
rents will therefore also depend on frequency. I'urthermore, a stop-
band of propagation is to be expected when the wavelength becomes
half the period of the structure. Both the eddy current losses and the
width and height of the stop-band will be studied here.

II. MATHEMATICAL MODELS FOR PERIODIC STRUCTURES

2.1 Spaced-Ring Guide

Helix waveguide for TE, transmission is of very low pitch. For pres-
ent purposes the pitch may be neglected entirely and the helix wave-
guide replaced by a spaced-ring guide. Furthermore, the dielectric
material in between the wires and the lossy structure surrounding the
helix are of very little influence on TEq propagation. They and the
helix piteh may be taken into account separately.*¢ The spaced-ring
structure of Fig. 1 embedded in a homogeneous and isotropic medium
will be used as a model for the present study. While this model with
rings of round cross section refers in particular to helix wires of round
cross section, it may readily be modified to refer to other wire cross
sections or to other spaced-ring and spaced-disk guides. The general
method of analysis will always be the same.

Dimensions and coordinates (x,e,y) in Fig. 1 are chosen with respect
to a mean radius a of the rings. The structure being periodic, it suffices
to consider a section I/1I/III/IV of the guide. Because of symmetry
even only one-half (I/I1’/III'/IV) of this section may be considered.

2.2 Round Waveguide with Inhomogeneous Dieleetric Lining

2.2.1 Maxwell’s Equaltions

Corresponding to a circular electric wave in round waveguide, the
electromagnetic field in the spaced-ring guide will be assumed to have
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Fig. 1 — Spaced-ring guide.

only components:
E, H, H:.
For perfectly conducting rings the tangential component FE, of the

electric field and normal component H, of the magnetic field vanish
on the surface of the rings

Eb = Hn = 0. (1)

It is therefore expedient to use orthogonal and curvilinear coordinates
which have the conducting boundaries as coordinate surfaces. Wire
radius and spacing in practical structures are much smaller than the
waveguide radius

b < a, ¢ K a. (2)

The curvilinear coordinates should therefore approach rectilinear co-
ordinates as the distance from the wires increases. The coordinate
ap may be assumed rectilinear throughout.
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III

WAVEGUIDE AXIS

Fig. 2 — Section of spaced-ring guide in Z plane with curvilinear coordinates
w and v.

Irig. 2 shows a basic section 1/11'/111”/fV’ of the spaced-ring line
in the (x,5) plane. The curvilinear coordinates are indicated by w« and v.
Regarding = and y as real and imaginary coordinates in the plane of

the complex variable,
Z =z + jy,
the curvilinear coordinates » and » may be regarded as real and imagi-
nary parts of the complex variable
W(Z) = ula,y) + jo(a,y). (3)

The transition from Z to W constitutes a conformal transformation.
W being an analytic funetion of Z, the Cauchy-Riemann equations are
satisfied

ox _ dy dx _ a9y (4)

ou v’ v ou

and the derivative may be written
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The elements of length in the Z plane of Fig. 2 are

o (24 52)

du (au T+ u G @
| du* | = M du )
|dv*| = M dv.

The metrical coefficients of the curvilinear coordinates u”, ¢, * follow
from
h-ut = ]1[, h,p = 1, hut = M. (9)

Maxwell’s equations written in the curvilinear system are

d .
@ (Eq,) = pruﬂ’IH,,o

d .
E» (Ey) = —jwpoM Hys
(10)
d IV _ Vern
o (MH ) P (MH.») = jueeM'E,
a d
T (MH,) + T (MH )y = 0.
Substituting
H,= MH., H,= MH,, e = M (up) (11)

Maxwell’s equations for a fictitious W plane of rectilinear coordinates
u and v obtain

a . .
(T}E (E'w) = J‘-"#DHv
a .
p (E,) = —jwuH,
(12)
ad i) .
3u (I, — o (H.) = jJweekl,

a d
% (H,) + a_u (H.) = 0.
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Comparing (10) and (12), the problem of finding the electromagnetic
field between curved boundaries has been transformed into the problem
of finding the field between straight and parallel boundaries in a me-
dium of varying permittivity e(w,»). The transition from one plane
to the other ensues by conformal mapping. The analytic function of
this conformal transformation by (6) and (9) determines the per-
mittivity e(au,»). This method was first developed by Routh,” who stud-
ied the vibration of a membrane of irregular shape by transforming it
into a rectangle. The method was first applied to electromagnetic bound-
ary value problems by Meinke' and Rice."" While in the more general
field problem a fictitious inhomogeneous medium of anisotropic char-
acter has to be dealt with, at present, due to the axial symmetry
(8/d¢ = 0) of the fields, the fictitious inhomogeneous medium is iso-
tropic.

2.2.2 Conformal Transformation

A suitable analytic function to effect the desired transformation
approximately was found by Richmond” and used by Morrison" to
calculate the heat loss of circular electric waves in helix waveguide.
The function is in parameter form

_2(b/a) [ AaVE—1 Ve + 1] .
7 = (1 0 tanh Vi + ¥ tanh Vi, (13)
' ﬁb/ﬂt | =1 2§’+V""l
W = o I:&m () + sin (——p T3 )] (14)

The plane of the complex variable Z = & 4 jy is by means of an auxil-
iary variable { = £ 4 jn mapped onto the plane of the variable
W = u 4+ jv. The parameter ¥ is the smallest positive root of

sin ,:%f (1+ \I')] = tanh[ ( + )] (15)

and v is given by

» = coth’ [2b (1 + )] cot? [’Zi; 1+ \If)]. (16)

The derivative of the above analytic funection is

ﬁ ; 2 VE+H 14+HTVE (17)
aw (1+‘I’)\/r+1+v;+v

The transformation of the Z plane boundaries via the ¢ plane into
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straight lines of the W plane is shown in Fig. 3. The waveguide radius a
has been set equal to one and is the unit of length in the Z and W planes.

The transformation by (13) and (14) is only approximate and will
give cireular contours (D,C,B) in the Z plane only if e is somewhat
smaller than b, For ¢/b — 1 the transformation will be into a square
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Fig. 3 — Conformal transformations by (13) and (14).
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contour. For ¢/b < 0.5 the largest deviation from a eirele is 2 per cent
of ¢. In a closely wound helix the wire spacing will be determined by
its insulation. Presently used helix wires have ¢/b = 0.70 --- 0.85.
The maximum deviation from a circular radius is here between 8 and
20 per cent.

Fig. 4 shows three contours for different ratios ¢/b. They are obtained
from (13) by letting

-1

IIA

E<+1, n= =0

The resulting equations are
b

2-v —
- +1
x = sgnln) —2— tanh™" £
14+ ¥
b (1 + ¥) E4 v (18)
9 Y -
y=_a——tﬂ,l'l-l ﬂ
(1 + ) v+ &

The deviations from a circular contour will be neglected subsequently.

The inverse trigonometric and hyperbolic funetions in (13) and (14)
are multiple valued. To obtain the rectilinear boundaries in the W plane
a suitable combination of principal and other values of these functions
has to be chosen (see Appendix, Section A.1).

In Fig. 5 a number of elementary cells BDEF of Fig. 3 have been
arranged back-to-back to form a round waveguide filled with periodi-
cally varying permittivity. The waveguide is bound by the conducting
surface BCD of the rings transformed into a straight contour.

Asymptotic values of the permittivity are obtained from (17).
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Fig. 4 — Wire contours according to (13) and (14).
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Fig. 5 — The smooth-wall waveguide formed by arranging transformed sec-
tions of Fig. 3 back-to-back,.

Moving from the spaced rings towards the center of the guide:

. |adz |
_— == 1-
Jm | aw (19)
Moving outwardly in the opposite direction
. dz [*
i | aw (20)

According to (19), inside the guide sufficiently far from the rings, the
permittivity is uniform and as in free space.

Because of (2) it differs from free space only close to the walls and
may therefore be regarded as a thin dielectrie lining.

According to (20), at A H in Figs. 3 and 5 the permittivity is infinitely
large. Because of (11) the region outside the rings is therefore practi-
cally free of magnetic fields.

The mathematical model thus obtained for the spaced-ring guide is a
closed round waveguide with inhomogeneous dielectric lining. The
permittivity of the lining may be found from (14) and (17) anywhere
in the W plane.

2.3 Approximate Model for Closed Structures

As it is, the present model is not suitable for perturbational analysis
of loss and wave interaction. Such perturbational analysis requires the
relative permittivity to be distributed in the guide such that
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lff (M —1)ds K1
S JUs

for any cross section. In cross sections containing the pole A,H of per-
mittivity this condition will not be satisfied. The pole at 4,H is of such

a nature that not even the integral f f M? du dv over an area in the

W plane including A4,H is finite.

Actually, one should expect such poles in the transformed structure.
The original structure extends to infinity in eross-sectional direction.
Circular electric waves in the original structure cannot be lossless nor-
mal modes but must be leaky waves, since there is some leakage of
power, however small, through the gaps between the helix wires. The
transformed structure, on the other hand, is bound by conducting sur-
faces and cannot support leaky waves.

In order to get around this difficulty and still meet the objectives of
this analysis, the original structure is according to I'ig. 6(a) surrounded
by a magnetically condueting shield (e = 0, u = =) close to the wires.
In the transformed structure of Fig. 6(b) the shield will appear as a thin
wire of magnetic conductor located at A,H. This magnetic wire, being
so very thin and so close to the wall, will not change the field distribu-
tion very much. It will only displace the electric field somewhat and
modify the magnetic field so that it has no tangential components on
its surface. For all wire spacings of practical interest this magnetic wire
will be of so little influence that it may be neglected entirely and the
small cross-sectional area of the wire be assumed to havee = u = 1.

The mathematical model thus obtained no longer represents the open
structure of spaced wires but is an approximate representation of the
magnetically closed structure. It will serve well to calculate eddy cur-
rent losses and stop-bands but will not show the leakage of power through
the gaps. The latter has been calculated approximately elsewhere.?

In all subsequent caleulation the magnetic shield will be assumed at
¢ = b. The corresponding small area near A,H in the transformed struc-
ture will be assumed to have e = p = 1 and will be excluded from inte-
grations over the W plane.

III. HEAT LOSS IN HELIX WIRES

3.1 The Magnetic Field near the Conducting Surfaces

In round waveguide with smooth walls a dielectric lining will modify
the tangential magnetic field of circular electric waves near the wall.
In general, the field will be increased and will therefore add to the heat
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Fig. 6 — A magnetic shield (a) transformed into thin magnetic wires (b). For
c¢/b = 0.5 and e/b = 1 the wire size is s/b = 0.015 and its distance from the wall
is d/b = 0.009. For larger values of ¢/b, wire size and spacing decrease rapidly.

loss of circular electric waves. In helix waveguide this effect has to be
taken into account in addition to the eddy current loss of the current
distribution around the wire.

The change in magnetic field at the wall due to a lining, the per-
mittivity of which is only a function of guide radius, has been ecalcu-
lated before'

AHH
Hu()

= e fo “1etr) = 1a — o dr. (21)

H.pis the longitudinal magnetic field at the smooth wall of a waveguide
filled with a medium of uniform wave number w\/ e . The relation
may readily be generalized to take into account also a z-dependence
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of permittivity (Appendix, Section A.2). Introducing the free-space
wavelength
2T
WV Uo€o

and coordinates » and » = (1/a) (@ — r), the u-dependent change in
magnetic field may be calculated from

AH, 2 fa\ [
. = 47’ (X) j; (M (up) — 1lvdo. (22)

A =

According to (11), the actual magnetic field H, tangent to the con-
dueting surfaces of the spaced-ring guide can now be written as
(23)

[72]...
_ mv‘(h_m {1 + 42 (.;E)z fu M) — 1 dv} = f(u).

No closed-form solution of the integral in (23) is available. Evalua-
tion of (23) requires (14) to be solved numerically for £ and ». M may
then be computed from (17). Representative distributions of magnetic
field around the wire surface are plotted in I'ig. 7. ¢, is the azimuthal
angle of a slightly deformed wire cross section.

At low frequencies the space between the rings forms a waveguide
below cutoff for circular electric wave fields. The magnetic field decreases
rapidly with inecreasing ¢, . For a/A — 0 the quasistatic approximation
obtains from (17) with

H,. _|dWw

Hy _ |dW ou _ . 0u
Hu dZ

= | grad () |. (24)

As the frequency increases the magnetic field penetrates more and
more into the space between the rings. Eventually, at very high fre-
quencies substantial circular electric wave loss will result from radia-
tion through the rings.

3.2 Heat Loss at High Frequencies

Assuming the skin depth 8 to be small compared to the curvature
radius of a conductor surface, the power P, lost as heat through a sur-
face F with conductivity ¢ may be found from the tangential magnetic
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field according to
P, = o= [ |1} ar. (25)
206 Jp

In a waveguide section of length 2b and radius ¢ with uniform magnetic
field H. at the walls, the power lost as heat is

on = w Huoza.z. (26)

ai

The power lost in one section of the spaced ring guide is

2 ) s f+(bf2a) o
P, ==—H, == | du.
od 0@ L orzay LHuo “

The attenuation constant is proportional to these power losses. The
ratio of attenuation due to heat loss in the spaced-ring guide to attenua-
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Fig. 7 — Magnetic field at the wire surface: ¢/b = 0.70.
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tion in plain waveguide is therefore

which by substitution of v = (b/a) % is independent of b/a

Ll Lo ]
£ e (§ fO(M Dodv| da.

+(b/2a) a\? \ 2
1+ (8) [ ar -
P b f(b,'za) .M"[ T (?\) 0 ( )vdu:l du

(27)

As in (23), no closed-form solution of the integrals is available. From a
numerical evaluation of (27) representative curves of loss ratio versus
frequency are plotted in Fig. 8. From its quasistatic value at low fre-
quencies the loss ratio decreases a few per cent with increasing frequency.
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Fig. 8 — Heat loss of TE; wave in helix waveguide compared to heat losses

in smooth-wall waveguide.
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There is a minimum of loss ratio when the free-space wavelength is
nearly twice the period (A & 40). This minimum in loss ratio is due
to more evenly distributed currents around the wire surface, when the
magnetic field penetrates more into the space between the wires.

Any substantial inerease in loss ratio will only oceur when the free-
space wavelength is less than the period of the struecture (A < 2b).
But here the present approximations are beginning to fail.

At low frequencies for a/A — 0, heat loss in the quasistatic case ob-
tains from

P, _a [-Hb.'ﬁﬂ) 1
I—J; = ‘E i) A—P du. (28)
The integral in (28) has been evaluated by Morrison:"
P,, 1 — Ao (sin—l ‘I’,K)
Py ([+‘I'){ V1 — ¥
(29)

+ cos [72% (1 + \Il):l cot li;r—g 1+ ‘If)] K,,.(\;)}

where

2 1 T
K = 1_5005[% (1+\I’)].
Here K(«) is the complete elliptic integral of the first kind and modulus
&, Ao (B,x) is Heumann’s lambda function.

1V, PROPAGATION CHARACTERISTICS OF SPACED-RING SECTION

4.1 Transmission Line Equations

Wave propagation in the mathematical model of round waveguide
with periodically inhomogeneous lining may be represented in terms of
normal modes of the round waveguide without lining. The effect of
the lining is to introduee coupling between these normal modes.!?

Interaction will be strongest between those modes the beat wave-
length of which is near the period of lining variations. As the frequency
increases, such interaction will first oceur between forward- and back-
ward-traveling components of the circular electric wave when the
guide wavelength is near twice the period length of the structure.
When it is exactly twice this period length, reflections from each section
will add in phase and propagation will suffer from destructive inter-
ference. Interaction with all other modes may be neglected in this
range.
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Coupled line equations for forward-traveling components 4 and
backward-traveling components B of one and the same wave are written
aSlﬁ

‘E_A = —y()4 — k(z)B
(30)
B _ b4 ++(@)B.
2

A and B are the amplitudes of traveling waves normalized with respect
to power. y(z) is the propagation factor v, of the wave in empty
waveguide modified by the presence of the lining’

wzyneaA (2) . (31)

'Y(Z) = Yo — Ive

k(2) is the coupling or reflection coefficient between forward- and back-
ward-traveling components of the wave"

k(z) = wL;ﬁ_(il (32)

A(2) depends on the permittivity of the lining and its distribution
over the cross section as well as on the particular wave under con-
sideration. For Ty with cylinder coordinates (r,e,z)

AG) — f 2[e,(r,z) — ;]2(;1)(—— r)r dr

The relative permittivity differs from unity only close to the wall.
The Bessel function in (33) may therefore be replaced by its linear
approximation at its first zero pu -

In normalized eoordinates u and », one obtains instead of (33)

(33)

Alw) = —2p0° f 1 [M*(up) — 1] (1 — v) dv. (34)

The coupling coefficient may now be written as

ah(z) = e [ - ur 0 g

W0

where
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vo =2 — e (36)

and % has been replaced by z.
Sinee | k | << |v | the modification of v from (31) may be neglected
in (30). Thus simplified, the transmission line equations written in

matrix notation are
A — —k(z) [ A
[ Il O B (37)
dz| B k(2) ¥ B

(A" = [y(2)] - [1). (38)

In Fig. 9 the coupling coefficient %(z) is plotted for representative
values of ¢/b. As ¢/b — 1 the coupling disappears because of deformation
of the round wire into a square eross section by the conformal trans-
formation.
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Fig. 9 — Coefficient of coupling between forward- and backward-traveling
TEw waves in spaced-ring waveguide,
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4.2 The Transmission Matrix

The matrix [y(z)] in (38) is almost diagonal for all values of .
An approximate solution to (38) is therefore easily found by iterative
integration. Thus without specifying any initial values the general
transmission matrix of (38) will be caleulated.

Formally integrating (38}, one obtains

A
4] = [4O] + [ B@IAE)] (39)
in form of an iterative procedure

[Aa(D)] = [A(0)] + f ly(2)] [4.(2)] de. (40)

After two iterations, as shown in Section A.3 of the Appendix, a suitable
approximation is found for the transmission matrix [7'] in

[A(0)] = [T]-[A(0)]. (41)

Ty Tn
(7] = [ :I (42)
Ta T

i z
—l _ vz Iy =2zt ’
I:] fu E(2)e fﬂ k(z)e dz dz]

I
Tw = —e" f k(2)e™ dz
1]

The elements of

are

Tll =

()

(43)
Ty

1
e"’lf k(z)e™ dz
[i]

4 z
T = €" [1 — f k(z)e ™" f k() e de’ dz].
0 0

Substantial interaction between forward- and backward-traveling
components A and B will be found only in a narrow band of frequencies
centered about A = 4b. Of all the Fourier components contained in
k(2), only the component %, of first order will contribute to the elements
of the transmission matrix at frequencies near A = 4b. Replacing %(z)
in (43) by this Fourier component according to
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k(z) =~ N Ik, cos (%z)

where

J 4x? pn

G -6)

N:

is therefore indicated.

773

(44)

(45)

The integrals in (43) have been evaluated with this substitution and
¥ = a 4+ jB. In case of perfectly conducting walls for a period 2b cor-
responding to one section of the spaced-ring line the transmission

matrix is

[T] R—.f?ﬁl'i (l _ (f“) _e—f?ﬂb 6'12
P+j?;3b (--,21 B+J"Zﬁb (1 _ 022)

where

_ (i 45252 + qﬂ o P2 (43252 + Qz) :

Cu = (e b [p 5 — | ~ 7280 (4F — =)
—py 4ﬁ'2b2 + qz-z . P2 (43202 + qg) !

=@ -1 [f’ 7 38b (46 — =)

4320% — =* T

. 4,8252 + qﬂ_
+j4f8b
Cg = (™ — 1) [Pm_

B 468°° + qg:l
(e 1) [15' Py

Co

2
_ Pu kl

2

Il

b
q 2E.E'm-

(46)

(47)

(48)

(49)

In case of 28 = x/b when the section is just half the guide wavelength

a2 22 2 2 22
(= _%l[”’r +q:| ij&[ﬂ]
22 2, T 47 T

2 2
Chz = jp l:%] .

o 21

(50)
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4.3 Transmission Factor

To evaluate wave propagation in the periodic structure, its normal
modes should be considered as they are composed of forward- and back-
ward-traveling components of modes in plain guide. The normal modes
propagate along the structure, changing their fields only by a constant
factor from section to section. This transmission factor ' of normal
modes is found by looking for solutions

A(l) = GA(0)
B(l) = GB(0)

of (41). Substituting (51) for A(l) and B(l) into (41), a homogeneous
system of linear equations obtains which ean have nontrivial solutions
only for

(51)

det ([T] — QU] =0 (52)

where [[/] is the unit matrix. Values of ¢ solving the characteristic
equation (52) are

¢, = % [Tn 4+ To = V(Ty — Tw)* + 4T Ta). (53)
2

They are eigenvalues of the transmission matrix [7] and transmission
factors of normal modes of the periodic structure. Substituting from
(47), (48) and (49) for the elements of [7]:

2,2 272
G; = cos (28h) + 4p° [ig,,?T—_l_%] sin® (28D0) cos (48b)

) s ne 48" i
— p—__——(ig:bg jrg)) sin (28D) =+ {4 [p Z;,_;—m] sin” (28b)
4'8‘2b2 + q?.

4-.‘5232——«2] sin? (28b) cos® (46D)

— sin® (260) — 4 [p
4 9.9 o4
_ p4sb + q) .
130 (450 — 72)° cos” (26b) 50)

2; 2 272
+4 [p %H] sin® (26b) cos (46b)

B p2(4,82b2 + qz)z
2pb(45%* — =?)

47492 24 4 L
+ 2 %&ﬁﬂl%—uzi% sin (48b) cos (435)} .

sin (48b)
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Since for b << a, | p | < 1, also, the terms of second order in p may be
neglected. The transmission factors reduce to

e 4:.82b2 + q2 2 C o
Gé = COS (281)) + {4 [_’pm SN (Zﬁb)

45°p* e
+4 l:p %:’ sin® (28b) cos (48b) (55)
2048%2 2y 2 4
s + ) .
TR — o (4;%)} :

In case of 280 = =

2
G'1=—1:Fp(1r+l)
2 m™

b\? (56)
- 2 2k, (E) Pt]l4
= —1 %+ 1T Po1 + .
2 T

4.4 Fyaluation of the Transmission Factor
Writing ¢ = ¢! attenuation factor
20'b = In | G| (57)
and phase factor
28’0 = 4G (h8)

of one section of a spaced-ring guide obtain.

Frequency ranges for which 7 is real constitute stop-bands of the
periodic structure. There is no phase change from section to section
in stop-bands, but only a decrease in amplitude by . Stop-bands are
characterized by a positive quantity under the square root of (55).
Outside of stop-bands this quantity is negative. The stop-bands ex-
tend to the zeros of the square root.

Since | p | < 1, the square root will be zero only when |sin 28b | < 1
also; letting 286 = = — 0 with | ¢ | < 1, (55) may be approximated
near the stop-band by

G~ —1+ Vit — . (59)

Within the stop-band for

2
po ky

7] =
01 < lpr| = |2
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the attenuation constant is:
ro_ o por*kr\?
“4= 3 "/ ( 2 ) — 6

4 b/a

for waves sufficiently far from cutoff, the deviation 6 from the half-
wavelength condition may be expressed by

6“1(1—@)
A

and the attenuation constant be written

o a ﬂlfz_z( _4_1’)2
aa—2b1/( 2) w(1-2), (60)

For 8 = 0 the center frequency of the stop-band obtains, corresponding

to
a a\? por\*
rd/(@)Jf(ﬂ

With

(61)
~ when E(( 1
~ 4 a !
Here the attenuation constant is
2
da = pol hma (62)

4b/a

With 6 = = (po'kyr)/2, for the stop-band limits the relative width of
the stop-band is

A

=2 = pu'la . (63)
w
In the present approximation, neglecting heat losses in the conductors,
there is no attenuation outside of stop-bands.

Taking these heat losses into account, 26b in (55) has to be replaced
by 26b — j2ab, where
P,

a = on 17—

Pﬂﬂ

according to Section IL. Since 2ab < 1, the attenuation constant at
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the ecenter of the stop-band is in this case

' poiki(r — dab)a
ad = 4:b/(1 . (64)

The numerical evaluations in Section IT and plots of Fig. 8 show
a & ap well beyond the first stop-band. Since 4ab << 7 also the stop-
band attenuation and width will not be affected noticeably by the finite
conduetivity of the wires.

For numerical evaluation of stop-band attenuation and width the
Fourier coefficient &, according to (44) has been computed and plotted
in Fig. 10 versus ¢/b. k, is larger the smaller the ratio ¢/b. Fore — b
the present conformal transformation is into square wires without
spaces. In this case &, — 0. But for ¢/0 < 0.80 the approximation of
round wires is satisfactory.

Stop-band attenuation 2a’b per section and relative stop-band width
Aw/w according to (62) and (63) are both proportional to k. Fig. 10
has therefore been provided with additional scales to also represent
these two quantities as a function of ¢/b.

X107 x1077 x10-8
1751 12
1.1 \\ = 2.50
1.50 |- N,
10 \ —H2.25
09 AN
\ J2.00
125
08 AN
Aw K, \ -1.75
w ’
o7 N 2bex
1.00 |-
\ — 1.50
06 AN
\ —1.25
075 g5 N
\ 1.00
04
0.50 - |
03 0.75
050 055 060 065 070 075 080 085
c
b

Fig. 10 — First-order Fourier coeflicient of TEo coupling in spaced-ring guide;
additional scales indicate stop-band width and attenuation.
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It is most important for practical purposes that the stop-band at-
tenuation reach only quite modest values and that the stop-band be
very narrow. 2a’b and Aw/w being only functions of c/b, the absolute
quantities o' and Aw of the stop-band will both be smaller the larger
the length 2b of the section, provided of course one stays within the
range where present approximations hold.

Take for example a helix wire spaced by 2b = 0.15 mm with ¢/b =
0.75, corresponding to present design practices.” The stop-band would
occur at A = 0.3 mm, corresponding to / = 1000 ge. The width Af =
925 ke and attenuation o' = 35 db/mile of the stop-band would not be
objectionable because it is well beyond the frequency range where the
helix waveguide will be operated.

Helix wires spaced by 2b = 0.3 mm with ¢/b = 0.75 corresponding
to an optimum design for wideband unwanted mode absorption® would
have a stop-band at 500 ge of width Af = 462.5 ke and attenuation
o = 67 db/mile. Both quantities are smaller but also not objectionable
since still outside the operating range.

If, however, no other limitation is imposed on the wire geometry but
the space between to be cutoff for circular electric wave fields at the
highest operating frequency, then with ¢/b = 0.75 and ¢ = 3 for the
space between wires:

2(b "1_?\
(“‘C)<2\/g min

2 < —2—?\
'\/E_,— min

To utilize the full range of mm-waves Amin = 1 mm. Then 2b = 1
mm will keep the space between wires sufficiently below cutoff.

The stop-band will now occur within the operating range at f = 150
ge but it will only be Af = 139 ke wide and have the attenuation o' =
20 db/mile. Both values are small enough not to be objectionable.

V. CONCLUSIONS

Helix waveguide, spaced-ring or spaced-disk guides or other periodic
structures for circular electric wave transmission may well be operated
close to or beyond the frequency where the wavelength of propagation
is twice the period of the structure. The nonuniform but periodic struc-
ture of the conducting boundaries in such waveguides will cause an
increase in wall current losses due to nonuniform distribution of the
eddy currents. From its quasistatic value at low frequencies this distri-
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bution will become more even as the frequency increases and the
magnetic field penetrates more into the grooves or spaces between
wires, rings or disks. The relative loss with respect to smooth wall guide
will thus decrease by up to 5 per cent before it shows any substantial
increase when the wavelength of propagation becomes smaller than the
period of the structure.

The periodic structure causes a stop-band in circular electric wave
transmission, when the wavelength of propagation is twice the period
length. The stop-band attenuation is, however, quite modest and, what
is even more important, the stop-band is very narrow. The relative
width of the stop-band and the stop-band attenuation per section are
independent of waveguide size and frequency and are functions only of
the ratio of wire size to wire spacing or of corresponding dimensionless
factors deseribing the geometry. Deviating from present design prac-
tices, one may therefore make the structure of relatively large period,
accepting a very narrow stop-band within the operating range. In 2-inch
1.D. helix waveguide of optimum design for unwanted mode absorption
the wire size is 2¢ = 0.225 mm and wire spacing 26 = 0.300 mm. The
stop-band occurs near 500 ge; its width is Af = 462.5 ke and maximum
attenuation «' = 67 db/mile. Keeping the ratio ¢/b = 0.75 the same,
but increasing the spacing to 260 = 1 mm, the stop-band will occur at
150 ge but will be only 139 ke wide and have a maximum attenuation
of 20 db/mile.

APPENDIX

A.1 Conformal Transformation

Parameter ¥ of the transformation was found for several values of
¢/b by solving (15) numerically using Newton’s formula. Subsequently
» was calculated from (16). Both quantities are listed in Table 1. Also
listed in this table for all values of ¢/b is the largest deviation of the

TasLe I
/b W v fmax/¢ Py/Py
0,5 0.653 257 600 1 1.155 982 500 1.018 1.225
0,6 0.528 077 8106 1 1.034 531 436 1.039 1.170
0,7 0.391 940 793 8 1.003 248 064 1.078 1.126
0,8 0.247 192 783 0 1.000 024 889 1.149 1.082
0,85 0.176 268 291 6 1.000 000 146 1.199 1.060
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contour DCB in Fig. 3 from a circle as it is found from (18) and

Tmax __ T - Yy 2
¢ [1/ [(c/b)(b/a_>] + [;(c/b)w/a)] ]m (65)

TFor further reference the loss ratio P,/P, in the quasistatic case
according to (29) is likewise listed in Table I.
The area in the Z plane to be mapped on to the W plane is multiple-
connected. Hence care has to be taken to select suitable values of the
multiple-valued funetions in (13) and (14). From (14)

2%“ (u + jo) = sin™ (£) + sin™ (x) (66)
2ttt v —1
X= v+1 (67)

To obtain rectilinear boundaries in the W plane, principal and other
values of sin”' ¢ and sin~' x must be combined. Suitable combinations
are listed in Table II.

Tasre 11
Phase range of X = Re [sin! ({)] ¥V = Im [sin™ (¢}
0 < 4 < 7/2 /2> X >0 Y >0
/2 < L <7 0> X > —n/2 Y>0
—n/2 < £ <0 > X > n/2 Y >0
—r < L < —7/2 37/2 > X >« Y>0
X = Re [sin™! (x)] Y = Im [sin"? (x)]
0 < 4x < =/2 /2> X >0 Y>0
/2 < 4x < 7 0> X > —n/2 Y>¢0
—7/2 < £x < 0 —2r < X < —3n/2 Yy <0
—r < 4x < —7/2 —5r/2 < X < —2rn Y <o

Of the inverse hyperbolic functions in (13) the principal value is
used throughout, but both values of the square roots of the arguments
are taken alternatively.

Likewise, suitable values of the square roots in the derivative (17)

must be selected as well as in

dZ _ b/a
& " r1+9) [\/r Y/ v+x/r+1-\/r+v] (68)
and

dW _ .b/a

s _Jﬂ[\/r—l-\/wv

1
RV Y o J (69)
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where { = £ 4 j», which are subsequently used in numerically solving
(13) and (14).

Since only areas of the Z plane with y = 0 are being mapped, the
square roots /¢ — 1 and v/ + » in Z({) according to (13) must be
chosen of equal sign in ease of n = 0 and opposite sign in case of 7 < 0.
This choice will insure the proper asymptotic values of | dZ/dW |* in
(19) and (20).

A.2 Magnetic Field and Wall Current of Cireular Electric Waves in Laned
Waveguade

From Maxwell’s equations in eylindrical eoordinates

oH, _ oM.

9 ar = jweeoll,.

For the difference of magnetic field AH = H — H, in lined waveguide
and empty waveguide

dAH,
ar

dAH,

= —jwéo(_EEW - Ewﬂ) + 9z

(70)

may be written.

The radial component H, of magnetic field vanishes at the wall; close
to the wall it is small. In order to find the change in magnetic field at
the wall due to a thin lining (70) may be approximated by

dAH,

(]J‘ = —jw(e - l)EoE,pn (71)

and the change in magnetic field at the wall caleulated from the relative
permittivity e(r,z) and the electric field

Fo = jAuwwpnd o (par :)(?7” (72)

of a eircular electric wave in empty guide,
Substituting for £, from (72) into (71) and integrating

A, = Aduoes [ (e = Dpo i (pur) dr 7. (73)
a
For a thin lining

AH. = flwﬂ,u.u(—opmg-fu(polﬂ-) /; (e — D(a — ) dre ™ (74)
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which, when compared to the magnetic field
Hy = Apo12J o( porr’) e

at the wall of the empty guide, gives

%%'- = wz,uneuj; (e — 1)(55 - T) dr.

The relative change in wall current is given by the same expression.

A.3 Integration of Coupled Line Equations
By substituting
A=, A0) =0), A(l) = o(De™™
B =we™ , B(0)=w(0), B =u(l)e"

for A and B in (37) the following system of equations for » and w ob-

tains:
alv@ 3 0 — k™™ v(0)
?z[w(a} - [ke'“' 0 ] [w(m}' (76)

Integrating according to the procedure (40), the first-order approxima-
tion to a solution is

(75)

2(2) 1 — f k" da 0(0)1
(1]
= . (77)
w(z) f ke ™ dz 1 w(O)J
0
Another iteration results in the second-order solution
v(z) 1 - f ke’ f ke dds | — f ke’ dz
0 0 0
w(z) f ke dz 1 — f ke f ke®™ dz'dz (78)
0 0 0

v(0)

w(0)
which is adequate for present purposes. Replacing v and w by 4 and
B, the transmission matrix is contained in
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o0
B(l)

i z 1
|:1 — f Le*”* f ke 27 dz'dz:l et ] = f ke® dz e
0 0 0
3 1 z ,
f ke dz "' | [1 - f ke f ke*™ dz'dz:l "
0 0 0

0]
B(0) |
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