The ALPAK System for Nonnumerical
Algebra on a Digital Computer —I1I:
Rational Functions of Several
Variables and Truncated Power
Series with Rational-Function
Coeflicients

By W. S. BROWN, J. P. HYDE and B. A. TAGUE

(Manuscript received November 13, 1963)

This 1s the second in a series of papers describing the ALPAK system
for nonnumerical algebra on a digital computer. The first paper, Ref. 1, is
concerned with polynomials in several variables and lruncated power
series with polynomial coefficients. This paper is concerned with rational
functions of several variables and truncated power series with rational-
Junction coefficients. A third paper, Ref. 3, will discuss systems of linear
equations with rational-function coefficients.

The ALPAK system has been programmed within the BE-SYS-4
monttor system on the IBM 7090 computer, but the language and concepts
are machine-independent. Several practical applications are described in
Ref. 1.

This paper is divided into five sections. The first deals with basic con-
cepls, the second defines canonical forms, and the third describes ALPAK’s
greatest common divisor algorithm. These three sections do not presuppose
any knowledge of computers or computer programming. Section IV de-
scribes the use and the implementation of the algebraic operalions relating
to rational functions of several variables and truncated power series with
rational-function coefficients. The reader of this section 1s assumed to be
familiar with the basic coneepls of computer programming and with Ref. 1.
Finally, Section V discusses very briefly some of our plans and hopes for
the future.
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I. SUMMARY OF THE AVAILABLE RATIONAL-FUNCTION OPERATIONS

1.1 Introduction

The ALPAK system is a programming system for performing routine
manipulations of algebraic expressions on a digital computer. The
system operates on rational functions of several variables and on trun-
cated power series in several variables with rational functions of several
other variables as coefficients. It is capable of performing the operations
of addition, subtraction, multiplication, division, substitution and
differentiation. In the present version of the program the coefficients
of the rational functions are integers, but the change to coefficients
from any other integral domain can be made without major program
reorganization. ALPAK is also capable of solving systems of equations
linear in certain variables with coefficients which are rational functions
of other variables (see Ref. 3). The ALPAK system as described in this
paper has been programmed for the IBM 7090 computer.

1.2 Input-Output

Rational functions can be entered into the machine from punched
cards, and the output can be printed and/or punched. The polynomial

P(a:,y,z) = 81@/22 + 2:ry"‘z2 — 10z%y2?

can be entered into the machine by punching the following array of
coefficients and exponents one term per card:

8 1,21
2 1,2,2
—-10  3,1,3

0
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The zero coefficient is an end-of-polynomial signal. The subroutine
which reads these cards must have access to a polynomial format state-
ment (previously read from cards) containing the names of the variables
and the number of bits to be allocated for the exponents of each. One
full word (35 bits plus sign) is allocated for the coefficient of each term,
thus permitting coefficients up to 2% — 1 in magnitude. Rational func-
tions which are not polynomials are entered by punching the numerator
and denominator polynomials successively and calling the rational-
funetion reading subroutine.

The punched and printed output consists of arrays of coefficients and
exponents similar to those that are accepted as input. Input and output
are accomplished by simple commands such as

RFNRDF FMT read format statement FMT
RFNRDD R, FMT read rational function R
RFNPRT R print rational function &.

1.3 An Example of the ALPAK Language

The simplicity of ALPAK programming is illustrated by the following
example. Suppose rational functions A, B, ¢, and D and a format state-
ment FMT have been punched on cards, and we wish to compute and
print the rational funetion

F = (AB/C) + D,

where the asterisk denotes multiplication.
The required program is

RIENBEG 10000 begin (reserve 10000 words of storage
for data and working space)

RFNRDF I'MT read polynomial format statement FM T
from cards

RENRDD AT'MT read polynomial A from cards

REFNRDD B,FMT read polynomial B from cards

RFNRDD C,FMT read polynomial €' from cards

RFNRDD D FMT read polynomial D from ecards

RFNMPY FAB replace F' by AxB

RFNDIV F,F,C replace F by F/C (C must not be
Zero)

RFNADD FFD replace F by F + D

RTNPRT r print F

TRA ENDJOB go to ENDJOB.
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II. CANONICAL FORMS

2.1 Iniroduction

All rational functions stored by the program are kept in a unique
canonical form which is the subject of this section. The read routines
place the input functions in canonical form and all operations leave
their results in canonical form. The uniqueness of the canonical form
ensures that two equal rational functions with the same format are
precisely identical in storage and that, in particular, zero is uniquely
represented.

2.2 Polynomial Canonical Form

A polynomial is always represented as an ordered list of its nonzero
terms. It is convenient to order the terms according to the magnitude
of the first exponent, and to order those terms having the same first
exponent according to the magnitude of the second, etc. The order of
the variables is the order in which they appear in the format statement.

2.3 Rational-Function Canonical Form

A rational function is represented as an ordered pair of polynomials,
namely its numerator and denominator respectively. These must be in
polynomial canonical form, and they must be relatively prime. In addi-
tion, the sign of the numerator must be chosen so that the first term of
the denominator is positive.

III. THE GREATEST COMMON DIVISOR ALGORITHM

3.1 Iniroduction

Since rational functions in eanonical form must have numerator and
denominator relatively prime, the ALPAK program must be capable
of finding the greatest common divisor (G.C.D.) of polynomials in
several variables. This is the essential ingredient in the extension of
ALPAK from polynomials to rational functions. Since each rational-
function operation must leave its result in canonical form, the G.C.D.
operation will be performed very frequently in most programs involving
rational functions.

Let ay, az, -+, a, be a set of nonzero polynomials. A G.C.D. of
ay, as, -+, a,is defined to be a polynomial g such that

(7) g divides each of @;, @2, - -+, @, ; and
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(4i) any polynomial ¢’ that divideseachof a,, a, -+, @, also divides g.
We denote s G.C.D. of ay, a5, -+, @ by (a1,0s, -+, as). Since every
polynomial has a decomposition into primes that is unique up to sign, this
definition implies that a G.C.D. is unique up to sign. In the special case
of integers, the positive value is often referred to as the G.C.D.

The next three subsections discuss the Euclidean algorithm for in-
tegers, ALPAK’s generalization of it for polynomials, and some special
strategies which make the latter more effective. The final subsection
attempts to present a balanced picture of the present capabilities of the
ALPAK algorithm.

Algebraic background relevant to the following discussion can be
found in Chapter 1 of Ref. 2, or almost any other algebra text that
treats polynomial rings.

3.2 The Euclidean Algorithm

The G.C.D. of a set of n nonzero integers can be obtained by a series
of pairwise computations, because

(a‘ly e Jan) = (({ e ((al )a’ﬂ)la's)j e ),a"—l})a’ﬂ)' (1)

The Euclidean algorithm obtains the G.C.D. of two nonzero integers a
and b. Without loss of generality we can assume that both are positive
and that @ = b. By the division algorithm we can write

a=¢gb+c (2)
with

0=Zc<hb (3)
If ¢ = 0, then b divides @, so (a,b) = b. Otherwise the common divisors
of @ and b are the same as those of b and ¢, so (abh) = (be). Since

b+ ¢ < a + b, the process terminates in a finite number of steps.

3.3 The ALPAK G.C.D. Algorithm

We shall consider a polynomial in v variables as a polynomial in one
variable, to be called x, with coefficients from the integral domain of
polynomials in the remaining v — 1 variables. We shall represent these
v — 1 variables by the vector y. If p(z,y) is such a polynomial, then
d.(p) denotes the degree in x of p.

Now let @ and b be a pair of nonzero polynomials. We shall present
an inductive definition of the ALPAK algorithm, to be called POLGCD,
for obtaining their G.C.D. Let v’ be the number of variables in the pair.
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If o = 0, then a and b are both integers and the Euclidean algorithm
is used. Assume POLGCD works for o' < ». We shall define it for v’ = ».
To begin, we write

a(z,y) = a,(y)a" + a1(y)z™ + - + aly)

(4)
bzy) = ba(y)x" + baaa(y)a™ + -+« + bo(y).
Our first task is to rewrite this as
a(z,y) = zf(y)a'(zy)
(5)

b(z,y) = 2°g(y)b'(z,y)

where a’ and b’ are primitive in x; that is, neither is divisible by « or by
any polynomial independent of = except ==1. Clearly, « and 8 are the
largest integers such that z* divides a(z,y), and 2” divides b(z,y); while
J(y) is the G.C.D. of the nonzero ai(y), and g(y) is the G.C.D. of the
nonzero b;(y). Since the a; and the b; depend on fewer than » variables,
our induction hypothesis implies that POLGCD will obtain f and g.
Next we observe that

(ap) = (a%2")(F,9)(a"V"). (6)

(The proof of this depends on the fact that ¢’ and b’ are primitive.) It
is obvious that
2%af) = a7 (7)

where v is the smaller of « and 8. Since f and g depend on fewer than »
variables, our induction hypothesis implies that we can use POLGCD

to obtain (f,g).
We shall now define a subalgorithm, to be called PRMGCD, for

obtaining the G.C.D. of the primitive polynomials a’(z,y) and b'(z,y).
To begin, we write

a(xy) = an' ()" + ans/ (Y™ + -+ + al(y)

Vizy) = b/ (y)x" + b ()2 + -+ + b(y),
where a,/,ay’,b,’,by’ are all nonzero. Without loss of generality we can

assume that d.(a’) = 8.(b"). If 8,(b') = 0, then b’ = b’ = +1,* so
(a’,b’) = 1. Otherwise, we use POLGCD to compute

h = (an'ba"). (9)

(8)

Then we form

RN NN —
c(rc,y)—l:h(y)]a(x,y) [W]b(x,y)x y (10)

* Here we have used the definition of primitivity which is given following (5).
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in which the bracketed fractions are polynomials. If ¢ = 0, then ¢’ =
+b';* so (a'p') = b'. Otherwise, let ¢/(z,y) be the primitive part of
¢(z,y), defined as in (6). Then the common divisors of a’ and b’ are
the same as those of b’ and ¢,* so (a/,)') = (V',¢’). (Note the similarity
of this algorithm to the Euclidean algorithm, which was defined in the
preceding subsection.) By construction

d:(¢') = d.(c) < d.(a). (11)
Hence
3:(b") + a.(c') < d:(a’) + 8:(V), (12)

and so the process terminates in a finite number of steps.

3.4 Spectal Stralegies

From a practical point of view the POLGCD algorithm leaves much
to be desired. As the degree in x is reduced, the coefficients grow. This
phenomenon is vividly illustrated by the following example. It is desired
to find the G.C.D. of the primitive polynomials

—392" + 1252° — 152" — 1350 — 44 ,
f 5 ot _ o (13)
—122" — 892" + 1922° — 6x — 85.
The successive pairs of primitive polynomials produced by the
PRMGCD algorithm are:

—122* — 804" + 1922° — 6z — 85
—16572° + 25562° + 462¢ — 929

1781452° — 3126002° — 12062 + 140845

— 16572 + 25562 + 462x — 929

(—16572" + 25562° 4 462z — 929
52199652° — 6692054z — 5656955
22534970622 — 6961950605z — 4849347485
5219965z° — 6692054c — 5656955

(14)

To proceed farther would require double-precision coefficients, which
are not now available in ALPAK. For polynomials in many variables
this problem is even more acute. If POLGCD were programmed to
handle coefficients and exponents of arbitrary size, the time it would

* Here we have used the definition of primitivity which is given following (5).
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require to find the G.C.D. of two general polynomials in n variables,
each having degrees d,, ---, d, respectively and each having coeffi-
cients of modest size, ean be shown to be proportional to
(")
(1) (15)
(™)
where ¢ & 2.6 is the square of the Fibonacei ratio, (1 + 4/5).

It is apparent that any real solution to the problem of coefficient
growth would require a fundamentally different algorithm. However,
many of the G.C.D. problems which arise in practice exhibit special
properties which can be exploited.

The most important of these special properties is variable independ-
ence. If one of the inputs to POLGCD is independent of one or more of
the variables, then the other can immediately be broken into subpoly-
nomials, and we obtain a set of subproblems each involving only those
variables which both of the original inputs depend on. For example, it
is clear by inspection that the G.C.D. of the pair

22(22" — 172° + 652" — 1442 + 72)
— 3y°(22" — 172" + 66z — 72)

6a' — 412" + 1042 — 1162 + 48
is equal to the G.C.D. of the triple

2t — 172° + 6527 — 1442 + 72
22* — 172" + 662 — 72
6a' — 412® + 1042° — 1162 + 48,

and the POLGCD algorithm will discover this provided that x is the
last variable in the format statement. Unfortunately POLGCD does
not now optimize the order of the variables. If the preceding example is
attempted using the variable ordering (x,y,z), disaster ensues. The in-
puts are viewed as

4z’ — (6" + 342)2° + (51y° + 1302)2
— (198y" + 288z2)x + (216y° + 1442)

62" — 412° + 1042 — 1162 + 48,

and it is easily seen that both are primitive in x. The next two pairs of
primitive polynomials produced by PRMGCD are
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JGJ;‘ — 412° + 1042® — 116z + 48
(18)* + 202)2° — (153" + 1822)a°
+ (539y° + 4522)z — (648y° + 3362)
(45)° + 682)2" — (423y° + 158z)2”
+ (4504 — T62)x + (216y° + 2402)
(18 + 202)2° — (153y° + 182z)a”
+ (59y° 4 452z)x — (648y° + 33062).

The variable independence has now been lost, and the subsequent
pairs will have progressively higher degrees in y and z, and progressively
larger coefficients.

Both POLGCD and PRMGCD test their inputs to see whether
either divides the other. Since a given G.C.D. problem may involve
many recursive calls to POLGCD and PRMGCD, this strategy pays
frequent dividends. POLGCD and PRMGCD also make full use of
the fact that the G.C.D. of the set of terms of a polynomial, and simi-
larly the G.C.D. of a monomial and a polynomial, can be computed
simply and directly.

Finally, we remark that the PRMGCD process is terminated as soon
as the degree in z of either input is zero or one. A primitive polynomial
of degree zero is obviously equal to =1, while a primitive polynomial
of degree one is irreducible. At the last variable level the PRMGCD
process is terminated as soon as the degree in x of either input is three
or less. A quadratic polynomial can be factored, if it is reducible, with
the aid of the quadratic formula. A reducible cubic must have at least
one rational root. A simple change of variable produces a related cubic
which must have at least one integral root, and it is easy to test for this
numerically.

3.5 Concluding Remarks

As we have already stated, the G.C.D. operation is the essential
ingredient in the extension of ALPAK from polynomials to rational
functions. The weakness of the ALPAK G.C.D. algorithm is apparent
from (15). Its strength lies in the fact that most G.C.D. computations
which arise in problems of practical interest have a degree of immunity
from that formula because of their special structure.

As an example we wish to mention the problem of a single-server
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queue with feedback. The computation of the first two moments of the
total time is outlined in Section II of Ref. 1 and in the Appendix of
Ref. 5. We recently obtained the third moment in a six-minute run on
the 7090. This involved solving a triangular linear system of nine
equations in nine unknowns. The equations, expressed as polynomials
in the nine unknowns and five additional parameters, have over 900
terms. The result is a rational function of the five parameters with a
numerator of 200 terms and a denominator of 39 terms. The coefficients
of largest magnitude are 1896 in the numerator and 1460 in the de-
nominator. The degrees are 1, 1, 3, 7, and 9 for the numerator and
0, 0,0, 7, and 9 for the denominator.

IV. INFORMATION FOR THE ALPAK PROGRAMMER

4.1 Introduction

This section is an extension of Section III of Ref. 1. The use and
implementation of the ALPAK polynomial operations are described
there, while the use and implementation of the rational-function opera-
tions are deseribed bere. The loading instructions are unchanged except
that an additional binary deck, called ALPAKS3, must be included for
a run.

A nonpolynomial rational function is stored as an ordered pair of
polynomials, namely its numerator and denominator, as illustrated in
Fig. 1. It consists of a pointer, a rational-function heading, and two
polynomials stored in the usual way (see Fig. 2 of Ref. 1). The rational-
funetion heading contains pointers to the polynomials, which must
have a common format.

Integers and polynomials are always recognized as special cases of
rational functions. If a rational-function operation is used where a
polynomial operation might have been used, the only penalty will be a
fraction of a millisecond of additional overhead.

A rational function can be constructed from its numerator and de-
nominator polynomials by using RFNDIV (divide) or RENFRM
(form). RFNDIV duplicates the two polynomials and constructs the
rational function from the copies. RFNFRM constructs the rational
function from the given polynomials and clears their pointers. RENFRM
has an optional argument which can be used to indicate that the numera-
tor and denominator are known to be relatively prime.

4.2 Input-Output Operations

REFNRDF F read format (a)
F RFNCVF (X,15,Y,21,Z,36) convert format  (b)



PROGRAM STORAGE

ALPAK SYSTEM

DATA BUFFER

R POINTER

F FORMAT

NUMERATOR
HEADING

RATIONAL-
FUNCTION
HEADING
DENOMINATOR
HEADING

T

NUMERATOR
DATA

DENOMINATOR
DATA

|
|
|
|
|
|
|
|
|
|
|
|
|
\

Tig. 1 — A rational function R with format I

RFNRDD
RFNCVD
RFNCLR
RFNSTZ
RFNSTI
RENSTC
RFNSTV
RFNPRT
RFNPCH
RFNPRP
RFNRDP
RFNCVP

R,F
R,F,HN,HD

R

R

R

R,AB

R,X,F
R,CC,(NAME)
R,(NAME)
R,CC,(NAME)
R,F,CC,(NAME)

R,F,HN,HD,CC,(NAME)

A = numerator of constant
B = denominator of constant; if omitted, the denominator is un-
derstood to be one

read data (e)*
convert data (d)
clear (e)
store zero (f)
store identity (g)
store constant (h)
store variable (i)
print (i
punch (k)*

print and punch  (1)*
read and print  (m)
convert and print (n)

* RENRDD reads fwo polynomials from eards, interpreting the first as the
numerator and the second as the denominator of a rational funetion. If a poly-
nomial is to be read by RFNRDD, a unit denominator with a complete set of

zero exponents must be
(denominator) punched
unless a complete set of

rovided. A rational function with a constant numerator
y RENPCH or RFNPRP cannot be read by RFNRDD
zero exponents is added to the numerator (denominator).
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CC = control character for printer
F = format (symbolic address of /for format statement)
HN = Hollerith data for numerator (symbolic address of data)
HD = Hollerith data for denominator (symbolic address of data);
if omitted, the denominator is understood to be one
NAME = alternative name for rational function (not exceeding 21
characters)
R = rational function (symbolic address of pointer)
X = variable (specified in the manner indicated by the last previ-
ous VARTYP declaration. See Ref. 1, Section 3.5).

(a) RFNRDF F

Same as POLRDF. See Ref. 1, Section 3.2.

(b) F  RFNCVF (X,15,Y,21,7,36)
Same as POLCVF. See Ref. 1, Section 3.2.

(c) RFNRDD RF

Read the rational function R from cards according to format F. R is the
address of a pointer for the rational function and F is the address of a
format statement. B must consist of a polynomial numerator and poly-
nomial denominator punched in cards in that order as specified by Ref. 1,
Section 3.2,

(d) RFNCVD  R,F,HN,HD

Same as RENRDD except that the numerator and denominator poly-
nomials are to be found in core in blocks of no more than 12 BCI words
each starting at HN and HD, respectively.

(e) RFNCLR R

Clear the rational funetion . This clears both numerator and denomi-
nator polynomials as well as the R heading if & is not itself a polynomial.
If the I pointer contains zero or points to an idle heading, then RFNCLR
is a no-op.

(f) RFNSTZ R
Same as POLSTZ. See Ref. 1, Section 3.2,
(g) RI'NSTI R

Same as POLSTI. See Ref. 1, Section 3.2.
(h) RFNSTC R,CN,CD
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Same as POLSTC if CD is omitted. See Ref. 1, Section 3.2. If CD is
present, then CN and CD are the addresses of constants which become
the numerator and denominator, respectively, of the rational constant
R = CN/CD.

(1) RENSTV R,X, T
Same as POLSTV. See Ref. 1, Section 3.2.
) RINPRT R,CC,(NAME)

Print the rational function R using CC for the control character of the
first line of print and NAME (not more than 21 characters) for the name.
If NAME is not provided, “R” will be used for the name; and, if CC is not
provided, a minus (for triple spacing) is used for the control character. A
rational funetion not a polynomial is printed by printing the name on the
first line, followed by two polynomial prints with the names “NUMER-
ATOR” and “DENOMINATOR” respectively

(k) RFNPCH R,(NAME)

Punch the rational funetion R on eards using NAME (no more than 21
characters) for the name. If NAME is not provided “R” will be used for

the name. A rational function not a polynomial will be punched as two
polynomials, numerator and denominator in that order.

1)) RFNPRP R,CC,(NAME)

Same as RFNPRT followed by RFNPCH.

(m) RFNRDP R,I",CC,(NAME)

Same as RFNRDD followed by RENPRT.

(n) RIENCVDP R,F,HN,HD,CC,(NAME)

Same as RENCVD followed by RFNPRT.

4.3 Arithmetic Operations

RFNADD R,P,Q R=P+Q add (a)

RFNSUB R.P,Q R=P—Q subtract (b)

RFENMPY R,P,Q R = PxQ multiply (e)

RFNDIV R,P,Q R = P/Q divide (d)*

RIENSST G,F(LISTR) ¢ = F(LISTV  substitute (e)
(LISTV) = LISTR)

* RFNDIV ecan form the quotient of any two rational functions provided the
divisor is not zero. In contrast, POLDIV has a “no divide” return which is used
whenever the quotient is not a polynomial.
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RFNDIF Q,P X Q = aP/oX differentiate  (f)
RFNZET R Skipiff R = 0 zero test (g)
RFNNZT R Skipgf B # 0 nonzero test (h)
RFNEQT P,Q Skipiff P = Q equality test (i)
RFNDUP QP Q=P duplicate i)
RFNCHS R R =—-R change sign (k)

T,G,P,Q,R = rational functions (symbolic addresses of pointers)
X = variable (specified in the manner indicated by the last
previous VARTYP declaration) t
LISTR = list of rational functions.
LISTV = list of variables (specified in the manner indicated by the
last previous VARTYP declaration) f

4.3.1 Notation

In the following descriptions, if B denotes a rational function, we de-
note its numerator by RN and its denominator by ED. In particular, if
R is a polynomial, RD is the constant polynomial 1.

4.3.2 Descriptions

(a) RFNADD  R,P,Q

The inputs P and @ are rational functions in canonical form. First
POLGCD is used to obtain

G = (PD,QD).
Then the polynomials

AN

I

PN+(QD/G) + QN+(FPD/G)

and

Il

AD = (PD/G)%(QD/G)+G

are computed. Note that the parenthesized fractions are polynomials.
Next,

H = (AN,

is obtained and
o _ (AN/H)
(AD/H)

T See Ref. 1, Section 3.5.
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is formed. RN and RD are now relatively prime (the proof of this is an
exercise for the reader), so POLGCD need not be used when placing R
in canonical form.

(b) RFNSUB R,P,Q
RIFNCHS [see (k) below] and RENADD are applied to compute
R="+ (-Q).
(c) RFNMPY R,P,Q
First the funetions
A = PN/QD
and
B = QN/PD

are formed and placed in canonical form. Then
R = AN«BN/ADxBD

is formed. RN and RD are already relatively prime, so POLGCD need
not be used when placing R in canonical form.

() RFNDIV R,P,Q

REFNDIYV is identical to RENMPY except that @ must be not zero and
the roles of QN and @D are interchanged. If Q is zero, the diagnostic re-
mark “ZERO DENOMINATOR” is printed and the job is termi-
nated.

(e) RFNSST G,F(LISTR) (LISTV)

RFNSST is exactly the rational funetion equivalent of POLSST; in par-
ticular, the format constraints on /' and ¢ are identical. If F is a poly-
nomial, the rational functions of LISTR are substituted for the varia-
bles in LISTV term-by-term to accumulate the final result. If F is a
rational function, this procedure is applied to the numerator and de-

nominator polynomials of F in succession and the resulting rational func-
tions are divided (using RFNDIV) to obtain G.

) RIFNDIF Q,PX
First POLDIF is used to compute
PN' = o(PN)/oX
PD' = o(PD)/dX,
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and POLGCD is used to obtain
G = (PD,PD").
Next the polynomials
AN = (PD/G)*PN' — PN«(PD'/@)

and
AD = PDx(PD/G) = (PD/G)*s@

are computed. Note that the parenthesized fractions are polynomials.
Finally

H = (AN,G)

is obtained, and
Q = (AN/H)
- (AD/H)

is formed. Since QN and QD are relatively prime, POLGCD need not
be used when placing @ in canonical form.

() RFNZET R
Same as POLZET. See Ref. 1, Section 3.3
(h) RIFNNZT R
Same as POLNZT. See Ref. 1, Section 3.3.
(1) RFNEQT P.Q

If P and @ are both polynomials, POLEQT is applied. If only one of
them is a polynomial, they are not equal. If neither is a polynomial,
POLEQT is applied to both numerators and both denominators. If the
rational functions are unequal, the next instruction is executed, if they
are equal, then the next instruction is skipped.

@) RFNDUP QP
Q is replaced by a copy of P.
(k) RFNCHS R

If R is a polynomial, POLCHS is applied to R. If R is not a polynomial,
POLCHS is applied to its numerator polynomial.

4.4 Truncated Power Series Operations

ALPAK contains two macros for dealing with truncated power series
with rational function coefficients. These are RENTRC (truncate) and
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RFNMPT (multiply and truncate). Addition can be handled with
RFNTRC and REFNADD. Each truncated power series must be stored
as a rational function in a format whose first & variables are the power
series variables. The denominator, if any, must be independent of these
variables, The command

RFNTRC P,ORD,K
where K contains the number of power series variables &k and ORD con-
tains an integer n, causes P to be truncated to order n. That is, all terms
of order greater than n in the first & variables are deleted. The command

RIENMPT R,ORDR,P,0ORDP,Q,0RDQ,IX
is represented by the equation

R = PxQ

where P and @ are truncated power series. K is the address of the num-
ber of power series variables, ORDP and ORDQ are the addresses of the
orders of P and @ respectively, and ORDR is an address for the order

of R, which is to be comupted. If P(Q) contains any terms of order
greater than ORDP(ORDQ), they will be deleted.

4.5 Miscellaneous Operalions

(Caution: read desecriptions carefully.)

POLGCD G,AB greatest common divisor of (a)
polynomials
INTGCD greatest common divisor of in- (b)

tegers in AC and MQ
PWVSTO XK, K,W,FA store a power of the Wth vari- (e)

able
VARNUM WX, I'A variable number (d)
RFNFRM R,N,D form (e)
EXPAND N,D,R,IORP expand (f)
SUBLCK PJ,PJW sub-block (g)
PWVFAC KP,wW factor off a power of the Wth (h)
variable
DEGREE K,P,W degree. (i)
(a) POLGCD G,A,B

Replace G by a greatest common divisor of the polynomials A and 5.

(b) INTGCD
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Replace the integer in the AC by the greatest common divisor of it and
the integer in the MQ.

(e) PWVSTO XK,K,W,FA

Replace XK by the Kth power of the Wth variable in the format whose
address is at I'A. K is the address of the power, and W is the address of
the variable number.

(d) VARNUM  W,X,FA

Replace the contents of W by the variable number of the variable X in
the format whose address is at FA. X is the address of the variable name
in BCI.

(e) RFNFRM  R,N,D

Same as RFNDIV except: () N and D must be polynomials; (i7) N
and D become the property of R, and their pointers in the calling pro-
gram are replaced by zeros; (#7) R must be distinct from N and D;
and (4v), if N and D are known to be relatively prime, a fourth argu-
ment NOGCD can be added to the calling sequence in order to save the
time which would otherwise be spent in finding their greatest common
divisor.

(f) EXPAND  N,D,R,JORP

This is the inverse of RFNFRM. N and D must initially contain zeros.
They are filled in with pointers to the numerator and denominator of E
respectively. The R heading is marked as idle. If E is an integer or a poly-
nomial, N is filled in with a pointer to R, the R pointer is replaced by
zero, and control is transferred to IORP. If IORP is omitted, control is
transferred to the next instruetion.

) SUBLCK PI,PJW

P must be a polynomial independent of the first W — 1 variables, if
any. Then, by the definition of the polynomial canonical form, the terms
of P are ordered according to the powers of the Wth variable. SUBLCK
replaces PJ by the polynomial consisting of that sub-block of P, if any,
whose terms all involve the Jth power (0 < J < degree of P) of the
Wth variable. If P contains no terms involving the Jth power of the
Wth variable, SUBLCK replaces PJ by the zero polynomial.

(h) PWVFAC K,P,W
P must be a polynomial independent of the first W — 1 variables, if
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any. PWVFAC replaces the contents of K by the smallest exponent of
the Wth variable in P, and divides P by that power of the Wth variable.

() DEGREE KPW

P must be a polynomial independent of the first W — 1 variables, if
any. DEGREE replaces the contents of K by the degree of P in the
Wth variable.

V. OUTLOOK

A new version of ALPAK (to be called ALPAKB) is now being
developed. Its foundation is a programming system (see Ref. 4) called
STGPAK (storage package), which provides (i) dynamic storage
allocation, (#7) automatic recursion, and (#i7) “delayed-decision diag-
nosties.”

The storage allocation orders make it possible to obtain contiguous
blocks of storage of arbitrary length as needed (provided that sufficient
space is available) and to return idle space to the system. A block may
contain sub-blocks and/or pointers to other blocks. This will permit
the introduction of higher level data structures including formal prod-
ucts of polynomials, thereby helping to alleviate the greatest-common-
divisor problem.

The use of a public push-down list for subroutine storage makes
recursive programming fully automatic. That is, a subroutine can call
itself without taking special measures to preserve its arguments and
intermediate results. The diagnostic facilities permit the decision re-
garding what to do about an overflow (shortage of space or time) or
error detected in a given subroutine, to be delayed until control has been
returned to some higher level subroutine or to the main program.

The authors hope that STGPAK together with a macro compiler
now being developed by Miss D. C. Leagus and W. S. Brown will
simplify and expedite the programming of ALPAKB subroutines. The
compiler should also be useful in the writing of main programs.

Apart from these matters, which are not directly related to algebra,
our plans for ALPAKB include multiple precision integer arithmetic,
an improved strategy for finding greatest common divisors, and a
complete set of operations for truncated power series.
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