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The rate equations of Stalz and De Mars giving the time development of
the inversion and pholon number in a maser or laser are discussed ana-
ytically with the aid of a mechanical analogy in which a particle moves in
a potential well under the influence of a viscous damping foree. The coor-
dinale of this particle is analogous to the logarithm of the light output of the
laser, and the amplitude, period, and damping of the motion can be directly
related to the parameters of the rate equations. Simple analytic approxima-
tions are developed for all of the quantities of experimental interest in the
spiking pattern of a laser. Four relationships are given, which do not con-
tain any of the rale equation parameters, whereby a spike pattern can be
tested o delermine if it is consistent with the usual rate equations. Systematic
procedures are described for extracting all of the information contained in
spike patterns.

I. INTRODUCTION

The most fruitful approach for the discussion of maser and laser!
behavior has been through rate equations describing the time rates of
change of the atomic populations and the photon numbers of the electro-
magnetic field. Bloembergen® introduced rate equations for the popula-
tions in a paramagnetic maser and based his discussion on the steady-
state solutions without explicitly considering the photon field. On the
other hand, Shimoda, Takahasi, and Townes? have considered the pho-
ton rate equations and on this basis have given a theory of maser ampli-
fication without explicitly considering the atomie populations. Statz
and De Mars* have shown that the transient behavior of masers depends
upon coupled rate equations for both the populations and the photons.
A number of authors have rederived these equations and discussed their
applications to various maser systems. Considerable attention has been
given to the question of whether these equations have periodic (un-
damped) solutions. It has been shown by Makhov® and by Sinnett® that
the small-signal solutions are always damped, and it has been pre-

1505



1506 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

sumed and often confirmed by numeriecal computations that the same is
true in the large-signal domain. Statz, et al.” have suggested that the
damping of experimentally observed “spikes” in the output of lasers is
probably sensitive to coherence and noise conditions, and not neces-
sarily related to the damping predicted by the usual rate equations.
They also suggest that the complicated spiking patterns frequently
observed® are due to oscillation in many modes of the laser cavity. De-
spite these doubts which have been cast on the adequacy of the Statz-
De Mars rate equations for deseribing laser behavior, they still remain
the logical starting point for any discussion of the power output of lasers,
whether it be transient or steady-state, and of the dependence of power
on the quality of the cavity, the intensity of the pumping light, or the
linewidth, relaxation time, and concentration of the active atoms.

Several ingenious suggestions have been made for modifying the rate
equations so as to obtain periodic solutions. Statz and De Mars* and
Makhov® propose that periodic solutions are obtained if terms are added
to the rate equations representing cross relaxation in the inhomogene-
ously broadened maser transition. On the other hand, Shimoda® sug-
gests that periodic spiking can result if the losses due to absorption in the
cavity can be partially saturated by the buildup of laser oscillations. Al-
though these and other modifications may ultimately prove to be justi-
fied and necessary in laser theory, we shall confine our attention in this
paper to the original Statz-De Mars equations which relate the photons
in a single cavity mode to a single quantity, the inversion, deseribing the
atomic populations. We shall make it our task to understand as fully as
possible the damped oscillatory solutions of these equations and how they
may be applied to the study of the spiking phenomenon seen® in solid-
state lasers.

Rate equations in the simple form have been successfully applied by
MecClung and Hellwarth'® and by Vuylsteke!" to the giant-pulse laser,
which produces a single very short and very intense burst of radiation.
Wagner and Lengyel'? have shown that an exact analytic solution can be
obtained to a simplified rate equation which neglects spontaneous emis-
sion and pumping during the pulse. By also neglecting the loss of pho-
tons in the eavity Dunsmuir'® has obtained a still simpler analytic solu-
tion which is applicable to the rising portion of a spike or a giant pulse.
We shall not consider further these exact solutions or the giant-pulse
laser in this paper, but confine ourselves to those solutions representing
repetitive pulsations, or spikes, in the ordinary laser. It is in this field
that the greatest need now exists for an analytical discussion of the solu-
tions of the rate equations.
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A number of authors have endeavored to put the rate equations on a
firmer theoretical basis. Following Anderson™ and Clogston,'® who first
described masers in terms of the density matrix, treatments using the
density matrix to derive rate equations have been given by Fain, et al.'é
Kaplan and Zier,"” and Pao." By considering directly, without explicit
use of the density matrix, the correlation functions of the electromag-
netic field which are measured in simple maser experiments, MeCumber!?
has shown that the maser medium acts like a dielectric of negative con-
duetivity; he concludes that the field and the dielectrie satisfy rate equa-
tions of the usual form, providing that the populations change by a small
fractional amount during a coherence time (reciprocal linewidth) of the
atomic system. Another formal theory, based on a successive approxima-
tion approach to the quantum mechanical equations of motion, has been
applied by Haken and Sauermann?® to the frequency shifts and interac-
tions of cavity modes in the laser. An extensive survey with bibliography
of the early formal work has been given by Lamb.2 In the present paper
we shall not go into the theoretical basis for the rate equations, but con-
fine ourselves entirely to the problem of solving the equations in the
large-signal domain.

Despite the fact that the rate equations are generally accepted, and
that the general nature of the solutions has been familiar from digital
computer calculations for some time,?13.17.22 it, ig still quite inconvenient
in any particular case to compare observed spiking patterns in solid-
state lasers with predictions of the rate equations. It has been neces-
sary either to use the small-signal solutions and hope that they are not
too inaccurate in the large-signal domain, or to resort to machine calcu-
lations and try to fit three or more parameters to the data by trial and
error. To be sure, much of the data on spiking is not amenable to analysis,
consisting apparently of random spikes with widely varying amplitude,
duration, and interval. Nevertheless, several laser systems are now known
to give very regular pulsations of the type that might be consistent with
the rate equations. Regular spiking patterns have been observed in
Cal’,: U+ by Sorokin and Stevenson* and by O’Connor and Bostick
and in CaWO,: N, by Johnson and Nassau.? Recently the effect has
also been seen in a highly perfect ruby by Nelson and Remeika ¢ and in
a confocal ruby by Johnson, et al.” More extensive studies of highly
regular spiking have been reported by Giirs®™ and by Hercher.2* Thus it
is clear that good data on spiking patterns can be obtained, and it
therefore becomes cogent to inquire into practical and convenient means
for analyzing this data and obtaining information from it.

The information contained in spike patterns is of two distinet kinds,
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which we may call qualitative and quantitative. Qualitatively, we can
determine quickly by means of relationships given here whether a spike
pattern is consistent with the rate equations. If we determine that cer-
tain patterns are not consistent, we are spared the waste of time that
would result from attempting to fit these patterns numerically by trial
and error. It is not obvious at this writing that any of the regular pat-
terns that have been reported are consistent, because the application of
the consistency relationships requires a measurement of the ratio of the
peaks to the valleys in the light output, and only the peaks are seen in
pictures published so far. Thus we suggest that by extending spike studies
to include the valleys new and interesting information can be obtained.
It is to be expected that patterns which are regular but yet not consist-
ent will turn out to be physically the most interesting of all, since they
will point the way to new understanding of laser behavior. The quanti-
tative information can only be obtained from patterns which are con-
sistent, at least in some average sense, and consists in obtaining values
for the physical constants which appear in the rate equations:

N = the number of active laser atoms in the optical cavity

{, = the relaxation time of the upper laser level, usually due to spon-
taneous emission

t, = the photon lifetime in the laser mode of the cavity

{,, = the mode time, the time for spontaneous emission into the laser
mode

t, = the ground state time, the time spent by an atom in the ground
state before being excited by the pump

s = the source strength, the rate of production of laser photons by

spontaneous emission, the pumping light, or any other noise source in
the cavity, or any signal applied to the cavity. Although s may vary
with time, it is convenient here to consider it with the constants.

In principle all of these quantities except s could be directly measured
or caleulated from independent measurements on the laser material, the
cavity, and the pump. The spiking data would then serve as confirmatory
evidence. In many cases, however, spike patterns may prove to be the
most eonvenient method of measurement. The last quantity, s, is in
some respects the most interesting. The first assumption would be that
s is due entirely to spontaneous emission into the laser mode; if so, s
could be caleulated and comparison with the measured value would re-
veal the verity of the assumption. Experiments could be carried out with
an external weak signal from a monochromator to test the response of
the laser as observed in its spiking patterns. Thus we hope that the
analysis given here will help to stimulate new experiments by making
rate equation analysis more convenient for the experimentalist.
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IT. FORMULATION OF THE RATE EQUATIONS

The laser is a system consisting essentially of an optical cavity with
very high @ in a few modes, low  in all other modes, the laser medium
containing the active atoms, and a pump, usually an intense light source,
to exeite the atoms into a broad band of excited states. It is a property
of the laser medium that the atoms decay from these states in an ex-
tremely short time by nonradiative processes to one or more very sharp
excited states, called the upper laser levels. The upper laser levels can
decay radiatively to a sharp lower level, called the lower laser level,
which may be the ground state. If the lower laser level is not the ground
state, we shall assume that very rapid nonradiative decay processes
return the atom to the ground state. Thus we may always neglect the
population of the pumping band and of the lower laser level if the latter
is not the ground state. The laser transition takes place from the lowest
of the upper laser levels, but it may sometimes be necessary to take into
account the populations of nearby levels in thermal equilibrium with this
level. The statistical weights of the laser levels must also be taken into
account,.

The rate equations may always be written in the form (p = photon
number, n = inversion)

dp _ _p  pn

i L Tt (1)
dn _ng—mn _ pn

W a ._V-!O ¢ tm (2)

as long as we consider only a single mode of the cavity, the laser mode,
and negleet all atomie populations exeept the upper laser level and the
ground state. The time ¢, might be called the pumping relaxation time
1 1
S= - 3
w0t (3)
since it represents the characteristic time in the response of the popula-
tion inversion n to the pump. The inversion » may always be written

n=N,— (1/w)N,, (4)

where N, , N; are the populations of the upper and lower laser levels
respectively and w is the statistical weight of the lower relative to that
of the upper laser level. In view of our assumptions, w will come in only
when the lower laser level is the ground state. Let us suppose that the
upper laser level is in thermal equilibrium®®™® with certain other states
not directly involved in the laser transition such that there is a tempera-
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ture-dependent probability P that an excited atom is in the upper laser
level. Then we have for a three-level system, in which the lower laser level
is the ground state,

a=P-i—l
w

1 1
= Lwl=— .
m = PNl (tu Pwt,.) ’
and for a four-level system, in which the lower laser level is not the ground
state, we have

(5)

a=P

6
'H.|]=PNto/tg. ()

If the relaxation of the upper laser level is predominantly by spontane-
ous emission to the lower laser level, there is a simple relation between
t;, tm , and the linewidth Av (cps) of the laser transition

b = (87 Neer /¢*)V L4, (7)

where V is the volume of the cavity and 7. is the refractive index. This
relation should not be taken too literally, since it takes no account of the
anisotropy of the laser medium or the polarization properties of the
transition, and V would have to be replaced by a suitable effective “op-
tical volume” if the laser material does not fill the cavity. Nevertheless,
it points out the important fact that ¢, varies with temperature in the
same way as Av and therefore is subject to control in spiking studies.
Another constant subject to convenient control is ¢, , since 1/f, is pro-
portional to the pump intensity. Even when flash lamps are used for
pumping it is still approximately valid to assume {, is constant, since the
time constant for the flash will usually be much longer than the interval
between spikes. To assure that this is true, it would be advantageous to
have the spike pattern commence when the flash is at its maximum in-
tensity. It is not valid to assume without investigation that 1/4, is
proportional to the total energy dissipated in the flash. Spiking data
should always include a record of the flash as a function of time and an
indication of when the spike pattern occurred. Also subject to experi-
mental control is £, , the photon lifetime in the laser mode of the cavity.
Presumably the losses in a good laser cavity can be estimated rather re-
liably, so that ¢, can usually be directly calculated. The total number N
of active laser atoms can ordinarily be determined in a given sample, but
N does not appear to be a convenient parameter to vary in laser experi-
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ments. The signal or source strength s is best determined from ananalysis
of the spiking data as desecribed in this paper. Although s = s(¢) will in
general be a funetion of time, it will be shown that the spiking pattern
depends only on the value of s at the instant when the net losses in the
laser mode vanish due to the buildup of inversion. We shall denote this
time by £ and the eritical inversion by n, , where

ny = fm/t‘p (8)

is the celebrated Schawlow-Townes' criterion for the buildup of laser
oscillation.

We now introduce dimensionless variables and parameters; in terms
of the variables

T = t/t,
n = n(ly/tn) = n/n (9)
p = plat/tn),

and the parameters
w = 1/t
£ = no(lp/tw) = no/m (10)
o = s(a tyly/tn),

the rate equations (1), (2) become

:'J=d—p=cr—p+pn (11)
dr

. dn

7= =wl—9—pm (12)
dr

Here p represents the photons, n the inversion, and r the time, while w
represents the pumping rate, £ the limiting inversion toward which the
pump is tending to drive the system, and o the source. We see that there
are really only three parameters in the rate equations; it follows that
three relationships among the six relevant physical parameters with
which we started can be obtained from spiking studies. Although we
shall assume in our analysis that » and £ are constant, our results will
provide a useful adiabatic approximation for the case of slowly varying
w, £ Typieal values of the parameters for a ruby laser will be given in
the discussion of a numerical example. For the present we need only
mention that ¢ is relevant only in the initial growth of p prior to the on-
set of laser gain.
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If we regard ¢ as a constant, the steady-state solution of (11) and (12)
is

HE+o— 1 + [+ 0 — 1) + 4]}
HE+o+1) — [(E+0— 1)+ 4d]}}.

The sign of the radical is determined by the requirement that p = 0.
In the limit ¢ — 0 we obtain two cases, depending on whether ¢ < 1 or
E>1.Fore <1

P
(13)

I

Neo

po — /(1 — £)
70 E<1; (14)
N — £1 — Peo)

this is the case in which the limiting inversion n is less than n, given by
(8), and laser oscillation does not occur. For § > 1

P — £ — 1
o0 £>1; (15)

Nw — 1

this describes the steady state of laser oscillation, which is usually ap-
proached through a series of sharp pulses in p(r) called relazation oscilla-
tions, or spikes.

III. THE NATURE OF THE SPIKING SOLUTIONS TO THE RATE EQUATIONS

In this section we shall consider the nature of the solutions to (11)
and (12) when ¢ > 1 and the initial conditions on p and 5 correspond to
very few photons and a small inversion n << n, . This may be contrasted
with the situation in the giant-pulse laser in which immediately after
switching n 3> n, . We shall also assume the spiking condition

wE K 1, (16)

which will be satisfied whenever spiking can be observed. It will be ap-
parent later that when (16) is not satisfied there will be no spikes, but p
will smoothly approach p., . This is the case in gas lasers, where the pump-
ing rate 1/¢, has to be very high to overcome the high relaxation rate
1/t, ~ 10° sec™.

In view of (16) and (12), n(r) will increase slowly with time and p
in (11) can be neglected; thus we have

p(r) = p(r) = o(r)/(1 = 2(7)) (17)

until r approaches r; and n approaches unity. The behavior of p(7) is
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shown in Fig. 1 for the initial condition p(0) = 0. Initially p rises with
slope ¢(0) and asymptotically approaches the adiabatic solution 5(r)
which it follows for a relatively long time until + — 7, . It follows that
the initial condition on p(7) is unimportant. As r passes through r,
where

1’,‘(‘1’1) = 1: (18)

p(7) remains finite and is no longer given by (17); we then leave the
adiabatic phase and enter the spiking phase of the time development of
p(7). According to (11) the slope of p(7) at 7 i8 ¢(71) = o1 . Thus we
construct an approximate solution by smoothly joining (17) to a line
of slope ¢, as shown in Fig. 1. It follows that

p(11) = p = 201/ (wB)’, (19)

where

B=¢&—1 (20)

This is our first important result. It shows that the source occurs in
spiking theory only as a parameter, the single value o; . Thus we may

drop the subscript on ¢ and let ¢; = o, a constant.
Once we enter the spiking phase, #(7) remains close to unity, fluctuat-
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Fig. 1 — The adiabatic phase of the growth of p(r). The curve is the adiabatic
solution (17), and the line segments of slope ¢ are constructions to approximate
p(r) nearr = 0 and r = v, wherey = », = L.
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ing up and down and eventually settling down to its steady-state value
7« = 1. Thus we make the approximations

7— 1 Inn, (21)
and
foimat -, (22)
The rate equations (11), (12) can now be written
4 hp=1Inn (23)
dr
d
(-i—lnn=w(5—$lnn—p). (24)
-

Since the inversion is not directly observed we eliminate In » from (23),
(24); the result is most conveniently written

¥ = wB(l — ") — wt¥ (25)
in terms of the logarithmic light output
¥ = In (p/B). (26)

The diseussion of (25) is greatly facilitated hy a mechanical analogy
which is shown in Fig. 2. We regard ¥ as the coordinate of a particle of
unit mass moving in a one dimensional potential field.

V(w)

¥
—w 1 —¢") dv
ﬁj; ( e ) o7

wBle® — ¥ — 1).

There is also a dissipative resistive force Wt as if the particle were mov-
ing through a viscous medium. For the moment let us disregard the
viscous force, in which case the total energy E of the particle is con-
served

E = V(¥) + W (28)

The particle executes a periodic motion hetween extreme points ¥,, < 0
and ¥, > 0 such that

Iv(‘l’m) = V(‘I'.u) = K. (29)

In the spiking phase it is permissible to neglect exp (¥n). From (27)
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Fig. 2 — The spiking phase of the time development of p(r) considered in terms
of a mechanical analogy 1n which a particle with coordinate ¥ = In (p/8) moves in
a potential V(¥) given by (27). The extremes of the motion ¥,, and ¥y are deter-
mined by the total energy E of the particle.

and (29) we then obtain a simple relation between ¥,, and ¥
Yy — W, = exp (Pur). (30)

This is our second important result.
Let us define

¥, = In (p/8); (31)
then it follows from (28) that
Y, = ¥ —  (o/p)*/208, (32)

since ¥, = ¢1/p1 . It will be clear from the numerical example in the next
section that the second term can be neglected, and we can write

"Pm ~ \Ill . (33)

This says that the small kinetic energy of the particle at the start of the
spiking phase can be neglected.

It is convenient to denote the successive times when %(7) = 1 by
T1, T2, T3, - . From (23) we see that these times correspond to ex-
trema in the motion of ¥; according to this convention the successive
minima and maxima of ¥ are

minima: ()M, ¥, Wy

. (34)
maxima: W, , Wy, Vg, - -
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We have placed ¥, in parentheses, since it is a minimum only in the
mechanical analogy and not in the observed light output. In the absence
of damping, of course, we would have ¥, = ¥3 = ¥ = ---, and
W, = W, = Vg = --- . If (16) is satisfied, the damping will be small
enough so that the motion is approximately periodic, or quasi-periodic.
Thus to a good approximation we can compute the first maximum ¥,
from ¥, by means of (30). Before considering the damping we shall con-
sider other quantities of experimental interest which are characteristic
of the periodic motion.

The mazimum velocity W,.x = ¥, is capable of being measured experi-
mentally from spiking patterns in which the spikes are well resolved in
time. It follows from (28), (29) and (33) that

‘i’mux = ‘I.fﬂ = [2“’16(6%I - ¥ - 1)]
~ [2w8(—¥, — 1))

(35)
In numerical applications this ean be used to ascertain the validity of
(21), since according to (23)
‘i’[, =1In Nmax ~ Nmax — 1. (36)
In general we can write near ¥

¥ = (208 — V()]

& (37)
~ [20B(¥ — W)
thus the time dependence near a minimum is given by
V(r) =¥ + Jwb(r — 1'1)2. (38)

Let us denote by m the full width in time of the minimum measured
between points ¢ times the minimum in light output; this is the same as
the full width of ¥(r) measured between points ¥,, + 1. Thus the dura-
tion of the minima according to (38) is

m = (8/up)". (39)

This applies to all minima regardless of damping, which provides a very
convenient means for determining almost by inspection whether or not
a spike pattern is consistent with the assumption of constant «B. Even
if the minima are not observed to have the same durations, it may be
meaningful, in the sense that our theory provides an adiabatic approxi-
mation, to apply (39) to each minimum separately and deduce the varia-
tion of w8.
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Near the maximum ¥, we write instead of (37)

¥ & 208" — 1) (¥, — 0]

4 (40)
X [2wB(W — W — 1) (¥ — W)],
where use has been made of (30); thus
V(r) ~ W — deB(W — ¥, — 1)(7 — 1)° (41)

The duration M of @ maximum will be defined as the time interval meas-
ured between points at 1/e times the maximum in light output; this is
the same as the interval between points at ¥, — 1. We see from the
factor (¥» — ¥, — 1) in (41) that A/ will depend upon damping; it
may be written in a general way

M= m(¥y — V¥, — 1), (42)

There is in this relation a certain ambiguity which is inherent in our
method of regarding the motion as quasi-periodic. In applying the rela-
tion we may wonder whether the minimum is the one preceding or fol-
lowing the maximum. Within the accuracy of the quasi-periodic approxi-
mation it makes no difference: either may be used, or the average of the
two.

The most readily observed quantity in spiking experiments is the ¢n-
terval between spikes, which can be identified with the period of the
(uasi-periodic motion

I = f A/, (43)

where the integral is over one cycle. To evaluate I we use the approxima-
tions (37) and (40), which are accurate near the turning points ¥, and
¥, respectively where 1/ is large. Upon comparing (35) and (37) we see
that (37) is reasonably accurate even at ¥ = 0 providing | ¥, | > 1.
However, (40) is only accurate near ¥, , say in the range

Vo — 1 < =¥,

Thus we shall use (37) in the range ¥, £ ¥ =< ¥, and (40) in the range
V., < ¥ £ ¥, where ¥, is a crossover point which will be determined
presently. The integral (43) ean now be carried out to obtain

(‘1’2 - ‘I’C); ]

(W — Wy — l)é (44)

I(V.) ~ m l:(\lq — o)+

Sinee both our approximations tend to underestimate 1/%, we must
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choose ¥, so as to maximize I, which gives the condition
T, = ¥ — 1. (45)
Thus the tnterval T between spikes is given by
T =ml(¥y — ¥ — D (Ta — T — 1)7]

= M(¥y — Tn). (46)

It is logical in this case to choose the minimum between the two maxima
between which 7 is measured. There is still an ambiguity, however, in
the choice of maxima. Since our approximation tends to underestimate
1, it is good to use the larger of the two maxima.

We now return to the equation of motion (25) and consider the damp-
ing force —wg¥. If (16) holds, the damping will be small, and can be
computed from the work done per cycle against the damping force.

W = wt _(]g Fdw. (47)

With damping present, energy is no longer conserved, but decreases by
W every cyele of the motion until the particle eventually settles down at
its equilibrium position ¥ = 0, corresponding to the steady-state light
output given by (15). Near ¥; we can neglect e”, so that (27) gives

wB(T; — 1) = W. (48)

We evaluate (47) just as we did (43), using (37) and (40) with a cross-
over point ¢, , determined this time by the condition that W should be
a minimum; the result is

W = (4\/§/3)(NE)(“’5)6[(‘I’M - \Pm - 1)%—'— (‘IIM - ‘I’m - 1)

1
T

1. (49)

Let us denote damping by the increment A¥,, between successive minima,
or AW, between successive maxima. From (48) and (49) the general
formula for damping of minima is

The choice of ¥,, is ambiguous, but ¥, refers to the maximum between
the two minima of AV,, . It is obvious from the shape of the potential
V(%) shown in Fig. 2 that the maxima will be less damped than the
minima. For small damping we have

wB(e™ — 1) (¥ — W) = W, (51)

where W is now computed by integrating (47) from ¥, around the cycle
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and back to ¥, . The result is
AWy = (44/2/3)wt(wB) [(Wy — ¥, — 1)+ (T — ¥, — 1) (52)

with the familiar ambiguity in choice of ¥, . From (52), (46) and (39)
we obtain the very convenient formula

AV, = %—(mf)[ (5?’)

relating the damping directly to the interval. We note that all ambiguity
has disappeared from (53).

We now have a complete arsenal of formulas with which to attack ex-
perimental spiking patterns. Our formulas give all of the minima and
maxima of ¥ as well as the durations and intervals and the maximum of
W in terms of the dimensionless rate equation parameters w, £ ¢ and
B = £ — 1. These formulas are valid in the spiking phase where

‘I’.\[ - q’m - ]- >> ]- (54)
As the spikes damp out the solution finally enters the small-signal phase

Wy — ¥, — 0. (55)

5,6,13,22,20,31

The small-signal solution is well known, so there is no need

to discuss it here, but we give it for ready reference:
n(r) =1 4+ A “¥[Q cos (Qr + @) — 3wt sin (r + o)]
p(7) = B1 + A sin (27 + )] (56)
0 = wB — (at)’

where A is an arbitrary real small amplitude and ¢ is an arbitrary real
phase. xactly the same small-signal solution is obtained from (25),
thereby justifying the approximation (22). It is now easy to see that
when (16) breaks down the frequeney @ of the small-signal solution be-
comes imaginary and there are no oscillations. This may be the case in
the gas laser, where we may have ¢ ~ 1, 8 < 1, and w > 4.

IV. A NUMERICAL EXAMPLE

Before attempting to apply our formulas to the analysis of spiking
patterns we wish to discuss their accuracy with the aid of a machine
caleulation. For numerical integration the rate equations (11), (12) are
best written in the form

&= w(f—ax— ae")

_ (57)
y =o' +ax—1,
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where
T =19

(58)
y = In p.

As already pointed out following (17), the initial condition on z,y is not
critical; it is convenient to start the solution on the adiabatic solution
(17), so we take

y(0) = In g, z(0) = 0. (59)
The constants will have the values
w =712 X 107"
£E=5 (60)
¢ =2X10"

which are typical for a ruby laser. The numerical integration of (57)
has been performed on the IBM 7090 computer using Hamming’s"
predictor-corrector method. The program provides for automatic halving
and doubling of the integration interval under the control of the frac-
tional error of the increment and a preselected tolerance (5 X 107,
The stability and accuracy of the program for this problem were checked
using initial conditions which lead to the small-signal solution (56).

The results are shown in Fig. 3. The solid curve and scale on the right
give y(r), while the dotted curve and scale on the left give z(r) for =
in the range 3 X 10*to 4 X 10*. The origin for r is completely arbitrary.
TFrom (26), (58) and (60) we have

y=V+Ing =¥+ 1387 (61)

We are concerned primarily with y, since the inversion is not ordinarily
observed experimentally. The main features of the computed results are
summarized in Table I, which lists the values of r, , ¥, and m, or M,
forn = 1, - -+, 9 for the first nine extrema in the notation of (34). These
values were obtained from the computed points by fitting a parabola to
the three points nearest the extremum. The spacing of the computed
points was sufficiently small (Ar = 0.005 X 10*) that in all cases all
three points lay well within the validity of the parabolic approximations
(38) or (41).

We shall now attempt to calculate the information of Table I by the
formulas of the preceding section. In every case we shall indicate the
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Fig. 3 — A machine calculation of y(r), solid curve with scale on the right, and
z(r), dotted eurve with scale on the left, satisfying the rate equations (57) for
w="712X 1076, ¢ = 5, ¢ = 2 X 107%. The important results are summarized in
Table 1. Here z(r) represents the inversion and y(r) the logarithmic light output.

TasLe I—CompuTED RESULTS OF NUMERICAL EXAMPLE
Summary of results of machine solution to the rate equations for w = 7.12 X
1075 £ = 5, ¢ = 2 X 1079, Also obtained were zpax — 1 = 0.02830, Jmex =
0.0282.

n Tn Yn Mn M,

1 3.1344 X 104 —14.570 —

2 3.2521 4.240 0.01416 X 104
3 3.3642 —12.815 0.0532

4 3.4806 4.179 0.01415

5 3.5906 —11.795 0.0529

6 3.7013 4.053 0.0151

7 3.8100 —10.986 0.0531

8 3.9186 4.064 0.0152

9 4.0239 —10.303 0.0531
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correct value as computed by machine on the right in parentheses. Ac-
cording to (19)

= 7.50 X 10°

in=Inp = —14.09 (—14.57).

(62)

Thus we overestimate i, by 0.48 or 3.3 per cent. From (61) the theoretical
value for ¥, is

¥ = —15.48. (63)
Putting ¥,, = ¥, and ¥y = ¥ in (30) gives
T, = 2.91, (64)
or
Y = 4.30 (4.240). (65)

Thus we overestimate y» by 0.06 or 1.4 per cent. I'or the excursion of y
we obtain

o — 1= ¥y — Wy = 1839 (18.81), (66)

which is an underestimate by 0.42 or 2.2 per cent. Henceforth we need
not consider ¥, but only . From (50) using ¥y — ¥, = y» — y1 we
obtain

s — 11 = 0.965 (1.355) (67)
ys = —13.12  (—12815). (68)

We are underestimaling ys by 0.30 or 2.2 per cent. From (52) using
Yy — ¥, = y» — Y3 we obtain

g2 — ys = 00541  (0.061) (69)
ye = 4.25 (4.179). (70)

By repeating steps (67) and (69) we could obtain values for any number
of succeeding maxima and minima

s — ys = 0.881 (1.020) (71)
v = —12.24  (—11.80) (72)
ys — ys = 0.0523 (0.126) (73)
o = 4.19 (4.053). (74)

We observe from Table I that 4, — ¥ is unusually large (0.126),
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while y — ys 18 negative ( —0.011); the average of theseis 1 (ys — ¥s) =
(0.058) in better agreement with the machine-computed 3, — ¥4 and
with theory. Thus we suspect that the diserepancy in (73) is not sig-
nificant. There is apparently a slight inaccuracy in the computed solu-
tion on the third and fourth spike. One might expect that noise of
various kinds would have a similar effect on real lasers, making the damp-
ing from spike to spike unreliable. Averaging over several spikes, how-
ever, would still give a meaningful value for Ay , as it does in our com-
puted spike pattern.
The durations of all the minima should be given by (39)

m = 0.0526 X 10*  (0.0531 X 10%. (75)

We see in Table I that m is constant within 0.4 per cent and the average
over the four minima is 0.0531 X 10*. The durations of the maxima will
be caleulated from (42), using for ¥, — ¥,, the values of the excursions
just caleulated, with the minimum preceding the maximum

M, = 0.0127 X 10* (0.01416 X 10%

(=]
~
-

II

0.0130 (0.01415) (76)
My = 0.0134 (0.0152).

Here we have underestimated the spike durations by 11-12 per cent.

The intervals are given by (46)
Iy = 0.226 X 10" (0.2285 X 10%) )
Tes = 0.220 X 10" (0.2207 X 10Y).

The agreement here may be considered perfect. According to (53) we
should have

Aywu/T = 237 X 107° (78)
for all consecutive spikes; the computed results are as follows:
254 (2.66 X 107
456 (5.70 X 107°%)
s (79)
6— 8 (0.51 X 107°)

(4 —6) + (6—>8)] (263 X 107°).

The last line is considered more significant than the diserepancies in
the third and fourth lines. Thus our theory underestimates Ay /I by
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11 per cent. Finally, from (35)
ymnx = Tmax — 1 = 0.0288
(0.0282) (0.0283),

(80)

which shows that the approximation (21) is excellent.

We may conclude from this confrontation between our formulas and
a machine computation that the accuracy is probably adequate for the
analysis of experimental spike patterns.

V. APPLICATION OF THE FORMULAS

Experimental data on spiking are ordinarily obtained in the form of an
oscilloscope trace proportional to the light output. The trace is propor-
tional to p(), the number of photons in the laser mode of the cavity,
but it is usually considered impractical to calibrate the equipment so
as to obtain the absolute value of p(¢). And even if p({) could be meas-
ured absolutely it would not fix the absolute value of p(r) defined in
(9). We shall assume that only relative values of p(7) canbe measured.
The most significant measurements of p are the peak-to-valley ratios

R = PM’/Pm y (81)

the ratio of the maximum light output of a spike to the minimum output
in a neighboring minimum. In analyzing a spike pattern with many
spikes, some convention must be adopted on which minimum to choose.

From (26) and (61)
\I'M - ¥, = Yu — Ym = In R. (82)

Thus the excursions of the model particle in the potential V(¥) are
uniquely fixed by the data. It follows from (30) that both ¥, and ¥,,

are fixed by I
Yy =In(InR)
¥, =In(InRkR) — In K.

(83)

Even ¥, , the hypothetical minimum not actually observed, can be de-
termined by extrapolating the other minima ¥, . Thus all of the extrema
may be regarded as immediately fixed by the data. From the extrema
alone we obtain 2 relations satisfied by the three parameters w,f,c,
namely (19) and (50) or (52).

It is now clear that a single spike pattern does not contain enough
information to determine w,£ 0. The reason for this is that we ecannot
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make use of the measured durations or intervals, since we do not know
the ratio £, between real time ¢ and dimensionless time 7. We might
think that we could obtain information from time ratios such as (M /m)
or (m/I). It turns out that we can, but it is a different kind of informa-
tion, the kind we have called “qualitative” in Section I. Consider the
three quantities

A= (M/I)InR (84)
B=(m/D(hk -1+ (Ink - 1) (85)
C = (AV,/AV,)(In R — 1), (86)

all of which ean be determined immediately from the data since they
depend only on ratios. It is to be expeected that ' might have to be
averaged over several spikes to get a meaningful value. Except for this
difficulty, values of A, B, and (" may be calculated for every spike in
the data after adopting some convention to handle the usual ambiguity
in the definitions (84}, (85), (86). One such convention is illustrated
by the following example:

In Rz =¥, — ‘I’;;

Ag = (A[-_:/[g_.l) In Rg
" » (87)
B;g = (?Hn;"’[‘_l..()[(ln 11)1 - ])J + (111 R'_? - [) -.]
('2 = I(\I’.’ - \I’l](\I’J - ‘I’]”(lﬂ lf,l — I).
From (42), (46), (50) and (52) we find the simple relations
A=B=0C=1 (88)

which do not involve the parameters w,£,6. Therefore (88) should hold
even if w are slowly-varying functions of time within our adiabatic
approximation. We call the relations (88) consistency relations, since
they can be used to determine whether data are consistent with the
rate equations. If (88) is satisfied reasonably well, at least in an average
sense over the spikes, it is a foregone conclusion that a reasonable fit to
the data can be obtained from the rate equations. The converse is also
true: if (88) is not satisfied the data cannot be fitted from the rate
equations.

The importance of observing the minima (valleys) as well as the
maxima (peaks) in a spike pattern is abundantly clear. Without the
valleys we cannot determine R, m, or A¥,, , all of which appear in the
consistency relations. Therefore a great deal of information is lost unless
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the valleys can be seen above noise. This presents some difficulty,
because ordinarily B >> 1 is much too large to be measured from an
oseilloscope trace that responds linearly to the light output and contains
both the peaks and the valleys. In spike patterns the valleys usually
just correspond to the noise level in the experiment. It is not our purpose
to go into experimental details except to point out that with care the
valleys should be observable. The basic experimental requirement is
that the acceptance cone of the detector should correspond to the radia-
tion cone of the laser so as to exclude extraneous light from the pump
and the spontaneous emission of the laser medium. If it is not possible
to measure the valleys, there is still one consistency relation that can
be applied to the peaks alone. From (46), (82) and (83) we have

InR = I/M

(89)
—W, = (I/M) — In (I/M).

The use of (46) is equivalent to assuming A = 1. Thus the minima can
be caleculated from I/M if we assume A = 1. We could obtain the
durations m of the minima by putting B = 1. The damping of the
minima would not be given very reliably by (89), but can be obtained
from (86) by putting ¢ = 1. Thus we can deduce R, m, and A¥,, from
the peaks alone, but we lose all of our consistency relations (88). How-
ever, from (89), (42), (39) and (35) it follows that

D=1, (90)
where
D = (M¥a/4)[(I/M) — 1/[(I/M) — In (I/M) — 1] (91)

can be determined from the peaks if the time resolution is good enough
to give a good value for (MWmax). If (90) is satisfied, it is probably good
evidence that the laser obeys the rate equations, and a rate equation
analysis is meaningful. However, if all that is desired is to apply the
rate equations blindly to obtain quantitative information, it is not neces-
sary to measure Moy . All of the quantitative information in a con-
sistent spike pattern can be deduced from I, M, and AW, .

We now consider practical ways of obtaining quantitative information
from spike patterns. The one-patiern method is to measure {, by an inde-
pendent experiment. The measurement of the cavity losses has been
discussed by several authors.”™* Suffice it to say here that {, can be
measured from the dependence of the threshold flash energy for produc-
ing laser action on the temperature and on losses deliberately introduced
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into the laser mode. Once (, is measured all of the times m, M and I
become known in dimensionless time. From (39)

W = w(t — 1) = 8/m’, (92)
and from (53)

wt = AV, /1. (93)
These equations can be solved for w,£

£ =ym/(ym — 1)

w = 8(ym — 1)/m’, (94)
where

v = F5(m/I)AT (95)
is independent of ¢, . Now ¢ can be obtained from (19) and (89)

o = 38(wB) (I/M)e” "™ (96)

with M = M, and I = I,.,. This procedure makes use of the duration
m of the valleys but not the peak-to-valley ratio R. If only the peaks
are ohserved we write instead of (92)

wB = w(tE — 1) = (8/MD/[1 — (M/I)]. (97)

a

Solving (93) and (97) for o,k gives

£=8M/(6M — 1)
(98)
w=806M —1)/(1 — M)M,
where
8 = 15[l — (M/D]AYy (99)

is independent of ¢, . This kind of analysis can be applied to every spike
in a spike pattern. It may be found that ¢ and especially w vary slowly
from spike to spike, which is permissible within our adiabatic approxima-
tion. If the data satisfy the consistency relations (88), the same values
of w,t will be obtained from (94) and (98). The greatest weakness of
this method is that (94) fails completely if ym = 1; (98) failsif 60 = 1.
Thus a great deal depends on the accuracy of the formulas as well as
that of the measurements of ¢, and v or 6. It follows that the method will
fail whenever & > 1.

As an example we shall apply this method to the machine calculation
considered in Section 1V. We consider the solid curve of Fig. 3 to be the
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data, which implies that ¢, is known and both the peaks and valleys
have been studied. The relevant numbers have already been given in
parentheses in (69), (75), (76) and (77); we repeat them here without
parentheses

AV y = Yo — Yg = 0.061
0.0526 X 10°

m

) (100)
M = M, = 0.0142 X 10
I = I, = 02285 X 10"
From (94), (95) and (96) we obtain
=34 (5.0)
w=12 X 107° (7.12 X 107°) (101)

o= 10 X 107° (2 X 107%).

The lack of aceuracy is primarily due to the fact that £ = 5 is a little
too large to give good results with this method. Using only the peaks,
we obtain from (96), (98) and (99)

£=29 (5.0)
w=14 X 10°° (712 X 107" (102)
c=8X10"° (2 X 107°).

We now describe a fwo-pattern method which does not require the
measurement of ¢, . In fact, it yields a value for ¢, and may in some cases
give better results for w,¢ than the one just deseribed. It is based upon
observing the valleys in two or more spike patterns for which the
relative values of w and £ are known. We must assume that the linewidth
Av is known as a function of temperature. Let us suppose that we meas-
ure the valley durations m and m’ in two spike patterns in which the
ratios (£/£) and («'/w) are known. We know (#/£) from the tempera-
tures at which the patterns were obtained. We can obtain o’/w from the
relative pump intensities at the times when spiking occurred. It im-
mediately follows from (92) that

g = (wm®/e'm™) — 1
(om?/w'm') — (§'/£)

This result is meaningful providing that the data give (wm’/w'm’) lying
between (£ /£) and unity. Once £ is determined « ecan be calculated from

(103)
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(92) and (93)

_ 9 (& —1) (m\ 2
w = §2_——E2— (T) (AW ) » (104)

and ¢ is again obtained from (96).

As an example of this method we shall apply it to two machine-calcu-
lated spike patterns, one of which is that of Fig. 3 with the parameters
(60), and the other has the parameters

o = w
=4 (105)
o = o.

I'rom the machine-calculated pattern we find
m' = my’ = 0.0614 X 10° (106)
The value of m = m; is given in (75). We assume that the ratio
F/E =08 (107)

is known from the temperatures at which the data were taken, and the
ratio

(wm®/w'm™) = 0.748 (108)

is calculable from (w/w’) and the two valleys. We now obtain from (103)
the value

£=485 (5.0). (109)
From (104) we now obtain

w=90x%10"° (7.12 X 10°°%) (110)

using the values in parentheses from (75), (77) and (69). From (39),
(109) and (110) we obtain the absolute value of m

m = 0.048 X 10°  (0.0531 X 10"). (111)
It follows that ¢, is given by
lp = Mexp/M, (112)

where My, i8 the measured duration in laboratory time. We conclude
that the two-pattern method is to be preferred to the one-pattern method
as a general approach to spike analysis. It should be mentioned that
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there seems to be no two-pattern method involving only the peaks which
is sufficiently accurate to give meaningful results.

The most convenient experiments to perform involve changing the
pump intensity 1/t, while all other parameters remain fixed. If ¢, < t,,
as is usually the case in flash-pumped lasers, ¢ will be independent of ¢,
and w will vary as 1/¢,. Varying w does not give quantitative informa-
tion such as we obtained from varying ¢ in the two-pattern method.
Nevertheless, it is of interest to consider what effects are to be expected.
From (30), (26) and (19) we have roughly

o5 '—ﬂwm
~ B In (Bv/wB/20).

Thus the maxima in p depend only logarithmically on pumping power.
It follows from (9) that the observed light output proportional to p
should vary as

(114)

p < 1/ (115)
The time intervals m, M, and T should vary as

moe M o« ] «t). (116)

VI. SUMMARY

We have now outlined a comprehensive program for the study of lasers
by means of their spiking patterns. The rate equations have been formu-
lated in terms of the light output and the atomic inversion and five
physical parameters in (1) and (2). We have written the equations in a
general form valid for three- and four-level systems and taking into ac-
count statistical weights and thermalization of the upper laser level.
These equations were then reduced to dimensionless form in terms of
three parameters in (11) and (12). All of the properties of the spiking
solutions of experimental interest were then deduced analytically by
means of the mechanical analogy shown in Fig. 2, in which a particle
moves in a potential well in a viscous medium.

The formulas obtained were illustrated and tested for accuracy against
a machine-computed solution to the rate equations. The value of the
formulas was confirmed by this comparison, and we went on to discuss
their application to experimentally observed spiking patterns. Four rela-
tions were given whereby spike patterns can be tested for consistency
with the rate equations. These consistency relations do not contain any
parameters, only ratios of times and of light outputs.
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Two methods were described for obtaining quantitative information.
In the one-pattern method everything is deduced from a single spike
pattern, but it is necessary to measure the photon lifetime ¢, in the cavity
by independent experiments. It is possible to apply this method to data
in which only the peaks are observed. It is emphasized, however, that
the observation of the valleys in light output should be perfectly feasible
and very much worthwhile. In the two-pattern method all the parameters
and ¢, are deduced from two patterns obtained at different temperatures.
In this method, the more accurate of the two, it is essential that the val-
leys be observed.

Our objective has been to provide the researcher with a set of tools for
applying the rate equations to experimental spiking data. The spiking
phenomenon in solid state lasers can be utilized in research now that it is
beginning to come under good experimental control. We have tried here
to point out what kind of spiking data is needed, and what additional
information is needed, to get the maximum information from spiking.
Our analysis applies to the sharp spike region of time in which the rate
equations are highly nonlinear. It complements the well known small-
signal analysis in which the rate equations become linear. The entire dis-
cussion is based upon the rate equations of Statz and De Mars, which we
regard as reasonable, relevant and widely accepted. We have not gone
into the derivation of these equations or the modifications that have been
proposed or might be proposed. We prefer to leave that to the future,
when we may reasonably expect that systematic spiking studies will
have clearly revealed the adequacy or inadequacy of these equations,
and indicated the direction which these modifications must take.
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