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The problem of direct inlerband iransitions in semiconducting crystals
18 considered in detail. The solulion of the problem s shoun to lead lo a
system of sitmultaneous coupled nonlinear differential equalions. These
equations do not distinguish belween static and dynamic fields, and are
oblained without recourse to any approximation procedures. They therefore
apply for eleciromagnetic fields of arbitrary amplitude. It s shown, finally,
that the linearization of these equaiions correctly predicts the fundamental
oplical absorption edge and the photoconductive rate equalions which result
n photomixing phenomena.

I. INTRODUCTION

Within the past year there has been an increasing interest in semi-
conductor behavior, resulting from the development of the optical maser.
In addition to the fact that the semiconductor can be used as an optically
active medium, this interest results, in part, from a variety of nonlinear
effects which can occur in semiconductors at infrared and optical fre-
quencies.

Optical masers are capable of providing very high-intensity fields at
photon energies corresponding to the energy gap between valence and
conduction bands. Since nonlinear effects generally vary as some power
of field strength, the laser has stimulated keen interest in semiconductor
nonlinear phenomena. Examples of such phenomena are the Franz-
Keldysh!? effect and the multiple-photon process.? Closely allied with
these nonlinear interband effects is the process of photomixing*-* (photo-
conductivity), where two coherent optical signals are beat together to
produce a photosignal which is proportional to the instantaneous density
of photoexcited electrons and hence contains sum and difference fre-
quency terms.

The aforementioned phenomena have been analyzed previously by
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calculating the interband transition probabilities from time-dependent
perturbation theory'? for the case where an electrostatic and electro-
magnetic field act on an electron in a crystal. This approach involves
discarding quadratic terms in the vector potential in the Hamiltonian
(the static and dynamic fields are treated differently), and neglecting
higher-order nonlinearities in the population distribution.

In this article, a more general theory of direct transitions in semi-
conductors is presented. A semiclassical approach is used, wherein the
semiconductor properties are quantized and the electromagnetic field
is treated classically. A set of rather simple coupled nonlinear differential
equations is obtained for the equations of motion governing the funda-
mental absorption process, without resorting to any perturbation or
approximation procedures. In contrast to the usual method of analysis,
these equations do not distinguish between static and dynamic fields.
The linearization of the nonlinear equations correctly predicts the funda-
mental optical absorption, and is shown to lead to the photoconductive
rate equation for the generation of conduction band electrons.

II. SOLUTION TO THE WAVE EQUATION

The equation of motion for an electron in a erystal is the wave equation
ey = dh(dg/dt), (1)

where 3¢ is the Hamiltonian operator and ¢ is the one-electron wave
function. Without the presence of the radiation or static fields the

Hamiltonian, 3¢, is
3 = (p*/2m) + V(r).

Here m is the electron mass, V(r) is the lattice potential, and p is the
momentum operator. With 3¢, as the operator in (1), the eigenfunctions
of 3¢, are the Bloch functions:

Feolun(r; k) exp (ik-r)} = &n(k)ux(r; k) exp (ik-r), (2)
where
on(r: k) = ux(r; k) exp (ik-r),
are the Bloch functions, and &yv(k) are the energy eigenvalues. The
subseript N refers to the different energy bands, and the function
uy(r; k), which is normalized over the volume of the unit cell, has the

periodicity of the lattice. In the presence of a static and dynamic field,
the Hamiltonian becomes
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i€ = 2:,” (P - -A) + V(r) — F-r, (3)
where e is the electronic charge, ¢ is the vacuum light velocity, A is the
vector potential for the dynamic field (the gauge ® = 0 and V-A = 0
is chosen), and F = ¢E, is the force due to the static field E, . The static
and dynamic fields enter differently in (3), because of the fact that the
vector potential for the static field increases linearly with time. It will
be shown, however, that in the solution there is no distinction between
the two fields.

With the Hamiltonian given by (3), the wave funetion ¢ is chosen so
that the equation of motion (1) does not contain secular terms, and so
that the solution to the wave equation [(7) and (8) below] takes a
relatively simple form in which the time-dependent and time-inde-
pendent fields both appear. A normalized wave function that satisfies
these two criteria is given by

¥(rt) =

oy Zfd]\ay(i 1) ey fr; K (1)]
(4)

X exp i {k-r + %F-rt — %fo ExK(r)] dr + S(t; k)},

where A is the volume of a unit cell, and where, for the sake of sim-
plicity, the function Sy(¢; k) has been defined as

t
Se(t: k) = z‘if drE-f diguy™® (r; K) Vtun (r; ). (5)
7 do

Here Vg is the gradient operator in K-space and the asterisk denotes the
complex conjugate. One result of the added force on the electron, deter-
mined by the total electric field vector

0A

E=B —-2a

[T

is to change the electron wave vector from the constant value k to the
time-varying value

K(t) = k + Ft — ﬁA(t) (6)

which describes the intraband electronic motion. The integral over k-
space entering in (4) extends over all values of the wave number within
an energy band, and the volume integral over coordinate space appearing
in (5) extends over the volume of a unit cell. It should be noted that
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the de field does not appear symmetrically with the time-varying field
in (4); this is due to the fact that the Hamiltonian has a different form
for static and time-dependent fields. The form of the wave function
given by (4) was suggested by Houston’s choice of wave function for an
applied de field.”

It is assumed now that the wavelength of the applied radiation is
much greater than the dimensions of the unit cell, and that the electron
wave vector k has the same value for the lowest state in the conduction
band as for the highest state in the valence band. Thus the electron
momentum vector for the final state is the same as the momentum
vector for the initial state (direct transitions). In Appendix A, it is
shown that the substitution of the wave function ¢ from (4) into the
wave equation (1) yields a differential equation for the undetermined
probability coefficients ax(¢; k). Considering only direct transitions
between valence and conduction bands, there results [see (29)]

da,/at = —Qa,
da,/dt = Q*a,,

where

Q=z’£EMexpi[flwwdr—(SG—S,,)]. (8)
0

m  Wey

The subseripts ¢ and v refer, respectively, to the conduction and valence
bands; M is the matrix element for transitions between the two bands,

M = f dvou*Vu,;

and w,, is an angular frequency given by

_ & — &
-
In taking the complex conjugate of @ it should be noted that the func-

tion Sy defined by (5) is real. This follows from the fact that the electric
field E is chosen to be real, and that the integral

Wey

f dvotty ¥V gty
is imaginary, since

Vi f 'U'N*’devn = Vgdyny = 0.
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The interaction between the semiconductor and the electromagnetic
field results in the generation of a probability current density in the
crystal. The expectation value of this current, in turn, acts as a source
of radiation in the Maxwell equation for the curl of H. Therefore a
complete solution of the problem of the interaction between the semi-
conductor and radiation field requires an evaluation of this current
source. The expectation value of the probability current density, J,
can be expressed as follows, by noting that the canonical momentum
operator p is Hermitian,

_ /o _ \
T= mV \p —A )

where V' is the crystal volume and the angular brackets denote averaging
over the volume V.
It is now convenient to define a vector j by

= j'd%j

such that j is the averaged current density per unit volume in k-space.
In Appendix B it is shown that j satisfies the simple relationship [see
(36)]

j-E = alW/a, (10)
where I is the energy of the system per unit volume, i.e.,
W= (1/V)(|a | + | a|*€.). (11)

Equation (10) is just the statement of conservation of power flow, for
the left-hand side of this equation is the power transferred into the
semiconductor, as given by the scalar produet of current density and
total electric field. The right-hand side of (10) is, of course, the resultant
rate of increase of energy density in the quantized semiconductor sys-
tem.

Equations (7), (10), and (11) contain the necessary information to
solve various types of semiconductor problems involving direct transi-
tions. The derivation of these equations did not require discarding A®
terms in the Hamiltonian, and the solution for the unknown amplitudes
ay did not necessitate using perturbation or approximation methods. It
should be emphasized at this point that the results do not distinguish
between static and dynamie fields. The set of equations (7), (10), and (11)
is nonlinear and may be solved to any order in the electric field E to
determine the various nonlinear interband phenomena. The remainder
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of this paper will be devoted to a detailed treatment of the linear solu-
tions, which will be shown to lead to the rate equation for the generation
of electron-hole pairs ( photoconductivity).

IIT. SMALL-SIGNAL SOLUTIONS AND DERIVATION OF THE PHOTOCONDUC-
TIVE RATE EQUATION

The equations of motion for optical interband transitions [(7), (10),
and (11)] can be greatly simplified by seeking solutions for a, and a,
correct to first order in the electric field E. Under this condition, which
applies when the external electromagnetic force influencing the elec-
tronic motion in the erystal is small, the wave vector K(¢) can be re-
placed by k, so that w., becomes time-independent. It is then easy to
show from (7) and (8) that the solutions for a. and a, correct to first
order are:

0 0 e i
a = a.” — a,"” Mf Ee'“* dt
MWeo

(12)

a = a,"” — a” e M*. f Ee " d1.
MWey
The superseript (0) indicates the zero-order solutions which, for this
example, are independent of time. For the case where the crystal is in
thermal equilibrium at 0°K, the constant amplitudes a.” and a,"” can
be determined by noting that the electrons are confined to states in the

valence band only, i.e.,
la.” |* =0, (13a)
and
|a,” | ’dk = p(k)d’F, (13b)
where p(k) is the density of states. Integrating (13b) over a spherical
shell gives for the number of states in a range dk
|a,” | *dk = (V/=")K'dk, (13¢)

in which V is the crystal volume.

A second-order linear differential equation can now be derived for
the erystal current density j. Since the external forces are assumed to be
small, K(t) & k, whereupon one obtains from (10) and (11)

g e d|af
jE = B2l L (14)




DIRECT TRANSITIONS IN SEMICONDUCTORS 811

where use has been made of the relation |a.|* + |a,|® = constant.
By substituting the first-order solution for a. from (12) into (14), it is
found after some manipulation that j satisfies the equation of motion
for a forced harmonic oscillator, i.e.,

0% ) > .
g T el =G50 (18)
where
_ 2k fe : PRI CURE
6= 22 (L) af e, (16)

and Mg is the component of M in the direction of the electric field E.

The validity of (15) may be checked by calculating the absorption
coefficient a(w) for the fundamental absorption edge. It is assumed that
the semiconductor has spherical energy surfaces with the same reduced
effective mass, 1/m* = 1/m,* — 1/m,*, along all erystal axes, and that
in consequence

Wor & wy + (H/2m™) I, (17)

where fiws Is the minimum energy gap between the two bands. By making
use of (13¢) for | a,"” | *and (17) for w., , the observable erystal current
density J can be found by integrating j, as determined from (15), over
k-space. The resultant expression is given by the following constitutive
relation between J and E

J = 1 ,‘/2 (‘_)2 | Mg [F(m*)} @ E, (18)

T i \m

where « is angular oscillation frequency of the radiation field. The
absorption coefficient can now be found directly by observing that in
the frequency domain the coefficient of E in (18) is the macroscopie
conductivity, o, of the solid and is related to the absorption coefficient by

a = dwa/n,

in which ny is the index of refraction of the crystal. The value for «
obtained in this manner from (18) is the same as that given elsewhere.”

The photoconductive rate equation for generation of conduction
electron-hole pairs also follows from the small-signal solution. If n is
the number of conduction electrons per unit volume (equal to the

number of holes), then one may express n as the k-space integral of
|a. | *:
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_ | a. |*
n = f d’k o (19)
The rate of increase of conduction electrons is obtained from (14),
whereby

an o . f 35, ]

T E d'k o (20)

In order to account for lattice collisions which produce intraband transi-
tions and eventual interband recombinations, it is necessary to add a
phenomenological loss term to (20). This is accomplished by adding a
term n/r, to the left-hand side of (20), where 7, is the lifetime of an
electron in the excited states of the conduction band. Equation (20)
then leads to the photoconductive rate equation

an n |

— + — =E- f k . 21

at + Tn 4 Ty (21)

A situation of particular interest is where E is an optical field made

up of several coherent frequencies. Combining (15) and (21) then results
in the rate equation for photomixing

on n e ap c
5t—+T_H_4;_7;)1;!}HHE‘.,,-EQ. (22)
In this equation the subseripts p and ¢ enumerate the different frequency
components in the incident radiation. It is seen from (22) that n con-
tains the sum and difference beat frequencies of the incoming radiation.
This equation may be used to caleulate the optical mixing properties of
semiconductor erystals, where the mixing process results from photo-
conductivity.?

IV. CONCLUSIONS

The analysis of the problem of direct transitions in semiconductors
has led to several simultaneous nonlinear differential equations. Lineari-
zation of these equations correctly predicts the fundamental optical
absorption and photoeonductive mixing effects. Nonlinear effects such
as might result from the time dependence of w,, (Franz-Keldysh effect),
or from the time dependence of |a,|® and |a,|® (multiple-photon
effects) can be predicted by appropriate higher-order approximation
procedures.
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APPENDIX A

Derivation of the Equations of Motion Governing Direct Transitions

Equation (2) can be rewritten as
2
[;—m + V(r)] uy(r; k) exp (k- r) = &yv(k)uy(r; k) exp (7k-r), (23)

where uy(r; k) exp tk-r are the stationary Bloch functions, and p is
the operator — V. It follows directly from (23) that in the presence of
an electromagnetic field

[2; (P - - )2 + V(r):’ uy (r; K) exp z'(k + %Ft)-r

(24)
= Ex(K)un(r; K) exp z'(k + % Ft) T,

Equation (24) can be verified by performing the indicated operations
and invoking (23).

The substitution of the wave function ¢(r, {) from (4) into the wave
equation with the Hamiltonian of (3) yields, with the help of (24),

_ 37 day . aK' i

= ; f(] Jrl {(’ﬂ, uN(r, K) + Ly [W VA"U:N(I‘, K)
a8 1 (25)
+ 7 fm(r K)]f exp i(r, ;, k, N),

where exp 7(r,. k,N) is an abbreviation for the exponential function
exp k-t + S Frt — 1 f £x(K) dr + Sw(t:K) .
i fido R

Equation (25) is now multiplied by
uy(r; K') exp —i(r,t k' N'),

and integrated over all coordinate space. The resulting equation is then
simplified by making use of the lemma’
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J

all space

dv f &kd(r; kk) expi(k — k') -r = (2:)3 f dve®(r; kk),

where ®(r; k k') is a lattice periodic function. Recall that the volume
integral on the right-hand side of this expression extends over the
volume of a unit cell.

The result of performing the above operations on (25) is

a .08, K
ST =X “”*a?'{f d”“"‘b""f“”}
(26)

X exp i [j; wiy dr + (Sy — SL):I .

where fiw,y = &, — &y . It can be shown from the definition of S, [see
(5)] that the time derivative, dS./dt, is

as . 0K

=i [ duri,
so that (26) may be rewritten as
a ’ K
% = — ; ay Bt—{f dvouL*VKuN}

X expi[fn‘ wey dr + (Sy — SL)], e

where 2’ indicates that N = L is excluded from the sum.
N

There is a rather simple relationship between the matrix element of
the gradient operator in K-space and in coordinate space, which for
N # L, can be expressed as’

fd-vguL*VRuN = fdvuu,, Viy . (28)

mwrn

By combining (27) and (28) and noting from (6) that 0K/dt = eE/7,
the results

&i = —1 'ﬁE E w {f dl’gu[,*vu.v}
LN

X exp 7 [‘/; wiy dr + (Sy — Sz.)]. o

For transitions between valence and conduction bands only, (29) reduces
to (7).
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APPENDIX B

The Relationship between Current Density and Energy

The expectation value, or volume average, of the probability current
density in the presence of an electromagnetic field is given by

J———(P-' -A> (30)

Considering only transitions between the valence and conduction bands
for the wave function of (4), the current density determined from (30)
becomes

J = —z'—fdfc{ac(mc] e ) + la [ dourv,
t
+ |a, |* f dvott, *Vu, + a.*a,M exp ¢ l:f we, dr + (S, — Sc)] (31)
0

t
— ﬂcﬂa*M* exp —1 I:f Wep dr + (Sv - Sc):’} .
0

Equation (31) can be simplified considerably by making use of the
relationship’

i;—:VKSN(K) = 1K + fdl'ouy*(r; K) Vuy(r; K). (32)

Combining (31) and (32) results in the expression

_i ok fd]{ m(]acﬁvxsc+ | a, |* Vi&,)
t
+ a.*a,M exp i |:j|; we dr + (S, — Sc)] (33)

t
— 4 *M* exp —i U we dr + (Sy — Sc)]}.
0

The energy density, W, for the quantized semiconductor system is
given by (11). By differentiating 1V with respect to time, one has

aw _ 1 2 9K . 0K
o= + | @ [P 55 Va8,
at V[]a°| o Vage L v

+ (a x 02 +a —aa”*)E} + (a % 00y + a aav*)& .
© ot Cat ) Toat ot )7
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Now, from the preceding work in Appendix A the time dependences of
a. and @, are known and, for the present situation, are given by (7).
Thus by combining (7) with (34) and noting that 0K/ot = eE/#,
one obtains the following formula for 9W/at:

aw _1le

9 2
E_'VEE{I(IC] VK8¢;+|G|}| V!\'SU

ﬁﬂ t
— i a*a,M exp i [ f we dr + (S, — S.,):I (35)
m 0

o t
+ i% Ao, *M* exp —1 ':j; wey dr + (S, — Sc)J}-

A comparison of (33) and (36) illustrates the desired relationship
between current density and energy density, viz.,

i-E = oW/, (36)

where J = f dkj.
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