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Blocking probability is the most frequently required performance charac-
teristic in traffic studies of complex central office switching networks. Deter-
mining this quantity without actual measurement is a difficult task. To aid
the communications system designer, a simulation program has been prepared
which produces useful estimales of blocking probability for a large class of
networks. The program is based on a simplified mathematical model for the
analysis of switehing networks developed by C. Y. Lee, and thus differs
from conventional simulators in that il stimulates a mathematical model
rather than a traflic-handling system.

Although Lee’s model is widely used, ils ulility has been limiled by com-
putational difficulties encountered in networks of realistic size and com-
plexity. This limitation is in most practical cases removed by the program,
which features rapid inpul preparation, short compuler runs, and specifica-
tion of the desired precision of the results as an inpul parameter. Moreover,
the program allows for the incorporation of more a priori information
about the actual behaviour of swilching networks than is ineluded in Lee’s
model, thereby leading to a more accurate estimale of blocking probability.

The simulalor has been programmed for the IBM 7090 computer, bul
the concepls are machine independent.
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I. INTRODUCTION

Determining the traffic performance of complex multistage central
office switching systems without actual measurement can be a major
problem for the communications engineer. While probability theory has
been successfully applied to a wide variety of telephone traffic prob-
lems,!?# a precise formulation of a mathematical model completely
deseribing the multistage switching system has thus far not been found.

No systematic approach exists which completely accounts for the
gross complexity encountered in large-scale congestion systems, but
several authors have contributed significantly to the theory, notably
C. Jacobaeus,*® K. Lundkvist,> A. Jensen,” C. Y. Lee® A. Elldin,* R.
Fortet,'® and P. LeGall.! More recently, V. E. Bene&*'* has initiated
“an attempt to describe a comprehensive point of view towards the
subject of connecting systems.””> Although the engineer does not yet
have a comprehensive theory, he does have a valuable tool in computer
simulation.

Simulation of telephone traffic flow has a long history in the Bell
System. As early as 1907, a rudimentary simulation was undertaken to
improve switchboard performance. Artificial traffic was generated by a
card-drawing technique, and the simulation was used to verify a semi-
mathematical analysis of the loads which could be handled by a team
of operators meeting an average delay criterion. In the ensuing years,
simulation techniques have been aids in the study of complex traffic
problems, such as the effect of limited sources on graded multiple capac-
ities, the efficiency of random slipped multiples, the capacities of various
alternate routing plans, and the distribution of delays under various
trunking plans. The traffic load capacity of the No. 1 crossbar network
was largely determined by the load-loss relationships in the link and
junctor patterns obtained from elaborate simulations begun in 1936.
This was the first time that the capacity of a largely complete system
had come under study by simulation methods. A 10,000-line No. 5
crossbar office was simulated in 1948 by a specially designed machine
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which coordinated the efforts of four operators, providing significant
data for the traffic engineering of this system.!

In recent years the high-speed electronic digital computer has proved
an effective tool in large-seale traffic simulations.””-** I'or this class of
simulations, speeial computer programs are written which usually con-
tain:

(7) a logical description of the system under consideration,

(77) a procedure for generating and offering traffic to the system, and

(772) a method for extracting and recording the desired system charac-
teristics.

These programs may be called “special-purpose” simulators — in the
sense that they are written for the purpose of studying a specific traffic-
handling system. A variety of performance data may be obtained, in-
cluding:

(7) probability of blocking at various loads (load-loss data);

(#7) delay distribution, including average delay on calls delayed; and

(727) mean queue lengths.

Of these, the most frequently required datum is the probability of loss
(or delay).

These simulation programs have produced a large amount of useful
information, but their application has not been widespread because of
the considerable programming effort required. To reduce programming
effort, various “‘general-purpose” traffic simulation programs have been
written.? 22 However, it must be understood that each program is
only ‘“‘general” with respect to a particular class of traffic systems.

The multistage central office switching system is an example of a class
of traffic-handling systems for which no general-purpose simulator has
heretofore been written, although muech has been accomplished by
special-purpose simulations written for specific switching network
arrangements.” Because the use of these network simulation programs
has been greatly restricted by the cumbersome programming and input
preparation required, a strong need has developed for a quick, easy-to-
use, general-purpose simulation technique.

To meet this need, the authors have developed a computer program
which, with a minimum of user effort, will produce useful estimates of
blocking probability for a very large class of multistage switching net-
works. The program is based on a simplified mathematical model of
switching networks developed by C. Y. Lee® and differs in approach
from programs referred to earlier in that a complete description of the
traffic-handling system 1ttself is not given to the computer; rather, the
program simulates the behavior of Lee’s analytical model. Deriving its
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name from this view of its operation, the program has been acrony-
mously named NEASIM — NEtwork Analytical STMulator.

While Lee’s model is probably the most widely used analytical model
for multistage matching networks, its utility has been severely limited
by the computational difficulties associated with networks of realistic
size and complexity. This limitation is in most practical cases removed
by the program, which features rapid input preparation and short (hence
economical) computer runs. Furthermore, unlike many simulations in
which the reliability of results must be assessed on an a posteriori basis,
the analytical simulator admits of an a priori appraisal so that desired
precision becomes an input parameter.

The probability linear-graph model, basic to the NEASIM approach,
is described in Section II, where its use in switching network analysis
is explained. The philosophy of the program together with a general
description is presented in Section III. Two key program routines are
deseribed in Section IV. Reliability considerations are given in Section
V. Finally, Section VI discusses program modifications which can in-
crease the validity of the NEASIM estimate.

II. THE PROBABILITY LINEAR-GRAPH MODEL

In 1955 C. Y. Lee® extending the earlier work of Kittredge and
Molina, presented a simplified mathematical model for the analysis of
switching networks. Since the NEASIM program simulates the be-
havior of this model, a description of the model is given (Section 2.1).
An example to illustrate how the model is applied is given in Section
2.2: the computational difficulties which may be encountered in the
analysis of practical networks are then discussed — thus pointing up the
need for the simulation program. Section 2.3 explores further the notion
of blocking probability for a network and the use of the linear-graph
model in determining this quantity.

2.1 The Model

Consider a crosspoint network in which each input can be connected
to any output by the operation of appropriate crosspoints. Let Py( Jk)
be the probability that all paths through the network between input j
and output & are busy at time .

Associate with each link I; of the network a binary-valued random
variable X,” whose value represents the state of the link at time ¢
The NEASIM convention is: 0 represents idle and 1 represents busy.
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Since the concern of telephone traffic engineers is with “busy-hour”
traffie, it is usually assumed that

(a) the busy-idle distributions of the link random variables are sta-
tionary (or homogeneous) in time.
That is, for any N,

PriX,"” =6,;n=1 - N =Pr{X, " =6,;n=1--, N|

tn

for all ki, where 8, = 0 or 1 and the index 7 runs over all the links in the
network, A consequence of this assumption is that P,(j,k) is also sta-
tionary in time, for all j and £, and the subseript { will henceforth be
omitted.

Let us now fix our attention on two terminals, one on each side of
a crosspoint network in which

(b)Y all of the switches are nonblocking,*
and in which

(¢) there is no connection path belween any swilch and itself.
Then the configuration of possible paths through the network between
the two terminals can be represented by a two-terminal cyele-free linear
graph with directed branches, in which the nodes of the graph represent
network switches and the directed branches of the graph represent
network links. Consider, for example, the network depicted in Fig. 1.
The possible path configuration seen between terminals 4 and B is
indicated by heavy lines, and the corresponding graph is as shown in
Fig. 2(a).

Next, assume that

(d) P(j,k) is independent of j and L,
and we can speak of P(j,k) = B as the probability of blocking of the
network. The notion of blocking probability will be further explored in
Section 2.3.

Finally, Lee makes the simplifying assumption:

(e) the link random variables, X'", are independent.
This assumption, which is frequently made to render analysis managea-
ble, is the principal weakness of the model and will cause the results to
depart from reality in varying degrees — depending on the particular
network. In general the model will tend to overestimate blocking. The
problem of obtaining realistic results is discussed further in Section VI.

Fach of a large class of switching networks can therefore be repre-

* Lee’s requirement that the switches be nonblocking is actually not restrie-
tive, and can be relaxed by an appropriate adjustment of the link oecupancies.
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sented by a simplified model called, by Lee, a two-terminal probability
[inear-graph in which

(7) switches are represented by nodes, and links by directed branches,
and

(77) assumptions (a)—(e) hold.
The mathematical object, the two-terminal probability linear-graph,
will be referred to as GRAPH in the sequel.

Once the GRAPH of a network is obtained, the caleulation of the
blocking probability can proceed in a straightforward manner.

2.2 An Example

As a first illustration, consider the GRAPH of Fig. 2(a). Let £ be the
event that there is a path through the GRAPH,* £, be the event that
branch b; is idle, and p; = Pr{b, is busy}. Then

E =4,UA4,UA4,U 4,

where the paths, A, are
A, =ENENE;
Ay = E, N E; N Ey
Ay = £ N BN By
Ay = K. NEg N Es.

The blocking probability is then

B =1— Pr{E]
=1—-rr{4, U, U4,U.4,

4 4
1 — Z; Prid} + 2. Prid; N A4}

i,j=1
i<j

4

— P AN AN A 4 Prid, N AN A, N A
=t
Now the assumption of independence gives
Prik, - B} = Pr{lE} - PrlE}

=qi-q q=1—np

* Having adopted the GRAPH model, we speak of a ‘“‘path through the
GRAPH' rather than “a path through the network,” and say that “‘a branch is
busy or idle” rather than “a link is busy or idle.”
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whence, for the case in which p; = p for all 7,
B=q¢ —4¢ +2¢ +4¢ —4¢ + 1. (1)

In general, given a GRAPH ' with m different link occupancies
Pi, + +,Pm, the procedure just illustrated will yield the blocking
polynomial of the GRAPH:

By = B(;('Pl, T pm)-

As a computational tool the utility of the GRAPH model decreases
with increasing complexity of the GRAPH’s geometrical structure.
When the GRAPH geometry grows more complex, the blocking poly-
nomial Bg becomes cumbersome — admitting a greater possibility
for error in its determination. Moreover, once By is found, one still has
to substitute numerical values for pi, ---, p. into the polynomial
to obtain a result. As an example, for the GRAPH of moderate com-
plexity shown in Iig. 3, the blocking polynomial is
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Fig. 3 — A GRAPH of moderate complexity.
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B = ps
+ pq(84%)
+ P’ (44° 4 244°B)
+ " (244°B' + 324°B'0)
+ p'¢'(8A°C* + 484°B'(* 4+ 8B"D + 6B®) (2)
+ P(324ABC°D + 24B'CY)
+ P4 + H4BCD?)
+ pg"(8C"D*)

+ (%)
where:
A =p+ap
B =p+
¢ =p+qp

D =p+ gp
q =1—p.

I'aced with computing B in (2) over a range of occupancies, an engineer
would surely resort to a computer. The essential computational diffi-
culty is that one is confronted with expressions of the form

Prid, U ... U

where the paths A, , ---, 4 ; are not disjoint,

It is interesting to note that the method of approach just deseribed —
which may be called the “path enumeration approach” — is not the
only way to proceed and is indeed not the most efficient. A second pro-
cedure for finding the blocking polynomial may be called the “combi-
natorial approach” and is best illustrated by example.

Since all the branches in the GRAPH of Fig. 2(a) are busy with proba-
hility p, a moment’s reflection shows that the blocking probability can
be written as

B = ?)2 + qp'B;m\u:r:l[)h 1 + pq'Bhnhszruph 2 + (lﬂ'Bsuhurnph 3
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where Baubgraph 15 Bsubgraph 2 5 Beubgrapn 3 are, respectively, the blocking
probabilities of the GRAPHs indicated in Fig. 2(b). But by inspection

we have
Biuberapn1 = (1 — (12)2
Bowvgrapn2 = (1 — ¢)’
Bawerapns = [1 — (1 = p*)ql’,
so that
B = p*+ 2pa(1 — ¢)* + ¢l — (1 — p)q’

is the blocking polynomial (1) expressed in another form.
The GRAPH of Fig. 4 is more representative of the type of GRAPH
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Fig. 4 — Typical GRAPH geometry of realistic central office network.
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encountered in modern central office networks. Determination of the
blocking polynomial in this case — by either the path enumeration or
combinatorial approaches — is a formidable task indeed. If the GRAPH
model is to be useful to the modern engineer, some means of handling
such complex GRAPHs must be made available,

When seeking performance measures of a network, the engineer
is not really concerned with the explicit polynomial representation
Ba(pi, -+, pw); what he would like is a curve (or set of curves) dis-
playing this functional relationship. The simulation program deseribed
in the following sections, when given the link occupancies py, -+, p..,
produces, with predictable precision, a numerical estimate of By .

2.3 Blocking Probability and the Linear-Graph Model

When several kinds of traffic are handled with different diseiplines
in a network which may have several characteristic graphs, blocking
probability for the network can only be meaningfully defined relative
to the persons or terminals encountering blocking. Ior example, the
blocking encountered by a call originating and terminating in the same
central office may not be the same as the blocking encountered by an
incoming call. In general, a network is required to handle several
“classes’ of connections and the engineer is concerned with the bloeking
probability for each of these classes. We shall limit our discussion of
blocking probability to one class, that is, a subset of all input-output
pairs in which each input-output pair has the same graph and for which
it is reasonable to suppose that the traffic between every input-output
pair is identical® with that of every other pair. Without loss of generality
we can therefore assume that the network has one class, so that when
speaking of the blocking probability of the network, we shall mean the
blocking probability of the class. (These remarks form the basis of
assumption (d) of Section 2.1.)

Having thus limited ourselves to one class of connections, we have still
to define the blocking probability of a network in a manner which is
in agreement with the generally familiar definitions. Here we again en-
counter difficulty. The authors agree wholeheartedly with Benes (Ref.
15, p. 2805), that “In fact, not even the definition (let alone the caleu-
lation) of the probability of blocking has received adequate treatment

Syski (Ref. 3, p. 198), after a long series of prefatory remarks, defines
two quantities, time congestion S(f) and call congestion =(f) for the case

* That is, every input calls every output at the same rate with the same hold-
ing time distribution and with the same lost calls disposition.
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of a simple full-access trunk group. The time congestion is the probabil-
ity that all trunks in the group are busy at time ¢; the call congestion
is the conditional probability that the group is blocked when a call
arrives at the instant ¢, Under the input assumptions and for equilibrium
conditions, time and call congestions are independent of time and are
denoted by S and =, respectively. S is equivalent to the fraction of time
during which congestion is encountered, while = is equivalent to the
fraction of calls encountering congestion, and the two quantities will, in
general, differ,

Of these, of course, the measure of most concern to the network de-
signer is call congestion. Now if it is assumed that calls originate com-
pletely independent of the state of the network, time congestion will
equal call congestion, Such an assumption is unjustified if calls cannot
originate from busy lines, since time congestion conventionally includes
busy line periods while call congestion excludes them. It is, however,
reasonable to assume that idle pairs of terminals originate calls at a
constant rate independent of the state of the network. In particular,
there must be no change in the calling rate after a blocked call. If, under
this assumption, time congestion is modified to include only periods in
which both lines are idle, it will be equal to call congestion. Actually,
even if the foregoing assumption is not met, the time between calls is
likely to be mueh longer than the time taken by the network to return
to equilibrium, so that, again, the modified time congestion will be close
to the call congestion.

With a suitable choice of branch oceupancies, Lee’s model allows the
computation of call congestion. Alternatively, the branch occupancies
may be chosen so as not to reflect the requirement that only idle ter-
minals are to be considered, thus allowing the computation of time
congestion. In either case the computed results will be subject to the
error introduced by inaceurate assumptions in the model.

Before viewing the probability linear-graph model in the light of the
above remarks, it is well to make an observation on the underlying
philosophy of the model. Let us perform the following conceptual experi-
ment in a real network under a particular set of (equilibrium) traffic
conditions. Suppose that we fix our attention on a particular representa-
tive input-output pair (j,k) and examine closely that portion of the
network seen between them, i.c., their graph. It is reasonable to believe
that, were we to examine the detailed traffic pattern within the graph
for a sufficiently long time, we would ultimately come to have complete
knowledge of the busy-idle state behavior of the graph links under the
particular traffic conditions. The experiment could be repeated under
other equilibrium traffic conditions, so that we would eventually be able
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to describe completely the behavior of the graph links under all equilib-
rium conditions. Assuming that the particular input-output pair and
connection graph studied are truly representative of the entire network
(or at least of an entire conneetion class), we could then “diseard” the
rest of the network and determine the blocking probability of the net-
work under various equilibrium conditions by computations or simula-
tions based only on the connection graph and our complete knowledge
of its behavior,

That such complete knowledge could be obtained is a practical im-
possibility. In the absence of complete knowledge, assumptions can be
and, indeed, must be made about the detailed behavior of the graph
based on such a priori knowledge as we have. It is reasonable to suppose
that, as the assumptions made approach the real behavior of the graph,
the blocking probability determined from the graph will approach the
real blocking of the network. A belief in the fundamental soundness of
this reasoning constitutes the basic philosophy of the graph model
approach to the determination of blocking probability, beginning with
Molina and continuing with C. Y. Lee and the NEASIM program.

The assumption made by Lee of link independence [(e) of Section
2.1], while obviously omitting much a priori knowledge of graph be-
havior, possesses the practical advantage of allowing computation of the
blocking polynomial where graph geometry does not prohibit. The basic
NIEASIM program allows evaluation of the polynomial for all graphs
meeting Lee’s restrictions,

The utility of the results obtainable from Lee’s model is well known,
When the specific branch occupancies are chosen rationally,* the ealeu-
lated blocking agrees well enough with real blocking figures (obtained
from full-seale simulation or measurement) for many engineering and
design purposes. Accuracy can be improved by “calibrating” Lee’s
results against real values where they are available. I'urthermore, com-
puted values lacking in absolute aceuracy will reveal relative differences
between networks and between various traffic conditions in the same
network.

The NEASIM program, to which the remainder of this paper is
devoted, is basically designed to estimate the value of the blocking
polynomial. This portion of its design and use is deseribed in Sections
ITI-V. The design also allows additional assumptions regarding the
detailed traffic behavior of connection graph link states to be incor-
porated in the graph model. When more a priori information is included,

* That is, chosen to reflect the requirement that the input-output terminals

J,k are idle by (usually) subtracting the load contributed by the terminals j,k
from the assumed carried link loads.
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the validity of the simulation results improves as anticipated. This
aspect of the NEASIM program is deseribed in Section VI.

III. THE NEASIM PROGRAM

This part of the paper is devoted to a presentation of the program.
The basic viewpoint or philosophy of the NEASIM approach is given
in Section 3.1. A general description of the program is contained in
Section 3.2,

3.1 Philosophy of the Program

We saw in the preceding section how the GRAPH model provides —
in theory at least — a method for the analysis of a large class of switching
networks and how the model is impractical as a tool for networks with
complex geometrical structure. To evolve a practical tool, we shall
change our method of approach.

Suppose we are given a GRAPH & with branch occupancies

Pry = P

Until now we were concerned with the explicit blocking polynomial
Bs = Ba(py, -+, pn). However, we can think of Be(pr, -+, pu) as a
curve in Euelidean (m + 1)-space, and set as our goal a precise ap-
proximation to this eurve. This point of view immediately suggests the
use of simulation techniques.

For example, if all the branches in the GRAPH of I'ig. 2(a) are busy
with probability p, then B¢ = Bg(p) is a curve in 2-space. If a com-
puter simulation were to be performed to give an approximation to
Bg(p), then we would require a computer program containing an
algorithm which, when repeated n times, will produce an estimate
By (p) such that

lim B.'" (p) = Ba(p)

n-—>o0

and for which we have confidence limits on the absolute error,

| BG(M(P) — Ba(p) l )

for all n.

Consider the eight branches of the GRAPH of Fig. 2(a). Although
all of them are busy with probability p, at any one instant each of the
branches is either busy or idle —and for this particular configuration
of busy and idle branches there is or is not a path through the graph.
Thus, in each repetition of the above mentioned algorithm,



NETWORK ANALYSIS SIMULATION PROGRAM 979

(¢) we assign busy-idle states to each of the eight branches in such
a way that probability of husy in each case is p;

(#7) after the assignment has been made we determine whether or
not there is a path through the graph for the given assignment.
Let Be'™ (p) represent the proportion of n repetitions of the algorithm
when no path through the graph was found. We would then expect that

lim B¢ (p) = Bal(p); that is, we would expeet our estimator to

converge to the true blocking curve. In general, if the GRAPH (¢ has
m different occupancies p,, ---, p.., the program should produce an
estimator Bg'" (py, -+, pn) converging to Ba(py, - -, Pm).

The preceding heuristic remarks were intended to outline the essential
approach taken by the NIEASIM program. The remainder of Section
IT is devoted to a deseription of the program itself. Sections IV and V
contain the arguments which show that the estimator indeed converges
to the true blocking curve, and how confidence statements about the
precision of the results are obtained.

3.2 Program Description

The following four sections describe the NEASIM program. Section
3.2.1 takes a “macroscopic” point of view, beginning with an account of
the input and then proceeding to give a broad outline of the program.
Seetion 3.2.2 sketches the layout of data in the ecomputer memory.
Section 3.2.3 discusses the organization and operation of the NEASIM
algorithm. The salient features of the program flow are shown in Fig.
5. Storage requirements and execution speed are given in Section 3.2.4.

3.2.1 Macroscopic Description

NEASIM was written for the IBAM 7090 computer. The input con-
sists of punched cards which we eategorize as Graph Definition Cards
and Simulation Definition Cards. Since the notion of a probability-
lincar graph implies a geometrical configuration together with an oe-
cupancy assignment on the branches, the computer must be supplied
with both these types of information. The geometrical configuration is
read into the computer via the Graph Definition Cards and the various
occupancies are read in via the Simulation Definition Cards.

Graph Definition Cards

The information punched on these cards includes
(1) the total number of nodes,
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Tig. 5 — Flow diagram for the NEASIM program.
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(2) the total number of branches,

(3) the total number of branch occupancies,

(4) the occupancy associated with cach of the branches, and
(5) the interconnection scheme between the various nodes.

Simudation Definition Cards

Suppose there are m different branch oecupancies for the GRAPH
in question. These m values are punched on a Simulation Definition
Card. I'or every set of values of the oceupancies py, -+, pn — that
is, for every point on the blocking curve Bg(py, -+ -, pa) — there is
one Simulation Definition Card.

The estimator B¢ (py, -+, pn) will converge to Ba(pi, -+, pu)
as n — ., But the computer must be instrueted as to when to terminate
the run. Now, the NEASIM process is such that it is possible to request
that the error | B'” — Bg | lie within a given percentage of the true
value B¢ . This “desired precision” information is also punched on the
Simulation Definition Card. It may happen, however (as will be the
case whenever B is very small) that, in order to obtain the requested
percentage error, the total number of repetitions of the NEASIM
algorithm will perforce be exceedingly large. Since a lengthy computer
run is economically undesirable, and since a high degree of precision is
usually not needed when the blocking probability is so very low, an
upper limit on the number of repetitions, #, is also supplied to the com-
puter by being punched on the Simulation Definition Card. If, after a
run has been made, a greater degree of precision is still needed, it is
possible to “‘pick up where we left off” and eontinue the simulation in
another computer run.

The Program

The Graph Definition Cards are read into the computer first. With
this information the program constructs, in effect, a map in the com-
puter memory of the geometrical configuration of the GRAPH. More-
over, the program associates with each branch an occupancy p; — whose
value is as yet unspecified. The first Simulation Definition Card is then
read in, and the program now assigns the appropriate values to

D1, , Pwm. Onee this information is obtained, the program is ready
to execute the NEASIN algorithm, which consists essentially of two
parts:

(7) a busy-idle assignment is made on all of the branches in accord-
ance with the specified occupancies py, -+, Pm ;
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(7i) the presence or absence of a path is determined for the particular
assignment.

These two steps are repeated again and again until such time as the
estimate B¢ (py, - -+, pm) has been found.

The results for this point on the blocking curve are printed out, and
the second Simulation Definition Card (if there is one) is read. The
program then goes through the preceding steps for this second set of
values of py, -+, pn until the estimate for this point on the blocking
curve has been obtained. When all the Simulation Definition Cards
have heen processed, the program run ends.

3.2.2 Memory Organizalion

After the Graph Definition Cards have been read in, the program
prepares five main tables as follows:

(1) Node table

(2) Node-Link table

(3) Branch tables

(4) Occupancy tables

(5) Linkage table.

The Node Table

The size (i.e., the number of words) of the Node table is equal to the
number of nodes in the GRAPH, there being a one-to-one correspond-
ence between the words in this table and the nodes in the GRAPH.
These words are used by the program to indicate, after a particular
iteration of the NEASIM algorithm, whether or not there is a path
from each particular node to the first node.

The Node-Link Table

The size of the Node-Link table is also equal to the total number of
nodes in the GRAPH, with each word corresponding to a particular
GRAPH node. For each node the table indicates

(7) the number of branches leaving the node — connecting to nodes
more distant from the origin, and

(ii) a reference to a section of the Linkage table where further infor-
mation on each branch is stored.

The Node-Link and Linkage tables together constitute the program’s
map of the GRAPH geometry. The other tables provide storage for
busy-idle indications and path information.
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The Branch Tables

There are as many Branch tables as there are different occupancies
in the GRAPIH. For occupancies p;, - -+, p. there will be m Branch
tables, which we denote hy BRT,, - -+, BRT (., . The size of BRTy;,
equals the number of branches in the GRAPH which are busy with
probability p; . There is a one-to-one correspondence between a particu-
lar word in BRT;, and a particular branch in the GRAPH. The associ-
ation between the words in the Branch tables and the particular GRAPH
branches is part of the information stored in the Linkage table. The
Branch table words are used by the program to store the busy-idle state
of every GRAPH branch on each iteration of the NEASIM algorithm.
The total storage required for the Branch tables equals the number of
branches in the GRAPH.

The Occupancy Tables

There are m Occupaney tables, OCTq,, -+, OCT (., corresponding
respectively to BRTq,, -+, BRT(,, . The size of OCTy; is an input
parameter of the program chosen to be large compared with BRT,, .
Every bit in the table OCT(;, contains a binary one with probability
pi . The Oceupancy tables are used by the program to supply random
busy-idle states for assignment to the branches of the GRAPH on each
iteration of the NEASIM algorithm.

The Linkage Table

As previously mentioned, this table contains the detailed interconnec-
tion information between the various nodes in the GRAPH. The size
of the table is equal to the number of branches in the GRAPH. Each
word in the table represents a branch, say 0;, in the GRAPH and
contains

(7) the address of a word in the Node table which corresponds to
the node to which b; leads, and

(#7) the address of a word in a Branch table which stores the current
busy-idle state of the branch b; .

Consider, for example, the GRAPH of Fig. 2(a) and suppose that
the occupancy of branches b, and b, is p, ; the oceupaney of branches
by, by, bs and bg is ps ; and the occupaney of branches b; and bs is p; .
The tables which the program would prepare are indicated in Fig. 6.
The symbolic addresses, such as NW1, BRW3, etc., have been chosen
for illustrative purposes only.
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NW6 — 0
Nws[ ] L 1
Nwa| L8 1
NW3 L7 2
NW2| L5 2
NWI L3 2
NODE TABLE NODE-LINK TABLE
BRW2 BRW6 BRWS
BRwi[ ] BRWS| | srw7[
BRT) BRW4| BRT(3)
BRW3
BRT(E)
| | [
| | I
T J P, 1‘ Ps
I i 1
0CTy) OCT(z) 0CT(3)
L
L8 BRWS NW6
L7 BRW7 NW6
L6 BRW6 NW5
L5 BRWS NW4
L4 BRW4 NW5
L3 BRW3 Nw4
L2 BRW2 NW3
Lt BRWI Nwz

LINKAGE TABLE

Fig. 6 — Computer memory layout for the GRAPH of Fig. 2 with occupancies
pry peand .

3.2.3 Organization of the NEASIM Algorithm

In a previous seetion it was mentioned that the NEASIM algorithm
requires

(7) an assignment of busy-idle states on the branches, and

(#7) a method of searching for the existence of a path.
These tasks are performed by three program segments which we shall
call

(7) the PROBABILITY GENERATOR,

(#¢) the BUSY-IDLE ASSIGNMENT, and

(#72) the MATCH routine.
For the sake of program efficiency (speed) the task of assigning busy-
idle states to the branches is divided into two parts. The function of
the PROBABILITY GENERATOR is to generate tables of busy-idle
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bits — the Oceupaney tables. The BUSY-IDLE ASSIGNMENT rou-
tine assigns busy-idle states to branches on each iteration of the algo-
rithm. The funetion of the MATCH routine is to find whether or not
there is a path, given a particular assignment of busy-idle states on the
branches. Discussion of the internal logic of these programs will be
deferred to Section IV. For the present we will be concerned only with
their functions.

After the Graph Definition Cards have been read, enough information
is available for the program to reserve appropriate space for the Node,
Node-Link, Branch, Oceupancy and Linkage tables. Once space allot-
ment has been made and the necessary entries filled into the Node-Link
and Linkage tables, the program reads the first Simulation Definition
Card. Among other parameters, this card specifies the m different branch
occupancies desired. At this point the PROBABILITY GENERATOR
fills in the Occupancy tables. When this routine has completed its task,
each bit in OCT;y ,7 = 1, -+ - | m, will contain a binary one with proba-
bility p; and a zero with probability 1 — p,. (Recall that the NEASIM
convention is that one represents busy and zero represents idle.) The con-
tents of the Occupancy tables remain unaltered for the entire time that
the program is seeking an estimate for one point on the blocking curve.

The storage of many computers is organized into sequentially num-
bered words, each of which consists of a fixed number of contiguous
bits, and each of which is addressable hy the stored program for logical
and algebraic manipulation. The number of bits in an IBM 7090 word
is 36, so that each word in the Occeupancy tables represents 36 independ-
ent busy-idle states — thus allowing for 36 independent repetitions of
the NEASIN algorithm.

After the Occupancy tables have been prepared, various counters are
set to zero and the Node table is initialized. As the contents of the Node
table indicate for each node the presence or absence of a path from the
particular node to the origin, the program takes the attitude of the man
from Missouri and assumes there is no path until one is proven to exist,
Thus the words of the Node table are initially set to all 1’s except for
the first node, which always containg zeros.

At this point the program enters the BUSY-IDLIS ASSIGNMIENT
routine. To assign busy-idle states to the branches, this routine steps
through each of the Branch tables and for each word in BRT, a
word from OCT; is selected at random and its contents duplicated in
the Branch table word. When BUSY-IDLE ASSIGNMIENT has been
completed, the program enters the MATCH routine.

Using the linkage information stored in the Node-Link and Linkage
tables, the MATCH routine performs its logic on the Branch and Node
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tables to find whether or not there is a path through the graph for each
of the 36 independent busy-idle configurations. The operation of this
routine is analyzed in Section 4.2.

When MATCH has completed its work, the number of 1’s in the word
of the Node table corresponding to the terminal node in the GRAPH
(NW6 in Fig. 6) will be the number of times there was no path through
the graph in the 36 trials. This number of blocked attempts is noted and
36 is entered into a “‘run-length” counter. The Node table is reinitialized,
busy-idle states reassigned and the algorithm repeated again and again.
The repetitions will terminate when one of two situations occurs at the
end of the MATCH routine. Either

() enough attempts have been scored to guarantee the precision
called for on the Simulation Definition Card, or

(77) the maximum number of attempts specified on the card has been
exceeded.

When the repetitions terminate, the proportion of blocked attempts
is caleulated and the results are printed out. The next Simulation Defini-
tion Card is read and the process starts over for the next point on the
blocking curve.

3.2.4 Storage Requirements and Execution Speed

The largest GRAPH that can be handled by the present version of
NEASIM is determined by the core storage available in a particular
computer, Total storage required is given by the expression

P+2N+B)+0

where:

P is the number of storage locations required by the NEASIM
program itself (about 2000 words),
is the number of nodes in the GRAPH,
is the number of branches in the GRAPH, and
is the storage required for Occupancy tables — typically m X 1024
where 1 £ m =< 8 is the number of occupancy tables.

The NIEASIM algorithm is designed for rapid execution on the IBM
7090. Average speed depends principally on the size of the GRAPH.
Typical speeds range from about 600 trials per second (550-branch
GRAPH) to about 5000 trials per second (48-branch GRAPH).

OW=

IV. PROBABILITY GENERATOR AND MATCH ROUTINES

The functions of the two routines called PROBABILITY GENERA-
TOR and MATCH were mentioned in the previous section. The present
section is concerned with the internal logic of these programs.
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The algorithm used by PROBABILITY GENERATOR is due to
W. C. Jones.” It is felt that this heretofore unpublished algorithm is of
sufficiently widespread interest to be included in this paper.

A word on notation: throughout Section IV we shall use the notation
C[A] to mean “the contents of A,” where A represents some bit in the
computer memory. (The reader is therefore cautioned to distinguish
between “bit A” and its contents C'[A].)

Two computer instructions which will be referred to repeatedly are
the logical (inclusive) “OR” and logical “AND" instruetions. Instruct-
ing the computer to perform an OR on two bits will guarantee that the
result will be 1 if, and only if, either or both of the bits contain 1; while
an AND yields 1 if, and only if, both bits contain 1. When we OR bit A
to bit B, then we shall say that we “perform [4] OR [B];” when we AND
bit A to bit B, then we say that we “perform [4] AND [B].”

4.1 The PROBABILITY GENERATOR

The purpose of PROBABILITY GENERATOR is to generate the
occupancies Py, -+, pn . We mentioned in Section 3.2.2 that this
subroutine will fill up OCT ¢y (i = 1, ---, m) with 36-bit words each
of whose bits contains 1 with probability p;(¢ = 1, .-+, m). In the
sequel we will focus our attention on (a representative) one of these
36 bits — keeping in mind that the program is actually working on
36 bits independently and in parallel.

Suppose we wish to generate a random binary variable which takes
the value 1 with probability p(0 < p < 1) and to place our result in
bit X. The algorithm, when terminated, will give Pr{C[X] = 1} = p.

The first action taken by PROBABILITY GENERATOR is to ex-
press p as a binary fraction to 10 places.* This fraction is then scanned
from right to left until the first bit is found which contains a 1. The
algorithm uses this binary fraction of n = 10 places determined by the
scan. We can therefore, without loss of generality, express p as

?)-:O.b,,b,,_["‘bf_lbl b;zl;bg,---,bn:OOrl.
A digit selected from a random binary number will be referred to as a
“random bit”” in the following algorithm. In a random binary number,
the value of each digit is 1 with probability 3.

Algorithm:

(7) Set 7 = 1. Generate a random bit, say r;, and store it in X.
Thus C[X] = r,.
* The number of places is arbitrary. Ten was chosen to make the round-off

error smaller than 0.001, since occupancies are specified on the Simulation Defini-
tion Cards to three decimal places.
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(i1) 1f j = n, go to step (vii). Otherwise, increase j by 1 and con-
tinue.

(i71) Generate another random bit r; and store it temporarily in some
bit, say . Thus C[R] = r;.

(iv) If b; = 0, go to step (v). If b; = 1, go to step (vi).

(v) Perform [R] AND [X]; store in X. Go to step (#2).
(vi) Perform [R] OR [X]; store in X. Go to step (7).

(viz) Stop.

We observe that step (#Z) is performed (iterated) exactly n times.
Let P, be the probability that C[X] = 1 after the jth iteration. The
assertion is that P, = p — ie., after the algorithm is terminated, X
will contain 1 with probability p.

Proof of Algorithm:

Consider two bits 4 and B, and let p, = Pr{C[4] = 1}, and ps =
Pr{C[B] = 1]. When the contents of 4 and B are independent, if we
perform [A] AND [B], the probability of the result being 1 is

Palu
while if we perform [4] OR [B], the probability of the result being I is
Pat Pu — Pabs.

Now, Prir; = 1} = Prir; = 0} = 3 j=1,-,n
Therefore if step (v) is executed,

Pip =3P j=1--,n—1 (3)
while if step (v¢) is executed,

Pin=%+P;,—3P;, j=1-",n—1

= 3P; + 3.

But step (») is executed only if b1, = 0, and step (v7) is executed only
if ;51 = 1. Hence (3) and (4) can be combined into

Pipp =3P+ 3bjn j=1,-,n—1L
Since P, = 1, it follows by induction that

bn-—l b2 bl_
gt gty =P

b,
Pn=§+

and our assertion is proved.
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4.2 The MATCH Routine

The MATCH routine is entered by the program after the busy-idle
states have been assigned to the branches. Its purpose is to find whether
or not there is a path through the graph for any particular assignment.
In the present section we first derive a recursive set-theoretie formula
which may be used to determine whether there is a path. The remainder
of the section shows how the recursion is ecarried out by the computer
to produce an estimate which eonverges to the blocking probability of
the GRAPH.

In Section 2.2 we saw how the “path enumeration approach” could,
in theory at least, be employed in determining the blocking probability.
We again take the path enumeration approach, but from a slightly
altered point of view:

Instead of trying to find whether there is a path through the entire
graph at one fell swoop (which amounts to finding whether there is a
path from the first node to the last node), we shall try to find whether
there is a path from the first node to each of the nodes in the GRAPH.
While this approach may appear to inject an unnecessary complica-
tion, we will see how, by stepping through the GRAPH in an orderly
fashion, this approach lends itself naturally to computer programming,.
We begin by investigating, somewhat further, the geometrical structure
of a GRAPH.

Consider the general GRAPH (whose structure is shown schematically
in Fig. 7) and suppose that there are a total of » nodes. Each GRAPH
has a first node, Ny, a last node, N, , and several intermediate “‘stages”
of nodes. The notion of “stage” is made more precise by the following
definition: a node N is said to be in stage s(s = 1, 2, ---) if, and only if,
all paths from N, to N contain no more than s — 1 branches, and there
exists at least one path from N, to N which contains exactly s — 1
branches.

Any GRAPH will thus contain some number S = 2 of stages, where
the first and last (Sth stage) consist, respectively, of the single nodes
Niand N, . Let n, be the number of nodes in stage s, s = 1, --- , S (thus
ny = ng = 1); and define a quantity m, by

8
m, = 2. n;.
i=1

We choose to order the nodes of the GRAPIH in the following manner:
to each of the n, nodes in stage s (s = 2, --- | S) assign arbitrarily, but
uniquely, one of the integers

My + 1, mey + 2, - my + n, s =2 --- 8
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o
o
a
O
Nj

s=1 s=2  s=3 s=5-1 s=§
Fig. 7 — A general GRAPH.

The nodes of the GRAPH are hence totally ordered and may therefore
be denoted by N, where¢ =1, ---, »

When N; and N; are connected by one or more parallel branches,
where N;, N; are arbitrary nodes, we say that, for ¢ < j, N is directly
connecled to N ; through each of these branches and write N; — N ;.
We shall suppose, without loss of generality, that if Ny — N;, then
there is only one conneeting braneh, b . (This restriction is assumed in
order to avoid introducing yet another index, but will not affect the
subsequent results. When a computer instruction involving b is de-
scribed, we shall understand that the computer is to execute this in-
struction for all the b, for which N; — N;.)

Let us now examine the graph, asking the question for every node
N, “Is there an available path from N, to N; ?”” Our objective is to
answer the question forj = ».

For each node N; (j > 1) consider the branches b for which N, — N ;.
Clearly, for each of these branches, if there was no available path from
N, to N; or there is no available path through the branch bﬁ, or both,
then, and only then, will there be no available path from N, to N; which
passes through N, . More precisely, let

X ; be the event: there is no available path from N, to N,
Y/ be the event: there is no available path from N, to N;
which passes through N,
B/ be the event: branch b, is not available (busy).
Then
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Y,'j — X:’ U Bi-j
Xj = ﬂ Y;j = ﬂ (JY,' U B,‘j).
i<y i<j
Ni+N; Ni=N;

Consider all the nodes N; such that N; — N;. Suppose there are k;

such nodes. Call them N, , Ny, , -+, Ny, wherety <4y < o0 < gy
Next, define an event Z,"™ recursively by
Z;™ = (X, UB,HNz"™" m=29 .. I (5)
N. — N,
=2, , ¥
and
z" =X, UB,’ Ny — N, (6)
j =2, , v

It then follows that
7,5 = X; Jo=2 (7)
and in particular
2,00 — x,

where X, is the event “there is no path through the graph.” The MATCH
routine is based upon these formulas.

We now focus our attention on (a representative) one hit in cach
word of the Node and Branch tables — again keeping in mind that the
program is actually working on a full word of bits independently and in
parallel. The program will thus execute 36 simultaneous iterations of
the MATCH algorithm, which we now proceed to evolve.

When MATCH is entered, the following state of affairs prevails:

(i) Toeach node N, and to each branch b,’ there has been uniquely
assigned one bit of computer memory, so that we can henceforth refer
to these bits as bit N, and bit b,

(i) C[b;] = 1 with the appropriate occupancy p;/ = Pr{branch
b is busy}. (These p;’ were called py , - -+ , P, in Sections IT and III.)

(77¢) The linkage information between the node bits N; and the
branch bits b, is stored in the Node-Link and Linkage tables.

It follows that representation of the event Z; = X, U B,—lj of for-
mula (6) ean be achieved in the computer by performing

[No] OR [b))
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provided that we always set C'[N,] = 0; and the event Z = X of
(7) can be represented by executing the following steps.
(#) Perform [N;] OR [b;,7]; store in N ;.
(72) Setm = 1.
(7i7) If m = k, go to step (v7). Otherwise, continue.
(#) Increase m by 1.
(v) Perform ([N;,] OR [b;,’]) AND [N ]; store in N;. Go to step
(7).
() Stop.
We observe that the algorithm may be condensed if we initially set
CIN) =10 2 2):
() Setm = 1.
(4¢7) Perform ([N, ] OR [b ;mj]) AND |N]; store in N ;.
(7it) If m = k;, go to step (v). Otherwise continue.
(iv) Inecrease m by 1. Go to step (i),

(v) Stop.
This initialization of the node bits — C[N,] = 0, C[N;] = | forj =
2,3, ---, »— was mentioned in Section 3.2.3 and can be interpreted as

meaning “there is always a path from N, to N, ; there is no path from
Nito N, (j > 1) until proven otherwise.”

Summarizing, the steps that the computer may take to represent the
event £, = X, are

(M1) Set O[N] = 0. Set C[N;] =1, > 1.

(M2) For each bit N;,j = 2, -+, », and in the order

Noy Ny, -+, N,
find all bits N; for which N; — N, and perform
(IN,] OR [b/]) AND [N}]; store in N ;.

Now, the statement “find all bits N, for which N; — N,” implies
that the input to the program is such that it specifies to the computer
which nodes N; are directly connected to N;. It was felt that a more
straightforward input format would be to specify to which nodes, N;,
each node N, connects. With the linkage information stored in this
fashion,* step (M2) may be replaced by the equivalent step

(M2') For each bit N;,7 = 1, ---, » — 1, and in the order

Ni,Noy -, N

* A careful perusal of Section 3.2.2 will show that this is indeed the way the
linkage information is stored in the Node-Link and Linkage tables.
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find all bits N; for which N; — N; and perform
(IN:] OR [b/]) AND [N}]; store in N; .

Steps (M1) and (M2) constitute the MATCH algorithm for deter-
mining whether there is a path through the graph. When the MATCH
algorithm is terminated, ('[N,| = 1 if, and only if, there is no path, so
that Pr{C’[N,] = 1} = Pr{no path}.

Suppose the algorithm is iterated n times. In any one iteration the
event C[b7/] = 1 is generated with probability p;” and independently of

the event C'[h/] = 1 in any other iteration. But Pr{C'[N,] = 1| after a
given iteration is clearly only a function of the probabilities Pr{C'[b/] =
1. Hence, N, will contain 1 with the same probability, B, after each
iteration, and we conclude that n iterations of the algorithm constitute
a sequence of n Bernoulli trials with probability B of success on each

trial. Let £ be a random variable such that

£ 1 if C'[N,] = 1 after the 7th trial

0if ('[N,] = 0 after the 7th trial

and let

B,, =El+£3+ +Eu-
An application of the Law of Large Numbers (Ref. 29, p. 189) gives
lim (B,/n) = B.

Identifying B,/n with Be" (py, -+, p.) of Section 3.1 and B with
Be(pr, -+, pu) of the same section, this last result is equivalent to,
and proves the assertion that,

Hm B (pe, ~++, pu) = Balpr, -+, Pu).

Repeating the experiment often enough and dividing the number of
times C[N,] = 1 (i.e., the number of blocked attempts) by the number
of iterations n (i.e., the number of attempts) will therefore yield a
precise estimate of the blocking probability of the GRAPH. How
large n has to be in order to attain any given degree of precision is dis-
cussed in the next section.

V. RELIABILITY CONSIDERATIONS

Since any simulation is nothing but an experimental measurement,
and hence subject to statistical fluctuations, it is necessary to assess the
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reliability of the results. Unfortunately, most of the testing for a given
simulation must be done on an a posteriori basis and there is, in general,
rarely sufficient a priori information on which to base the decision of how
long the run is to be. The need for such information becomes even more
important when the cost factor in computer simulations is considered.
Tt will be shown below that the NEASIM procedure is one which allows
for a priori determination of run length. The decision of how long the
run is to be is based on the desired precision and is made by the com-

puter.
In Section 4.2 we introduced the random variable B, , the number of
times C[N,] = 1 in n repetitions of the experiment. B, will now be

called “the number of calls blocked in a simulation run of n calls.”*

The estimator B,/n was seen to converge to the blocking probability
B, and is indeed a maximum likelihood, mean-unbiased, minimum
variance estimator.

To generate the random binary numbers of Section 4.1, NEASIM
uses the well-known multiplicative congruential method. This method
for pseudo-random number generation has been discussed, tested, and
used by numerous investigators” ™ since it was first proposed by
Lehmer.” Although the method has been demonstrated to generate
35-bit random binary numbers, there is some measure of cyclic behavior
in the low-order bits. NEASIM forms a word of 36 random bits by
combining the most random halves (18 high-order bits) of two 35-bit
words generated by this method. A further check on the randomness is
provided by NEASIM itself, which, as part of its output, prints the
generated branch oeccupancies. We therefore assume that the events
C[N,] = 1 are independent for individual trials of the experiment. The
results of any given computer run should thus be binomially distributed
(see also Section 4.2), and hence asymptotically normal.

As an illustration, we again turn to the GRAPH of Fig. 3. For a
branch oceupancy of p = p. = 0.5, formula (2) yields B = 0.0525.
The NEASIM program, for a run of n = 201,600 calls, gave B =
0.0529 — an error within 1 per cent. (This run took some 40 seconds of

* The new nomenclature is chosen to indicate a different interpretation of what
NEASIM is doing: NEASIM looks at the configuration of possible paths through
the network between two subscribers, takes ‘‘snapshots’’ of the current busy-idle
states of the links in these paths, and then finds if there is a path for each snap-
shot. Thus the program is essentially running calls through a portion of the
network — the portion of the network being a representative one, and hence one
from which significant statistical data can be extracted to describe the perform-
ance of the entire network. A similar approach was taken by A. Feiner, W. C.
Jones, and others,? who wrote ‘‘abbreviated’’ simulations in which the busy-

idle state data were taken from previously run full-scale simulations, but for
which a new program had to be written for each new network to be simulated.
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computer time.) To study the normality, the number of blocked calls

was noted for every 1008 calls run. Since B, is the number of blocked

calls in a run of » calls, the binomial distribution function in this case is
8

Pr{B, < 8] = X (101?8

k=0

)BR(I _ B)IGOS—k
and the approximating normal distribution function (Ref. 29, p. 172)
is (g 1), where
re = (L — 1008B)h
h = [1008B(1 — B)|™*

=

and

1 z
(p(g;) = _\/‘T—ﬂ-_/_- e—,yEdy

is the standard normal distribution function. Fig. 8 is a plot on proba-
bility paper of the cumulative frequency distribution determined by the
computer, and the theoretical normal distribution line for B = 0.0525.

In order to obtain meaningful results, it was felt that the run-length
should be determined by the following criterion: the number of trials
shall be large enough so as to give 95 per eent confidence that the esti-
mator lies within a fixed percentage of the true value of B. Sinece the
blocking probability is unknown at the outset, this criterion is more
useful than requiring the estimator to lie in a fixed interval about B.
Thus, we wish to choose n large enough so that

80
~ l
-

0 N
j 70
< "'\\Qq
v D(Tg +1/2) oy |
% 60 ""-c%
4 et
w PO~y
@
3 50 “ngc
F]
z \QQQ
2 40 .9{
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0.01 0y 051 2 5 10 20 40 60 80 90 95 9899 099.8 99,99

PR {Bn = 5}

Fig. 8 — Cumulative distribution for GRAPH of Fig. 3 (p = p. = 0.5) in a
run of 201,600 calls in which the number of blocked calls was noted for every
1,008 calls run. The points are experimental data; the line is the theoretical dis-
tribution, ®(zs)
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Pr {

where @ is an input parameter to the program representing the desired
percentage. Rearranging terms, we get
B, — nB
Pr ———__n._i <a /‘/_LB_ = 0.95
vnB(1 — B) 1—B
where, for n sufficiently large, the distribution of the random variable

B, — nB
vnB(1 — B)

approaches the standard normal. Our requirement will therefore be

satisfied if
nB
>
a /‘/ =B = 1.96

ngﬁg“(é—l). (8)

It follows that the number of trials should be inereased as the blocking
probability decreases in order to maintain 95 per cent confidence that
the estimator lies within a fixed percentage of the true value — as
intuition dictates. On the other hand, for a fixed B, as n increases, the
95 per cent confidence limits will narrow. This is displayed in Tig. 9,
where the program results for the GRAPH of Tig. 3, for B = 0.0525,
are seen to lie within the confidence limits.

Furthermore, since (1/B) — 1 < (1/B) forall B in the unit interval,
the requirement will be met if

%—B\gw}zo.%

or

, 3841

n .
at B

But for large n, B & (B,/n). Hence, making the substitution we obtain

> 35

a?

B,

As long as the number of simulated calls is large enough so that the
number of blocked calls is at least 3.84/a", there is 95 per cent confidence
that B,/n is within aB of B.

NEASIM was written to accept several values of @ ranging from 0.05
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Fig. 9 — NEASIM blocking estimates for GRAPH of Fig. 3 vs run length
(p = pa= 05, B = 0.0525).

to 1.00. From the specified value, it determines the minimum number of
blocked ecalls necessary to guarantee this precision. Ifig. 10 shows the
results of the simulation of the GRAPH of Fig. 3 for @ = 0.10 and 0.50.
In GRAPHSs where B is very small; it is usually unnecessary to estimate
B with a very high degree of precision — especially at the expense of
costly computer runs. An upper limit for » is therefore also specified.
The computer then proceeds with the simulation until it either exceeds
the lower limit on B, or the upper limit on .
In the latter ease, the reliability can be assessed as follows. Since

pr BBl g6l S 005
VnB(l1 — B) = -

we can rearrange terms and obtain
Pr{dB’ + ¢B +f =0} = 095

where



998 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

0.3
+50%
0.2
PRECIS;ON // +10%
*10% TRUE
0 50% //d—m'l.
/ //‘/
o1 Vi p 4 9
r 0.09 // 4’
J o0.08 7- 4
2 0.07 /] & /~50%
g oo Y ay// SR
x 4 v
£ A & d
0.05 / »
g /7/
< 0.04 w', v
8 /7
@ 7/ /
0.03 / - /

4

o]

.01 .
0.44 0.46 0.48 0.50 052 0.54 0.56 0.58 0.60
BRANCH OCCUPANCY

Fig. 10 — NEASIM blocking estimates for GRAPH of Fig. 3 vs branch oc-
cupancy p = pa.

d=n" + 38416 n
¢ = —(2nB, + 3.8416 n)

f = B

It is easily verified that for all », B, > 0, the parabola dB* + eB + f

is concave upward, has real roots, and that B,/n lies between the roots

whenever B, < n. Thus for any simulation run, the 95 per cent confi-
dence interval can be obtained by solving for the roots.
Now in all cases of interest, the product of the roots,

f/d = B.}/(n* + 3.8416 n),

can be closely approximated by (B,/n)%, so that B,/n can be taken as
the geometric mean of the roots. Suppose the higher root is B, and the
lower root B, ; then
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81 = fl‘BH'/I‘R
B, = (1/k)B,/n.

The roots were caleulated over a range of values of B, and n, and the
results are displayed in Fig. 11, where & is plotted as a function of B, /n
for various values of n. As an example, suppose that in a run of 80,000
calls, B, = 80 were found blocked. Then B,/n = 0.001 and Fig. 11
gives bk = 1.244. Hence B; = 1.244 (0.001) = 0.00124, B, = 0.001/
1.244 = 0.000803, and there is 95 per cent confidence that 0.000803 =
B = 0.001244. The importance of the ease under consideration would
then determine whether a longer simulation is necessary.

Since the GRAPH geometry may be as complex as indicated in Iig. 4,
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it is important to be able to verify that no error was made in mapping
the geometry into the computer memory. To this end, a program was
prepared by Miss D. Logan which, using the Graph Definition Cards
as input and an SC-4020 Microfilm Recorder, draws a picture showing
the GRAPH geometry.

VI. POSSIBILITIES FOR INCREASED REALISM

In the preceding section it was shown that the NEASIM program
produces precise, reliable results in comparison with Lee’s probability
linear-graph model of switching networks. Unfortunately, in complex
switching networks, substantial differences may exist between the
estimates obtained with Lee’s analytical technique and actual perform-
ance determined by field measurement or full-scale (complete) simula-
tion. These differences appear to be largely attributable to the unreality
of the assumption [(e) of Section 2.1] that the link random variables are
independent.

The dependence that exists between the different links in a network
stage and between the links in adjacent stages is incompletely under-
stood, but nonetheless real. Attempts to take account of interlink de-
pendence by judicious modification of link occupancy values have been
moderately successful in ealeulations and may, of course, be employed
in NEASIM runs. However, the nature of the NEASIM process suggests
alternate approaches which may ultimately prove to be more fruitful.
While considerable suceess has been obtained with some of the tech-
niques discussed in this section, much remains to be accomplished.

6.1 Dependence Effects within a Switching Slage

Two possibilities for increased realism within the confines of a single
link stage appear worthy of mention. The NEASIM program typically
assigns link stage busy-idle states from a binomial distribution. An
obvious suggestion (but one upon which little work has been done)
would be to modify the PROBABILITY GENERATOR and/or
BUSY-IDLE ASSIGNMENT routines in such a way as to produce
busy-idle state assignments taken from various distributions — Ja-
cobaeus’ F distribution,*:¢ for example.

A second approach, which has been extensively used, is to incorporate
program routines between BUSY-IDLE ASSIGNMENT and execution
of the MATCH routine. These routines examine the random busy-idle
assignments and make appropriate assignment changes where GRAPH
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geometry or other considerations indicate. An example of such a routine
is one which is designed to insure that there exists at least one “sure-
idle’” branch out of an n X n input switch. If calls are only placed be-
tween idle network terminals, at least one branch out of an n X n input
switch must be idle. But if the branches leaving the initial GRAPH
node are specified at occupancy p, then the program would normally
make all these branches busy with probability p*. The SURE-IDLE
routine, upon finding such an assignment, will select an initial branch at
random and make it idle. This action, of course, disturbs the otherwise
binomial distribution of branch states and should be taken into account
when branch occupancy values are specified.

6.2 Interstage Dependence E{fects

An interesting technique for introduecing interstage dependence exists
within the NEASIM framework and is based upon an obvious extension
of the SURE-IDLE routine just described. Briefly stated, a routine
could be designed to examine the busy-idle assignments made on the
input and output branches of each node of the GRAPH. Acting on
knowledge of the switch geometry and other factors, the “dependencing”
routine could change the initial busy-idle assignments where necessary
to make them more realistic. Only a very simple and admittedly in-
accurate routine has been used to date with, however, a remarkable
increase in the “realism’ of the results obtained.

The simple-minded DISPIENDENCING routine currently employed
assumes that every GRAPH node is in reality an n X n switch. It
observes that in an » X n switch each input branch has probability 1/n
of being connected to any particular output branch. It attempts to
implement its idea of reality by, for each input branch, examining each
output branch and foreing the output branch state to agree with the
input branch state with probability 1,/». While this routine can produce
rather quaint effects, such as duplicating the state of one input branch
on all output branches, it does possess the virtues of simplicity (rapid
execution) and a basically correct notion of interstage dependence.

That the use of the SURLE-IDLI and DEPENDENCING routines
can be effective is demonstrated in Fig. 12. The results shown in the
figure are for a moderately complex eight-stage switching network whose
GRAPIH has 232 branches. NEASIM results with and without de-
pendencing and sure-idles are compared with the results of a full-scale
simulation. The improvement in realism possible with the rudimentary
routines just described appears quite dramatic.
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and sure-idles) with full-seale simulation data for a realistically complex network.

VII. CONCLUSION

The NEASIM approach to switching network simulation has achieved
its major goal, the mechanization of a widely employed — if somewhat
unrealistic — technique for load-loss analysis. The applications of the
GRAPH model need no longer be restricted by the overpowering com-
putational difficulties brought on by GRAPH complexity.

Furthermore, the simulation of an analytical model concept basic to
NEASIM seems to open new areas for profitable exploration in the
analysis of switching systems — and perhaps other stochastic systems
as well. The success of the elementary realism-injecting routines suggests
that further research along this line may be rewarding,

Tinally, the degree of realism in results attained so far, coupled with
the ease of application, has produced what amounts to a new tool for
use in both the design and engineering of new switching networks. It is
now feasible to achieve relatively complete and accurate load-loss
engineering data on complex switching systems well in advance of actual
field experience.
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