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We present here a general and rigorous theory of the jitter accumulation
in a chain of regenerative repeaters. The sources of jitter are assumed to be
the signal-dependent sources, as distinguished from purely random sources
independent of the signal.

Our results show that while the absolute jitter and its dispersion grow with-
out bound with the number of repealers, the spacing and the alignment jitter
remain bounded. In particular, the spacing jitter bounds are quite oplimistic
for most practical situations, viz., no greater than twice the absolute jitter
injected at a single repeater. This resull is of importance in that it ensures
proper decoding of the binary signal. Iis further importance is that it
does ensure, in most cases, the validity of the basic model and thus the validity
of other results obtained by that model. One such resull shows that the align-
ment jitter is slowly-varying for repeaters farther along the chain. We also
include some results which would be of use in compulations, together with a
simple example.

1. INTRODUCTION

1.1 Purpose

Pulse regeneration is an attractive feature of digital communication
systems. A regenerator or a regenerative repeater must: (z) detect the
presence or absence of a pulse at certain time instants which are, ideally,
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multiples of the basie pulse repetition period, (i) regenerate the pulse
shapes, and (#77) retime these pulses so they occur at appropriate in-
stants of time in the outgoing signal. In practice, errors in detection due
to noise, distortion, ete. in the system and errors in retiming the signal
impose limitations on the operation of such systems. Except for noise
which may lead to the detection of a pulse where no pulse exists in the
original signal and vice versa, the imperfections in the system show up as
a jittering of the pulse positions in the outgoing signal. In self-timing
repeaters,! the jitter from all sources except random noise is also de-
pendent on the signal itself.?

Several workers have investigated many different aspects of the tim-
ing jitter problem.’-* We study here the signal-dependent jitter due to
repeated regeneration. This article leans quite heavily on our previous
diseussion, and in fact it supplements as well as complements the previ-
ous results referred to in this article as Parts I and I1.?

1.2 Background

In our previous discussion, we showed how the timing jitter in a pulse
train accumulates as the pulse train is repeatedly regenerated. The tim-
ing information was assumed to be extracted from the incoming signal
itself, and the timing extractor was assumed to be a tuned circuit. Mis-
tuning in the tuned circuit was assumed, as a convenience, to be the
major source of jitter. However, the accumulation properties of timing
jitter are not dependent on a particular source of jitter. We shall attempt
to clarify this point here.

Our previous results showed that the displacements of the pulse posi-
tions from their original positions (or the “absolute jitter”) increase in-
definitely with the number of repeaters. The major component in the
absolute jitter was found to be flat delay (i.e., the same displacement
at every pulse position). A natural question follows: How does the ab-
solute jitter behave if the flat delay is removed? This is the “dispersion”
or the absolute jitter measured against the reference clock delayed by an
appropriate amount. It was shown that the dispersion also increases
without bound except when the pulse trains are severely constrained
(e.g., periodic, finite, ete.). These results are valid even under the con-
straint that there exists at least one pulse in a predetermined number of
the basie periods or “time slots.”

It is worth noting that the absolute jitter and the dispersion have as
counterparts the average and the variance of the random variable repre-
sented by the pulse displacement at any pulse position. We wish to em-
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phasize, however, that our results are independent of any a priori sta-
tistics concerning the pulse train ensemble.

1.3 Resulls

In the present article, our most significant result concerns a more im-
portant parameter, viz., the “spacing jitter,” which is the variation in the
spacing between adjacent pulses. We show that the spacing jitter is
bounded for an indefinitely long chain of repeaters, and the bound is di-
rectly related to the minimum pulse density. Such bounds may be pre-
cisely evaluated both for the infinite as well as the finite chain of re-
peaters. The importance of these results lies in the precise evaluation of
the bounds, the means to control these bounds, and in our ability to re-
late these bounds either with resulting errors in the decoding of the sig-
nal,? or with distortion in the analog signal,® depending on whether the
bounds are large or small. As will be seen later, these results also deter-
mine the validity or otherwise of all the other previous results on the
timing problem, since the present results have a direct bearing on the
validity of the model used by most people.

We also present a rather thorough discussion of the computational
aspects of the problem in the Appendix. Special situations such as peri-
odic patterns, trunecations, pattern transitions, ete. are included in our
discussion.

The case of nonidentical repeaters is examined briefly. [t appears that
the bounds on jitter are not appreciably different if the repeaters are not
appreciably different. The “misalignment,” or the jitter introduced by
a single repeater in an already jittered pulse train, is also examined
briefly. We show that the misalignment is slowly-varying for repeaters
further along in the chain.

Let us emphasize, in conclusion, that our results are not dependent on
any a priori statistics. Our analysis is quite rigorous once the basic model
is derived. The basic model is essentially the same as that of other in-
vestigators, and the major assumption in the model asserts that a single
repeater introduces only slowly-varying jitter in a jitter-free pulse train.
Such an assumption is quite reasonable for any practical repeater.

1.4 Organization

We start with a mathematical statement of the problem. Our formula-
tion shows that the input and the output jitter sequences are related to
cach other by a linear operator which maps the space of bounded se-
quences into itself. The dimensionality of the space is determined by the
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memory of the system, which is infinite for an infinitely long chain of re-
peaters. We are thus led to a discussion of the operator in a Banach space
of infinite dimensions. The spectral properties of the operator determine
the behavior of the absolute jitter and the dispersion. Next, we consider
the spacing jitter obtained by a difference operation on the absolute
jitter. The brief discussions on the misalignment, unequal repeaters,
ete. follow. Finally, we present several results to facilitate computations.

1I. STATEMENT OF PROBLEM

The basic model of the repeater is represented by a tuned eircuit ex-
cited by a train of pulses. The natural frequency of the tuned cireuit is
assumed to be very close to the pulse repetition frequency. At upward
(or downward) zero crossings of the response of the tuned circuit, timing
pulses are generated which determine the instants of outgoing pulses;
the presence or absence of a particular pulse in the output signal is de-
termined by the presence or absence of a pulse in the input signal.

Let |---, =27, —7,0, 7, --- } represent the instants of occurrence
of pulses for the ideal pulse train. These would be the centers of the cor-
responding time slots. The oceurrence or nonoccurrence of a pulse at
t = —nr is determined by the value of the random binary variable @, .
A pulse is present when @, = 1 and no pulse is present when @, = 0.

At this point it is convenient to assume that the pulse train consists
of impulses located at the actual pulse positions defined above. The
actual pulse shapes modify the zero crossings of the response of the tuned
cireuit, and a term representing such a correction can be added sepa-

rately.
Finally, let &' be the displacement of the kth pulse (originally located
at { = —k7v) at the output of the /th repeater in a chain of repeaters. At

the input of the [th repeater the timing displacement is given by &."',
which is the jitter value at the output of the (/ — 1)th repeater. The dis-
placement (or jitter) is measured in radians, where 27 corresponds to the
pulse interval 7.

In order to determine ., we merely find the appropriate zero crossing
of the response of the tuned circuit excited by a train of pulses. The ex-
citing pulse train is itself jittered and this fact is represented by the
values of {&''}. It turns out that the &' is actually a nonlinear function
of the set £, '} withn = 0,1, 2, --- . Furthermore, it also depends
on the original signal represented by the set {@,] and, of course, the @
of the resonant eircuit. If, however, :&Jr,,r_l} satisfy certain conditions,
it is possible to represent the &' as a linear function of the variables
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[&+. . The function is still dependent on {@,} and the Q of the cir-
cuit. This is the fundamental relation between the input and output
Jitter and, if there were no jitter introduced by the repeater, it would
take the following form:*

E &n+k18" £n+k171
Bl= = (k=0,1,2, 30 = 1,2

© 15 “'), (1)
ZE.[) an«}-kﬁn

where 8 = exp (—=/Q) =~ 1 — (x/Q) for large Q.
The conditions that must be satisfied by &' are the following:

e — 6.4 | < x/Q  forall k. (2)

These conditions are unaltered when (1) is slightly modified to include
the jitter introduced by each repeater [cf. (3)]. It is therefore very im-
portant to make sure that (2) holds in order for any of the results ob-
tained on the basis of (1) to be valid. The quantity required to be small
in (2) is the spacing jitter, whose behavior is important in that if it ever
becomes too large there will occur errors and distortion in the decoded
signal.?* Tt is our intention here to investigate thoroughly the behavior
of the spacing jitter. Fquation (1) represents the way in which jitter
propagates along a chain of repeaters. The jitter accumulation properties
of a chain are, therefore, a consequence of this basie equation. Of course,
at every repeater there is jitter injected in addition to the one propagated
from previous repeaters. Since we are not discussing here effects of ran-
dom noise, the sources of the injected jitter are signal-dependent, and
they are identical if we assume identical repeaters. The jitter injected at
every repeater by signal-dependent sources is thus identical. For such
sources, this injection of jitter is simply additive either at the input end
of the repeater® or at the output end.? .57 For example, dispersion in the
channel with a consequent imperfect detection of the pulse positions
would be an additive source of jitter at the input of the repeater.® Cer-
tain nonlinear operations (such as limiting) on the response of the tuned
cireuit would inevitably alter the zero crossings, and this may be repre-
sented as an additive source at the output end of the repeater. If the
mistuning of the resonant cireuit is small, it can be shown that mistuning
represents an additive source at the output end. Finite pulse widths also
represent an additive source at the output.? In any case, such injection
of jitter depends on the signal and repeater parameters. Sinee these are
the same at every repeater, the injected jitter is the same at every re-
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peater. Additivity of these sources is usually a consequence of the fact
that the injected jitter is small. For convenience, we will refer all these
sources to the output end and represent the injected jitter by {&!'}, the
output of the first repeater, where the original pulse train is assumed to
be jitter-free. It is somewhat inconvenient to refer all sources to the in-
put, since it would involve inverting the functional relationship of (1).
Our interest in this article is not to discuss the quantitative evaluation of
{£}. For simple sources such as mistuning and finite pulse widths, it is
relatively easy to evaluate {£:!}. We shall discuss elsewhere the question
of determining {£!] when all sources are included. However, let us
emphasize that we do not restrict the sources of jitter to short memory
mechanisms.®
In this paper, our interest is to determine the behavior of {£&} for
large { when the basic equation (1) is modified to include the injected
jitter:
DIC Y o WP
B=L————— + &, (3)

> @uiB”

n=0

subject to condition (2), and where we assume that £° = 0. Condi-
tion (2) is satisfied by {£°] sinece they are all zero and by {£:'} because
for a practical repeater the jitter injected by a single repeater must be
extremely small. We have made no assumptions on the nature of the
signal. Thus, if it can be shown that condition (2) is valid for every
I, then the results obtained by using (3) are valid. This is an important
point which cannot be overemphasized. We will therefore pay particu-
lar attention to the behavior of the spacing jitter.

III. RECAPITULATION

In this section, we recapitulate the basic formulation of the problem
developed in Parts I and II of this article. For details, the reader is re-
ferred to the original discussion. Define a vector

Xo= (6,68, ), (=12 ) (4)
and X, = 0. Then, the basic equation (3) may be written as

X = ToXoa + Xy, (5)
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where
Q@ @ @]
Sy Sy Sy
o @ @8
Ty = 51 S1 , (())
0 0 .
S2
and
si = 2 @8 (7)
n=>0

We have thus expressed our original problem in terms of an operator 7',
which maps the Banach space 1, (the space of bounded sequences) into
itself. We are interested in the behavior of X, as [ approaches infinity.
The operator T’ is the most general one. However, there is some interest
in the behavior of the jitter when the pulse trains are periodic and the
operator T, under steady-state periodie condition (ef. Part 1) becomes

_ m—1 "]
@() Gl.@ . @rﬂ—lﬂ
80 s’ s’
-1 —2
qﬂﬁm Ctl . @"'71‘6'"
o’ o T
Ay = 81 81 S , (8)
o3 N (o
L. Smfll Sm—l’ -

where s," = (1 — g")s, for all n. Finally, it is more convenient to write
the operator T, explicitly to indicate only those positions where the
pulses are present. This leads us to the operator

1 Bfl BfI'H!

) ()

=
I
=
-
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where
So = 8o (10)
and
Su1 =14 B"S,. (11)

The vectors X; are also assumed to be suitably modified. We will use
the operator T' of (9) to represent our quantities of interest. * The operator
T, will give identical results. The special restriction to the periodic case
will be of interest when we discuss computational aspects. The operator
A, is also assumed suitably modified to 4. Several parameters of interest
may now be expressed in terms of the operator T and the injected jitter
element X, .

3.1 Absolute Jitter

From (5), we have

X = [E T':| X, (12)

=0

and in the limit

-1
Y = lim [Z T"]Xl. (13)

law | y=0

3.2 Dispersion

This is obtained by subtracting the average delay from the absolute
jitter. A delay element is represented to within a constant by {1,1,1, - - i
This element happens to be an eigenvector of 7' corresponding to an
eigenvalue at A = 1. Under the condition that A = 1 isa pole (ef. Part
I1) of T, we can represent the dispersion by

—1
X =(-E)X; = [I ~ EI:I[E T'] X, (14)
=0
where E; is the projection operator E, (A = 1; 7') which takes on the
value “one” in the neighborhood of A = 1 and zero elsewhere.

* Tt should be observed that the condition (2) is also modified. The right-hand
side of (2) now beecomes =/ times the number of basic periods r between two ad-
jacent pulses.
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3.3 Spacing Jitter

This is obtained by subtracting from the absolute jitter at one pulse
position the absolute jitter at the adjacent pulse position (not neces-
sarily the adjacent time slot).

-1
X, = [1 - s][; T’:l X, (15)

where S is the shift operator given by

0 1 0 0

o o 1 0 .. ,
S=1o o o 1 .| (16)

3.4 Alignment Jitter
This quantity is given by the difference of X,,, and X; :
Xin' = X — Xy = T'X,. (17)

Finally, we summarize here without proof the properties of the oper-
ator T which were determined in Part II of this article.

(a) The operator T is a bounded operator mapping 1, into itself for
1 = p = . In particular, the norm of T in 1, is equal to one (i.e.,
[T]| = 1).

(b) The spectrum of T is a subset of the unit disk (i.e., | o(T) |<1)
and any pole A of T with | A | = 1 has order one.

(e) All points in the unit circle except A = 1 are in p(7T'), the re-
solvent of 7. The point A = 1 is an eigenvalue of T with the eigenvector
{1, 1, ---}. The dimension of the eigenmanifold is one in this case.

(d) The point A = 1 is the limit point of the point spectrum of 7 if
the domain of 7' is unrestricted. It is a pole of T for very special cases,
such as periodie pulse trains, truncated pulse trains, ete.

1

IV. ABSOLUTE JITTER AND DISPERSION
The results for absolute jitter follow immediately from (13)

—1
Y = 11xn[2 T’]Xl.

s |_vr=0

Observe that X = 1 is an eigenvalue of 7, and since in general X, is any
element of 1., the limit in the above equation approaches infinity as !



1490 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

approaches infinity. In particular, the norm of the operator

K = [iz_f T”] (18)

p=0

is . We thus observe that, in general, the absolute jitter grows linearly
with the number of repeaters.
If A = 1is a pole of T, the dispersion is given by

B !
Xl+lD =|I - EI:H:ZU T’:I Xlr

r 1
=2 T"][I - EI:I X, (since E\T = TE,),
| »=0

= _iE Dv:l[EoXl] (cf. Part 11); (19)

where D = TE,and K, = (I — E;). Here E,X, is the dispersion ele-

ment due to the first repeater. The norm of the operator
1
Ky = [Z D”] (20)
p=0

is bounded and econverges to a finite value as ! approaches infinity. This
follows from the previous discussion (see Part I1I) where it was shown
that

| D" | < May", (21)

where M is a positive constant and @y < 1. We therefore find that the
dispersion is bounded provided that X\ = 1 is a pole of 7. This is true for
certain highly constrained situations. In particular, this is true when
the domain of T is restricted to a finite dimensional subspace of 1, which
is invariant under 7. Examples of such cases occur when the pulse trains
are periodic, finite, ete.

On the other hand, when A = 1 is not a pole of T' the projection E;
does not commute with 7'. In this case,

1
X" = [I — El} [Z T’] X, (22)
y=0

where

ET = Tk, . (23)
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Furthermore, it can be shown that
[(I — ENT"| =1 for all m. (24)

This is a consequence of the spectral properties of T summarized in the
previous section, viz., the point A = 1 is a limit point of the point spec-
trum of T. In fact, we show in Part II of this paper that there exist
elements in 1_ such that the norm of the operator

]

K = [1 - El:l [Z T”:l (25)
v=0

is (I + 1). It follows, therefore, that the dispersion grows without bound

in the case of purely unconstrained pulse trains. The result is not altered

even if some form of coding is provided to eliminate indefinitely long

strings of zeros in the pulse trains.

V. SPACING JITTER

At the output of the [th repeater, the spacing jitter is given by (15),
-1
_\’z" = l:[ - ,\'] I:ZO Tv] Xl = [I\'['}Xl. (26)

In particular, we are interested in knowing whether the quantity X,
remains bounded as [ approaches infinity. Secondly, if it remains bounded
we wish to determine the least upper bound for each l. Since there are
no restrictions on X, (other than the requirement of boundedness), we
are interested in determining the norm in the limit of the operator K,;
or,

lim [ &7 | = lim | (1 — 8)Ki | (27)

when we know that

lim [ K| = eo. (28)

For physical systems we are also interested in | K," | for all /.

All of our results in this section depend upon an important lemma con-
cerning the operator K,. We assert that K;" has a representation simpler
than the one given in (26) and prove this assertion by verification.
Define an operator

B = dlag{(So - 1)_1, (_Sl - 1)_1;; (S?. - 1)-—1) Ir (29)
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where S, 1 are defined in (11).* Then we assert the following
Lemma:

K/ = [I — S:I [f 1:| = B[l — TT" (30)

y=0

Proof: Observe that in (30)

-1
B(I —THT"' =B(I-"T)T" [Z 1]

=0
So, we need merely show that
I — 8] =BT -1
Or,
B'—B'S=T1T"—-1,

where

B7' = diag-{(So — 1), (Sy — 1), -~}
= diag-{Sy, Si, Ss, ---} — L.

Thus we need to show that
diag-{So, S, So, -} — B7'S = T
But from (11),
(Sumr = 1) = 8™S,,

B™' = diag-[8"S:, B8, -}

Therefore, the lemma is proven if

Se —8"S, 0 0 0
0 S, —B"8, 0 0o ---
T = ) . (31)
[. .. 0 S, —BYS, 0 .

The truth of the above statement is verified directly by considering the
products T7'T = TT™" = I. The validity of (30) is thus proven.

* It is quite possible that the S, approach unity. If any S, = 1, it implies a
finite pulse train, and the question is analyzed very simply in a finite dimensional
space as was done for the periodie case. Such cases, however, do not give us infor-
mation for the infinite pulse trains which are required for long chains of repeaters.
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We can now state the following
Theorem: The aperator K," is bounded for all Lif inf S, = a > 1.

Proof: From (30), we have

K/ | = |B(I—THT™"|

IIA

Bl =T[|T]

We know that | 7'| = 1 for all land | 77" | is finite from (31). Hence
| K, | is bounded if B is bounded, which it is if inf S, = « > 1. The

n

theorem is thus proven.

Carollary:

lim | K| < =.
[
This follows trivially sinee the boundedness of K," was proven inde-
pendently of {. Our assumption that inf S, = a > 1 is a simple assertion

n
of the fact that indefinitely long strings of zeros are ruled out on any
communication channel.
Next, we wish to determine what precisely is the norm of the element

X" = K/'X,

as it relates to the norm of X, . Let us recall that X, is the jitter in-
jected (at a single repeater) referred to the output of the repeater. The
injected jitter referred to the input of the repeater is

X =1T"X,, (32)

where T-! is defined in (31). We find it more convenient to work with X
in what follows. It is obvious, of course, that our entire discussion could
have been carried out in terms of X from the very start. We chose not
to do so in order to avoid a premature discussion of T-'. The sequence
represented by X naturally satisfies condition (2). In fact, the use
of X allows a much simpler comparison of the spacing jitter at different
repeaters along the chain. We are interested in the behavior of

X/ = [K/'TIX (33)
for each [. This is obtained by a precise evaluation of the norm of

R' = K/'T = B(I —T". (34)
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Let us first define Siur = inf S, . Then, we state the following
Theorem: The norm of R," is given by

1—1

R (35)

Sinf r=0

Proof:
R’ = B(I —T".

Let us consider the representation of (I — 7). The diagonal elements of
(I — T are of the form [1 — (1/ S,")], whereas the off-diagonal ele-
ments are all negative. Also, the sum of the elements in each row must
be zero. If we multiply (I — T*) on the left by B, then the diagonal
elements are of the form [1/(S, — 1)][1 — (1/8,")]. Again the off-
diagonal elements are all negative and the sum of the elements in each
row of B(I — T') is zero. Hence, in 1,

oot V(1=
= =2 () (- )

2 &1
B Sinf v=0 Sinl'v '

The theorem is thus proven. Observe that this is not just a bound but a
precise norm. This value in the norm is taken by the spacing jitter X'
for some X whose norm is one. In other words, the value in (35) represents
the maximum magnification of X that is possible to yield the value of
the spacing jitter. It is interesting to note that this worst case occurs for
each [ for the same element X, viz., {---, 1, =1, —1, -- -}, where the
+1 corresponds to the position of 1/, in the matrix representing the
operator T. Finally, to observe the maximum possible growth of the
spacing jitter as it compares with the maximum possible spacing jitter
at a single repeater, we compare the results for / = 1 and [ = «.

R 2 (36)
b Sinf '
. 2

R = o1 (37)

The ratio of the quantities B_" to R, is less than two if Si.r is at least
greater than two, which is to be expected in most physical situations.
For example, if @ is of the order of 100 and there is at least one pulse
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present in fifteen time slots, then S;, is at least two or greater. Thus, we
observe that not only is there a bound on the growth of the spacing
jitter but that the growth is monotonic and levels off rather fast. Of
course, this is a rather general result which, if desired, ean be more spe-
cifically stated in terms of the a priori probability distributions of the
binary signal. Furthermore, the importance of this result lies in specify-
ing the conditions for the validity of our model. Under most realistic
situations it should be clear that conditions (2) are met at every re-
peater. Of course, there are situations when these conditions are not met
and the results obtained by the use of our model [ef. (3)] ean no more
be relied upon. However, we show that under most situations the results
are reliable and very optimistic, as shown by (36) and (37).

The above results are the most erucial ones in this paper. The rest of
the paper is devoted to a varied miscellany that has some bearing on dif-
ferent aspects of the timing problem.

VI. ALIGNMENT JITTER

The alignment jitter in the (I 4+ 1)th repeater is given by (17),
‘Y].H:l = T',AY] .

Obviously, for all [ the alignment jitter is no greater in the norm than
the absolute jitter X, . This follows trivially since | 7' | does not exceed
one for any (.

For more detailed insight into the hehavior of the alignment jitter,
we need to discuss specifie situations.

(a) If X = lisa pole of T, then 7' converges to 7 and X, ,," settles
down to a flat delay element for large /.

(b) If A = 1is not apole of T, and inf S, = 1, T’ does not converge

to T%. However, for large [ the alignment jitter is slowly-varying.
(e) If A\ = 11is not a pole of 7, and inf S, = @ > 1, the alignhment

jitter (for large !) varies even more slowly than it does in (b).

All the above results follow from the properties of 7. If A = 1 is a pole
of T, the result is obvious (cf. Part I). If it is not a pole of T, the results
follow from the fine structure of the spectrum of 7. For example, in
situation (b), all points in the point spectrum except A = 1 are poles of
T, whereas this is not true in situation (¢). The corresponding eigen-
vectors have different structures for the two cases (ef. Part I1).

It follows that the situation of (a) is to he preferred over that of (e),
which in turn is preferable to that of (b).
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VII. NONIDENTICAL REPEATERS

This is a rather difficult matter to discuss with any great generality.
What we hope to do here is to briefly indicate perhaps the most conveni-
ent formulation and to give some reasons for believing that the orders
of magnitude of the jitter parameters are not changed for small differ-
ences in the repeaters.

There are essentially three possible ways in which the repeaters may
differ: (7) injected jitter, () Q of the repeater, and (#47) mistuning. These
differences appear mathematically in terms of different operators, mul-
tiplicative coefficients in the power series, and so on. We examine each
of these separately.

If we assume that the injected jitter differs slightly at each repeater,
then we may write (5) as

Xt = TXI-! + Xav + Al, (38)

where X, is the average injected jitter and A; represents the deviation
from this average in the ith repeater. The norm of X, differs at most
from the previous case of identical repeaters by

l
| &1+ TA + TAs + - + T7A [ = 2 [ A] (39)

If the | A; | are quite small, it is clear that the results will not be ap-
preciably different from the previous ones.

If the Qs are different, then our basic operator is different for each
repeater. It would be almost impossible to analyze such a case in general.
However, we can make certain observations if we put

T,=T+ K, (40)

where T'; is the operator representing the /th repeater, which is assumed
to be an operator T perturbed by an operator K;. It is reasonable to
expect | K;| << 1. Then (5) becomes

X =TX:+ X1+ KXo (41)
If | K;| £ e < 1, then the norm of X; does not differ from the previous

results by more than

(16_5)|X1|@’61X1|- (42)

Again, we see that the results are not appreciably different.
In the case of mistuning, (5) takes essentially the same form as (38),

Xz = T.lel + XA + (-pYa, (43)
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where X, is the injected jitter due to sources other than mistuning, ¢
is the mistuning in the {th repeater, and ¢, X  is the jitter due to mistun-
ing (ef. Part I). Then

-1 -1
X)—[;?ﬂX}+[zkuﬁiXm (44)

The contribution due to X, is unaltered and the contribution due to
X » would depend on the specifications of ¢; . However, if we assume that
the magnitudes of ¢; do not exceed one, then the contribution in the
norm due to X 5 cannot exceed ! times the norm of X 5. Thus the worst
case for the absolute jitter does indeed arise from the assumption of
equal e; at their maximum values.

For spacing jitter we can make a slightly different statement for the
contribution due to X ;. For one repeater, the worst case (in the norm
sense) occurs for the maximum value of ¢ = 1, then the worst case for
two repeaters is obtained by setting e = 1. Setting the first two re-
peaters with ¢, = e = 1, the worst case for a string of three repeaters
is obtained by setting ¢, = 1 and so on. The statement is a simple con-
sequence of the inequality

(T =T"Y | <|(I=TY]. (45)

It is believed that a similar statement can be made for the alignment
jitter.

We thus observe that, when the differences in the repeaters are small,
it is reasonable to expect that the results are not appreciably different
from those obtained by assuming identical repeaters.

VIIT. CONCLUSION

We have presented a general and rigorous theory of the jitter accumu-
lation in a chain of regenerative repeaters. The sources of jitter are as-
sumed to be the signal-dependent sources, as distinguished from purely
random sources independent of the signal.

Our results show that while the absolute jitter and its dispersion grow
without bound with the number of repeaters, the spacing and the align-
ment jitter remain bounded. In particular, the spacing jitter bounds are
quite optimistic for most practical situations, viz., no greater than twice
the absolute jitter injected at a single repeater. This result is of impor-
tance in that it ensures proper decoding of the binary signal. Its further
importance lies in the fact that it does ensure, in most cases, the validity
of the basic model and thus the validity of other results obtained by that
model. One such result shows that the alignment jitter is slowly-varying



1498 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

for repeaters further along the chain. Finally, a brief discussion shows
that the assumption of identical repeaters leads to results which are of
the same order of magnitude as would be obtained if the repeaters dif-
fered by not too great an amount. Some results which would be of use in
computations are tobe found in the Appendix, together with an example.

In our discussion so far, we have investigated the accumulation prop-
erties of jitter due to repeated regeneration. We have made no attempt
to determine the jitter introduced by a single repeater. Analytically, this
problem is complicated not only by the nonlinearities involved, but also
by a lack of complete knowledge as to the actual mechanisms involved.
We propose instead, in a later paper, an experimental approach which
allows these measurements to be carried out under steady-state condi-
tions. This experiment also has some bearing on the question of simula-
tion of long chains of repeaters.

IX. ACKNOWLEDGMENTS

I wish to take this opportunity to express my appreciation for the help
T received in this entire endeavor from several of my colleagues. In par-
ticular, I wish to thank B. Liu and M. R. Aaron for many helpful dis-
cussions and eriticisms. For their advice and encouragement, my thanks
go to J. A. Young and M. Karnaugh.

APPENDIX

Figenvalues and Eigenvectors of T

Practical systems call for the evaluation of jitter when the number of
repeaters is finite. In such cases, we need not concern ourselves with in-
finite pulse trains. So long as the pulse trains are much longer than the
effective memory of the system, the results obtained by considering
finite pulse trains will be reliable. The results will also be reliable if the
pulse trains are considered periodic with the period being greater than
the memory of the system. Actually, as we shall see, the periodic pulse
trains are much more difficult to work with than the finite ones. However,
we shall discuss the periodic case in detail since much of the experimental
work is carried out using periodic pulse trains. Finally, another case of
interest is that in which there is a certain quiescent pattern which changes
to a different one. This would include a periodic pattern changing to
either a nonperiodic or a different periodic pattern. In each case, our
interest is in determining the set of eigenvectors. Computations can then
be carried out by expressing the injected jitter element in terms of the
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eigenvectors (cf. Part I). If the set of eigenvectors is not complete, we
employ the standard procedure and use the so-called generalized eigen-
vectors. It should also he observed that the case of nonidentical repeaters
is also handled using the same techniques. We present here certain sim-
ple algorithms for determining the eigenvalues and the eigenvectors for
the several cases of interest.

A.1 Truncated Pulse Trains

This is the case where the pulse train is finite. The matrix 7' in (9) is
now finite, upper triangular and the diagonal element in the last row is
unity. Such a matrix also arises in the case of pattern transitions where
originally the quiescent pattern is periodic with only one pulse present
in each period. This is also the more realistic case because the tuned
circuit is thus properly excited. We consider the truncated case, therefore,
together with the pattern transition case.

A.2 Pattern Transitions

Here we have a steady-state periodic pattern which changes to a dif-
ferent pattern. The operator 7' ean be represented as

]

where P, representing the new pattern, is an upper triangular square
matrix, A represents the quiescent periodic pattern, 0 is the null matrix,
and €' is the connecting matrix. The matrix A is either an arbitrary
positive stochastic matrix for an arbitrary periodic pattern or it is a
scalar (viz., unity) for the case of only one pulse present in each period.
The latter case also occurs when the tuned circuit is excited by a refer-
ence pulse train such as 101010 - - - .

In either case, the eigenvalues of T are given by the eigenvalues of
P and those of A. The eigenvalues of the matrix A are discussed in the
section dealing with the periodic case. The eigenvalues of P are given by
the diagonal elements S,”". If A is a scalar, the only other eigenvalue is
unity. All the eigenvalues are thus determined.

Next, we observe that the eigenvalues of P are distinet. If not, for
some n (say, n = 0),

So= 14 8%+ B0 4 oo BT TS,

which implies a steady-state periodic pulse train, contradicting the
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transient nature of . Thus the eigenvalues of 7' are distinet unless, of
course, there is a periodic pattern involved. Let us reserve the periodic
case for the next section. Then, the eigenvectors of 7' form a basis for
the space of jitter vectors both for the truncated case and the pattern
transition case when the qguiescent pattern has only one pulse present
in each period.

The eigenvectors are given by the algorithm

1
by T
n+1 q 1

Sy —

£n

(ef. Part IT) for each eigenvalue A.

The eigenvalues and the corresponding eigenvectors are thus very
simply determined when either the reference pattern has only one pulse
in each period or the pulse train is finite.

A.3 Periodic Patterns

Let us start by assuming that the period is m and there are n pulses
in a period. Then

m = %1+12+ A +7:u-
Let ay = (1 — 8"), and D; = S, . Then,

- 1 ﬁfl ﬁi1+i2 ,61‘1+“'+i"—‘ -
B*U 170 Dy .. _D_n__
B:‘2+-.-+l'n. 1 Bz’g 'B":E"I"""i’f“,_]
o b b D
4= )
ﬁl-n 'Bl',fh'l o o 1
- Drr—l D"41 1)““:l |
A = det(\] — A)
Dy — 1 —pg ... —pghtetia
I
DﬂD] e Dn—]

g™ =" e ADp — 1
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1
A= JT)lll)l T D?lfl
(}\DQ _— ao) —Bil])[A 0 0 ... 0 |
0 (AD] - (l'u) —,8'."’1)2)\ O A 0
—'[J”‘“ _ﬁi~"+i1 . . (A])ugl _ 1)
_ _mnl _ﬂ'_(] _L my n—2
[t (- 5) () +
[24]] g ag 1 m
+ (A B E) (A N D_l) (A DrA—Ii) (7Dn—2 .6 A)
oy 1
HO-5) 0 5m) 0 o)
=P + QM),
where
) _ S Ll
]0)—§(A—E)
and

mn—i—;ww”HQ—;ﬁ.
v—k

=)

Finally, after some manipulation it ean be shown that
A = (ﬁ’ﬂ l) A" + })(A)
gy
Thus the eigenvalues of A are given by the zeros of the polynomial
R(N) = P(x) — B"\,

when

n—=1

ITov =87,

i=0

P(N)

The zeros of R()\) can be obtained from those of P(\) by root-loci con-
siderations or other numerical methods. Since 8" is usually small, this
can be handled easily on a digital computer.
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Next, let us discuss the eigenvectors corresponding to the eigenvalues
given by the zeros of R(\). We show that for each distinct eigenvalue of
A, the eigenvector is given by the algorithm

8 — 1
PUR——
TS =1
This would be true if &4, = & for all k or, if

(5= D= (5-0)

(Sica = D(Sue —2) -+ (S0 = 1)

The above is true if

. 1 < )
SucaSuz -+ S (—) P =T (S — 1)
A k=1

n

=TT (g*S)

k=1
= B"818: .-+ S,
= B"SeS18: -+ Spa (since S, = So),
or if
P(\) = 8"\,
which is indeed true for every eigenvalue A. For a repeated eigenvalue
A, if it exists, one must find a generalized eigenvector in the usual way.

We have thus given simple algorithms for determining the eigenvalues

and the corresponding eigenvectors of A.
1t should be mentioned that the algorithm for eigenvectors is the same
as the one given above when A4 is a submatrix of 7' as in Section A.2.

A4 Example

Let us consider a simple example to illustrate some of the points. Con-
sider a system with repeaters having @ = 100 and signals having at least
one pulse present in 10 time slots. Consider the case of a quiescent pat-
tern (101010 - - - 10) suddenly changing to a new periodic pattern with
one pulse in 10 time slots. We are interested in determining the behavior
of the first pulse after the transition.
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The operator T has the form

B 1 B ,
14po4p+pit-) 140+ +a+ )
0 —_— .
_ 1+ 6+ g+ ()
0 0 '
(L+p+a+ )

Let the jitter vector Xy = (&, &, &, &, - - -}, where & is the reference
phase jitter for the quieseent pattern and (& — &) is the change due to
the transition.

In our simple example it is clear that there are only two eigenvalues
of T, viz, ho = (1 — 8)/(1 — g 4+ ") and A, = 1. The eigenvectors
corresponding to these eigenvalues are ¢q = {{& — &), 0,0, ---] and
€ = ffl,fl,&, 2

The ahsolute jitter obviously inereases without bound with the num-
ber of repeaters. The dispersion remains bounded, since A, = 1 is a pole
of T in our simple case. In the limit, the dispersion is given by

- ()= (2529).
: L=/ B v

The spacing jitter in the limit is given by

1 _ 2 + 10
(ELET. YR
in the zeroth position and zero elsewhere. Finally, the alignment jitter

approaches ¢; in the limit.
The validity of the results is assured if

1—g+8"
(T—) (8 — &) <<10%,

or if

I610 ) -

O ) I () Jay (.— V-V

=8 <105 () ~

Thus, if the jump in the phase jitter, for a single repeater, due to the
transition in pattern is much smaller than 18°) our results are valid. This
requirement can be expected to be satisfied by most practical repeaters.®
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