Design of Wideband Sampled-Data Filters

By R. M. GOLDEN and J. I. KATSER
(Manuseript received March 6, 1964)

A design procedure s presented for readily obtaining sampled-data filter
representations of continuous filters. The procedure utilizes the bilinear z
transformation and preserves the essential amplitude characteristics of the
continuous filler over the frequency range between zero and one-half the
sampling frequency. It is shown that the procedure can yield meaningful
sampled-data filter designs for many of those filters where the standard z
transform eannot be used directly.

I. INTRODUCTION

Sampled-data filter representations for continuous filters ean be ob-
tained using several different design proecedures.! A particular design
method utilizing the bilinear transformation is developed herein. The
method is especially useful in designing wideband* sampled-data filters
which exhibit relatively flat frequency-magnitude characteristics in suc-
cessive pass and stop bands. Filters of this type are widely used in net-
work simulation and data processing problems.? The design method pos-
sesses two chief advantages over the standard z transform.* The first is
that the transformation used is purecly algebraic in form. This means it
can be applied easily to a continuous filter having a rational transfer char-
acteristic expressed in either polynomial or factored form. The second
advantage is the elimination of aliasing' errors inherent in the standard
z transform. Thus, the sampled-data filter obtained by this design
method exhibits the same frequency response characteristics as the eon-
tinuous filter except for a nonlinear warping of the frequency scale.
Compensation for this warping can be made by a suitable frequency
scale modification. Some of the more common filter networks to which
the design method can be applied effectively are the Butterworth, Bessel,
Chebyshev, and elliptie filter struetures.

The essential properties of the bilinear transformation are presented

* A sampled-data filter design will be termed “wideband’’ if the frequency range
of useful approximation approaches half the sampling frequency.
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in the next section. For comparison purposes, properties of the standard
z transform are also given. This is followed by a detailed description
of a filter design procedure using frequency transformations. Examples
illustrating the design procedure are then presented. A short discussion
concerning computer simulation of the obtained sampled-data filters is
also included.

II. THE STANDARD AND BILINEAR 2 TRANSFORMATIONS

In this section it is assumed that a satisfactory rational expression is
known for the transfer function of a continuous filter for which a sampled-
data approximation is sought. What is then necessary is a transformation
which will convert this transfer characteristic into a sampled-data trans-
fer function rational in 2!, the unit delay operator.

Two transformations applicable to this problem are the standard z
transform and the bilinear z transformation.

The standard z transform applied to H (s), the transfer function of the
filter, is®

HYs) = 3 H(s + jmo.) (1)

m=—0

or equivalently in terms of the impulse response, h(¢), of the filter
s*(z) = T X2 h(IT)z™ (2)
=0

where

s =0+ jw
H(s) = Laplace transform of h(t)
w, = 2x/T = radian sampling frequency
H*(s) = Laplace transform of the sampled filter impulse re-
sponse
2! = exp (—sT) = the unit delay operator
3¢*(z) = H™(8) | 4= (nsyyr = 2 transform of A(%).

The behavior of H(s) for s greater than some critical frequency jw, is
assumed to be of the form

H(s) lall o> ju, = K/Sﬂ, n>0 (3)

where K is a determined constant.
Equation (1) or (2) is the transfer function of a sampled-data filter
which approximates the continuous filter. In the time domain, the im-
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pulse response of the sampled-data filter is the sampled impulse response
of the continuous filter. This can be shown by taking the inverse trans-
form of (2). Equation (1) shows that in the baseband

(—w/2 £ w = /2

the frequency response characteristics of the sampled-data filter, H*(s),
differ from those of the continuous filter, H(s). The difference is the
amount added or “aliased” in through terms of the form

H(s + jmw,), m # 0.

It H(s) is bandlimited to the baseband, ie., | H(s) | = 0 for o > «,/2,
then there is no aliasing error and the sampled-data filter frequency
response is identical to that of the continuous filter. Unfortunately,
when H(s) is a rational function of s, it is not bandlimited and therefore
H(s) ¢ H*(s) in the baseband.

The magnitude of the errors resulting from aliasing is directly related
to the high-frequeney asymptotic behavior of H(s) as defined in (3). If
n is large and o, < w,/2, then the aliasing errors will be small and the
standard z transform generally will yield a satisfactory sampled-data
filter design. However, in wideband designs, w, is usually an appreciable
fraction of w,/2. Furthermore, many continuous filter designs result in
transfer functions in which # is no greater than 1. These two conditions,
namely o, & w,/2 and n = 1, can create large aliasing errors in the
frequency response characteristics, thus yielding an unusable result.

Fortunately, even when w, = «,/2 and n = 1, a design method em-
ploying the bilinear z transformation™ may provide satisfactory wide-
band designs. This z form is defined from the mapping transformation,

s = (2/T) tanh (5,7/2) (4)
where
8 = o0 + jw1 .

The right-hand side of (4) is periodic in w; with period 27/T. Consider-
ing only the principal values of w, , —7/T < w, < x/T, it is seen that
the transformation given by (4) maps the entire complex s plane into
the strip in the s, plane bounded by the lines @, = —#/7T and «, =
+m/T. For this reason the bilinear transformation can be looked upon
as a bandlimiting transformation. Therefore, when this transformation
is applied to a transfer function H(s), the entire s-plane frequency
characteristics of H(s) are uniquely carried over into the frequency
characteristics of H(s,).

* This transformation will be referred to as the bilinear z form or z form.
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With the substitution
z—l — e—a!_T,

(4) can be written immediately as

2 (- ")
§ = T (1—+"'-‘z_T) . (5)
Thus,
GC(Z) = H(S) .= -3_ (1—z—1) (6)
T (1+2~1)

where 3¢(z) denotes a sampled-data transfer function obtained by the
use of the bilinear z form.*

The transfer function 3¢(z) obtained by means of the bilinear z form
and the function 3¢*(z) obtained by means of the standard z transform
are both rational in z—! and of the same denominator order as the con-
tinuous filter. These two functions, 3¢(z) and 3¢*(z), become essentially
equal to each other as the sampling frequency becomes large compared to
the moduli of each of the poles of the continuous filter function, H (s).
When the sampling frequency is not large, representation of some filters
by the standard z transform can be quite unsatisfactory because of
aliasing errors. However, the bilinear z form, with its absence of aliasing
errors, may give a satisfactory representation for these filters. A particu-
lar set of filters to which the bilinear z form always ean be applied suc-
cessfully are those which exhibit relatively flat frequency-magnitude
characteristics in successive pass and stop bands. This follows directly
from (6).

Thus, sampled-data filters designed by using the bilinear z form pre-
serve the essential amplitude characteristics of the continuous filter. In
the baseband (—w,/2 £ w < w,/2), the frequency characteristics of the
sampled-data filter are identical to those of the continuous filter except
for a nonlinear warping of the frequency scale.

This warping is found from (4) upon substituting jw for s and is

w= (2/T) tan (xT/2). (7)

For small values of w;, the relation is essentially linear, producing

* 1t should be noted that the bilinear transform is used here in a distinctly dif-
ferent way than it is commonly used in sampled-data control system design. In
the control system literature it is used to transform the sampled-data function
3e*(z) from the discrete domain back to the continuous domain for conventional
stability and frequency response analysis. See for example J. T. Tou, Digital and
Sampled-Data Control Systems, McGraw-Hill, New York, 1959, pp. 244-247 and
pp. 466-470.
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Fig. 1 — The frequency scale warping of the bilinear z transformation.

negligible warping at the lower end of the frequency secale. Fig. 1 shows
the nature of this warping. Compensation for the effect of warping can
be made by prewarping the band-edge frequencies of the continuous
filter in such a way that application of the z-form transformation will
shift the band-edge frequencies back to the desired values. The incor-
poration of this prewarping compensation into a sampled-data filter
design procedure is discussed in the next section.

III. A SAMPLED-DATA FILTER DESIGN METHOD

A sampled-data filter design may be obtained by applying the z-form
transformation of (6) to the rational transfer characteristic for a continu-
ous filter. However, in order to compensate for the frequency warping
imposed by the z form, the frequency characteristics of the continuous
filter first must be altered or prewarped. Hence the transfer characteristic
for the continuous filter must be redesigned such that the band-edge
(cutoff) and maximum loss frequencies are computed according to,

we = (2/T) tan (wiT/2) (8)
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where:

w, = computed cutoff or loss frequency
wg = desired cutoff or loss frequency.

The redesign of the continuous transfer characteristic cannot be ac-
complished simply by applying (8) to each pole and zero of the original
transfer characteristic. On the contrary a completely new transfer char-
acteristic must be obtained for the continuous filter. It is then possible
to obtain the desired sampled-data filter by applying the z-form of (6)
directly to the redesigned transfer characteristic of the continuous filter.
The sampled-data filter so obtained will then have the desired magnitude-
frequency characteristics.

Compensation for frequency warping becomes especially simple to
apply if the original continuous filter design was obtained by applying
a frequency-band transformation to a suitable low-pass design such as
Butterworth, Chebyshev, ete. Thus the extensive literature available on
tabulated low-pass filter designs ecan be used to great advantage to sim-
plify the filter design problem. The well-known frequency transforma-
tions which convert a normalized low-pass filter to a low-pass, a band-
pass, a bandstop, or a high-pass design are

8. = 8/w. low-pass to low-pass (9)
2
8n = -(S—_'_EQ low-pass to bandpass (10)
s(wu - w!)
s(w, — wi)
§p = ———"_low-pass to bandstop (11)
(3" + wumi)
8, = w./s low-pass to high-pass (12)
where:
$. = the complex variable of the normalized low-pass filter transfer
funetion
s = the complex variable of the desired filter transfer function

w, = the upper radian cutoff frequency
w; = the lower radian cutoff frequency.

When continuous filters are designed with the aid of these transforma-
tions, prewarping is accomplished by properly choosing the cutoff fre-
quencies used in the frequency transformations. The choice of these cut-
off frequencies is determined from the desired cutoff frequencies by
means of (8). Using these values, the new prewarped transfer function is
determined by applying (9), (10), (11) or (12) to the original low-pass
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funetion. Transformation is made to a sampled-data filter by applying
(5) to the prewarped continuous function. This sampled-data filter will
now have the correct cutoff frequencies. The transfer function thus ob-
tained can be used directly in a digital computer simulation.

IV, SIMULATION OF SAMPLED-DATA FILTERS

Application of either the standard z transform or the bilinear z form
to a rational transfer function yields a transfer function rational in 2~
for the sampled-data filter. The programming or simulation of this
sampled-data filter on a digital computer ean be accomplished by either
the direct, the cascade or the parallel form. These forms, as commonly
defined, are shown in Fig. 2. In this figure G(z) and F(z) represent finite
polynomials in z~' for feed-forward and feedback transmissions re-
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Fig. 2 — Some possible simulation forms for sampled-data filters.
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spectively; where subscripted, the order of the polynomial is at most
second.

The choice of which of the three forms to use for simulation of the
sampled-data filter depends on the complexity of the filter function
H(s), on the form of H(s), and on the particular z transformation used.
Generally, simulation by the direct form requires considerably greater
accuracy in the determination of the filter parameters than either of the
other two forms. This is especially true when the order of H(s) is large
and when H(s) has poles with real parts that are a very small fraction
of the sampling frequency. For this reason either the cascade or parallel
form may be preferred.

The choice between using the cascade or the parallel form depends
largely on which z-transform method is used to obtain the sampled filter
and how that particular method is applied. Realization in the cascade
form requires caleulation of the numerator polynomial, G(z), or its fac-
tors. This computation consists of a simple algebraic substitution when
the bilinear z form is applied to a filter function H(s) expressed in the
form,

G
H(s) = T__(s)_ (13)
(s — an)
k=1
Determination of G(z) in polynomial or product form respectively allows
cither of the following cascade realizations to be made:

u 1
.’iL(z) = S(z) LII (] + buz_l T bgkzﬂ) (14)
or
_ v aor + ﬂ]kz_l -+ ﬂ,?_kzg) .
e = g ( 1+ bz + bue? /)’ (15)

If the numerator (i(s) is in polynomial form, considerable care must be
taken in the caleulation of the coefficients of the polynomial G(z), as this
computation involves differencing nearly equal numbers.

For realization in the parallel form the partial fraction expansion of
H(s) must be known. Since in the standard z transform method obtain-
ing the partial fraction expansion is a necessary step, simulation of
filters designed by this method is most directly accomplished in the
parallel form. Here the continuous filter transfer characteristic is repre-
sented by
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- Pus + Po

H(s) = -,,' - .

J.Z:; (a8 + Q].’.-S + anc

Transforming this expression by use of the standard z transtormation
yields

(16)

N ~1
1 (a) — ' Auz + Ao
=) = E Buz* + Buz™ + 1 (17)

whereas transforming by use of the bilinear z form yields the similar
expression

N = -
) = (1403 —Auz + A

i1 Baz? 4+ Bzt + 17 (18)

Each rational function in either of the above summations ean be syn-
thesized by the recursive structure shown in functional block diagram
form in Fig. 3(a). This recursive structure uses only two delays, four
multiplications, and five additions. The complete realization of (18) is
shown in I'ig. 3(b).

- e _ AMPLIFIER —
& L ~ GAIN = Agj L.1 ¥ () —
—B—E UNIT DELAY

Azt + Ag, 0
J 0j _ - Z
(z) = . R I(z) = (1+z™" Ii(2)
;@) Ba;z°2 + B 214 e
(a) (b)
TERM IN PARTIAL COMPLETE TRANSFER FUNCTION
FRACTION EXPANSION EXPRESSED AS A PARTIAL

FRACTION EXPANSION

Fig. 3 — Simulation in parallel form of a sampled-data filter obtained by the
bilinear z transformation.



1542 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

The programming of these sampled-data filters for computer simula-
tion can be greatly simplified if a compiler such as the Block Diagram
(BLODI) compiler® developed at Bell Telephone Laboratories is used.
The compiler permits specification of a sampled-data system in func-
tional block diagram form.

In the following section an example is presented for a filter designed,
synthesized, and simulated by the foregoing method.

V. DESIGN, SYNTHESIS, AND SIMULATION OF A WIDEBAND BANDSTOP
SAMPLED-DATA FILTER

As an example of the application of the bilinear z-form to the simula-
tion of a practical filter, consider the design of a particular bandstop
filter. The filter is to exhibit at least 75 db loss in a rejection band which
extends between 2596 eps and 2836 cps. Below 2588 cps and above 2844
cps, the loss is to be between 0 and +0.5 db. The sampling rate of the
discrete filter is to be 10 ke. The complexity or order of the filter is to be
held to a minimum. Fig. 4 shows a sketch of the amplitude response char-
acteristics desired of the filter.

Minimum filter complexity and sharp transition between pass and stop
bands suggest the use of an elliptic filter® (equiripple) as the basic low-
pass type. However, before a suitable low-pass structure can be deter-
mined, the above specified critical frequencies must be prewarped by

[e] .
s ————— _ﬁ '— ——————
|
I |
I i
B 1
8 i \ ] l
1 ]
8 I !
k 1
! |
-5 — ———— ~|——————'I |
|
2.588 | 2.544
2.596 2836

FREQUENCY IN KILOCYCLES PER SECOND

Fig. 4 — Desired amplitude response characteristic of a bandstop filter.
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means of (8). The warped values are:

f ip
Jur

lower cutoft frequency in passband (2588 cps) = 3364.15 cps
lower cutoff frequency in rejection band (2596 cps)
3381.13 eps
fur = upper cutoff frequency in rejection band (2836 cps)
= 3937.54 cps
fup = upper cutoff frequency in passband (2844 eps) = 3957.84 cps.

Il

The warped values at the lower band edge require a low-pass filter
with a transition ratio of 0.93792, while the values at the upper band
edge require a transition ratio® of 0.93658. Therefore, to meet the original
specifications, the larger of the two transition ratios must be chosen.
Hence specifications required for the basic low-pass elliptie filter are:

in-band ripple = 0.5 db
out-of-band minimum attenuation = 75.0 db
transition ratio = 0.93792.

Application of elliptie filter design procedure with these specifications
yields a basic low-pass structure of eleventh order. The poles and zeros
for the transfer function of this low-pass filter are listed in Table I. The
low-pass filter has been normalized to have a cutoff frequency of one
radian per second and amplitude gain of unity at zero frequency.

TaBLE I—PoLEs AND ZEROS 0F NORMALIZED ELEVENTH-ORDER
Inuretic Low-Pass FILTER

In-band ripple = 0.500 db
Minimum attenuation = 76.504 db
Transition ratio = 0.937917

Gain factor = 0.0011060

Poles
—0.0069130 £, 1.0010752
—0.0257616 =5 0.9756431
—0.0615122 45 0.9063786
—0.1269215 %5 0.7504391
—0.2142976 &; 0.4483675
—0.2611853

Zeros
+7 1.0605414
=7 1.1009005

+7 1.1946271
+7 1.4652816
+7 2.5031313
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The desired bandstop filter is obtained next by applying the low-pass-
to-bandstop transformation, given in (11), to the normalized elliptic
low-pass filter. The cutoff frequencies used are the warped values ob-
tained above for fi, (3364.15 cps) and f., (3957.84 cps). The resulting
bandstop filter is then transformed by the bilinear z form to yield the
required sampled-data filter. Table II lists the coefficients of the result-
ing sampled-data filter needed for parallel realization of the form shown
in Fig. 3. Fig. 5 shows the frequency response characteristics of this
sampled-data filter. It is seen that the original filter specifications are
met by the sampled-data filter. For comparison purposes, the standard
2 transform was applied directly to the twenty-second-order continuous
filter. The frequency response characteristic of this filter is shown in Fig.
6. It is seen that the standard z transform has yielded an unusable result.

VI. SUMMARY

The need for sampled-data filters in wideband simulations of many
processing systems has led to a synthesis method which overcomes the
shortcomings of the standard z transform. The method presented con-
sists of direetly transforming a suitable continuous transfer function to a
sampled-data filter by means of the bilinear z form. For wideband filters
the method is particularly suited to those filters that exhibit relatively
constant magnitude-frequency characteristics in successive pass and
stop bands. Conventional design techniques of continuous filters are used

TaBLE II—PartiaAL-FracTioN ExpansioN COEFFICIENTS FOR
PARALLEL REALIZATION OF SAMPLED-DATA
BanpsToP FILTER

Numerator Coefficients Denominator Coefficients
B
& Ay Ao B B
1 0.0001628 0.0008827 0.9987854 0.1106416
2 —0.0009283 —0.0001764 0.9989898 0.4285348
3 —0.0024098 —0.0027894 0.9956089 0.1063723
4 0.0031774 0.0026966 0.9957459 0.4317548
5 0.0102446 0.0026026 0.9879911 0.0940731
6 —0.0037799 —0.0112135 0.9883051 0.4414974
7 —0.0277640 0.0127415 0.9651789 0.0616261
8 —0.0108027 0.0289421 0.9661438 0.4663508
9 0.0272223 —0.1163873 0.8694592 —0.0204564
10 0.1206914 . —0.0054765 0.8742300 0.5186036
11 0.2973946 —0.2973227 0.5283651 0.2074591
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Fig. 5 — Frequency response characteristics of the sampled-data bandstop
filter designed by the bilinear z transformation.

directly in the synthesis procedure of the sampled-data filters. (Thus the
synthesized filters have frequency characteristies comparable to those of
continuous filters.) An example has been presented of a filter function
synthesized by this procedure and easily programmed for a simulation,
Results obtained from this example demonstrate the usefulness and ac-
curacy of the bilinear z-form method.
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Fig. 6 — Frequency response characteristics of the sampled-data bandstop
filter designed by the standard z transformation.
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