The ALPAK System for Nonnumerical
Algebra on a Digital Computer — III:

Systems of Linear Equations and a
Class of Side Relations

By J. P. HYDE
(Manuseript received March 6, 1964)

This is the third and last in a series of papers describing the ALPAK
system for nonnumerical algebra on a digital computer. The first paper!
is concerned with polynomials in several variables and truncated power
series with polynomial coefficients. The second paper’ is concerned with
raltonal functions in several variables and truncated power series with
rational-function coefficients. The present paper discusses systems of
linear equations with rational-function coefficients and a certain class of
side relations.

The ALPAK system has been programmed within the BE-SYS-4
monalor system on the IBM 7090 compuler, bul the language and concepls
are machine independent. Several practical applications are deseribed in
Ref. 1.

This paper is divided into six sections. The first two assume that
the reader has no knowledge of computers or compuler programming and
the last four assume that the reader vs familiar with basic computer pro-
gramming and Refs. 1 and 2. Section [is a general descriplion of ALPAK
and this paper; Section 11 discusses the different forms in which a linear
system can occur, including canonical form; Section Il describes the
ALPAK linear system operalions for converting these forms; Section IV
discusses side relations; Section V describes list naming operations; and
Section VI discusses possible future developments and improvements.

I. INTRODUCTION

This is the third and last in a series of papers describing the ALPAK
system, a programming system for performing routine manipulations
of algebraic expressions on a digital computer. The system can perform
the operations of addition, subtraction, multiplication, division, sub-

1547

1548 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

stitution, and differentiation. The first paper! is concerned with poly-
nomials in several variables and truncated power series with polynomial
coeficients. The second paper? is concerned with rational functions
in several variables and truncated power series with rational-function
coefficients. The present paper describes the ALPAK facilities for manip-
ulating and solving by Gaussian elimination systems of equations linear
in certain variables with coeflicients which are rational functions of
other variables. The facilities for handling a certain class of side rela-
tions are also described.

The ALPAK system has been programmed within the BE-SYS-4
monitor system on the IBM 7090 computer, but the language and con-
cepts are machine independent. Several practical applications are de-
seribed in Ref. 1.

This paper is divided into six sections, of which the first two do not
presuppose any knowledge of computers or computer programming
and the last four assume that the reader is familiar with the basie con-
cepts of computer programming and Refs. 1 and 2. Section I is a general
description of ALPAK and deals with basic concepts. Section II de-
seribes the different forms in which a linear system can oceur, including
especially the canonical form of a linear system. Section IIT discusses
the ALPAK lincar system operations for converting these forms.

Section IV describes the way in which ALPAK has been programmed
to simplify a rational function, using a certain class of side 1elat10ns
The most important relations in the allowed class are of the form X'=c
(C a rational function independent of X). This includes in particular
= —land s’ = 1 — ¢ where s and ¢ can stand for sin « and cos «,
respectively. The simplification is done by a special rearrangement of
the ALPAK format statement and has certain limitations.

Section V discusses list naming operations, a convenient set of auxili-
ary operations for handling arguments of ALPAI subroutines which
are lists (one-dimensional arrays). Finally, Section VI discusses possible
future developments and improvements.

1.1 An Example of the ALPAK Language

The simplicity of handling linear systems by ALPAK is illustrated
in the process of solving the following system of two linear equations,
EQ1 and EQ2, in two unknowns, X7 and X2, with polynomials in a
as coefficients.

EQl: 3aX1 + 2aX2 — 1 =0
EQ2: 2aX1 + 5a’X2 — 3 =0

ALPAK SYSTEM 1549

We first extract a coefficient matrix, SYS, for the equations with —1
and —3 moved to the right side.

3a 2a 1
SYS:

20 Ha” 3|

. s . . . ~ . s . 3,4
The matrix is then put into eanonical form using Gaussian elimination.

1 —6 + Sa
— —4a :l— 15a®
7
0 —4da + 15a*

The fact that the original coefficient matrix and the eanoniecal form
matrix both have the name SYS does not imply that they are equal
but rather that the latter replaces the former physically in the computer.
The expressions for the unknowns are then extracted from the coefficient
matrix.

. —6 + Ha

Xl ———
: —4a + 15a®
o 7

X3: —4da + 15a*’

The following program illustrates how these operations are performed by
ALPAK.

SYS SYSRES

o
V]

Reserve space in the computer for
the physical representation of the
set of system coeflicients which will
be obtained from two linear equa-
tions in two unknowns and name the
set SYS.
SYSFRM SYS,(EQLEQ2),=2
Extract the 2 X 3 coefficient matrix
from the equations Q7 and #£Q2 and
place it in SYS. The “=2" says
that there are two unknowns and the
third column of the matrix is used
for the terms of the equations which
are independent of the unknowns.
SYSPRT SYS
Print the system cocflicients.

1550 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

SYSCFM SYS
Put the system into canonical form
(described in next section) using
Gaussian elimination. If the system
were triangular, the row selection
strategy would cause this to be done
in the obvious way. The canonical
system retains the same name as the
original system.

SYSSLV (X1,X2) SYS
Fill X7 and X2 with the solutions
for the unknowns in SYS. The op-
eration SYSSLV assumes that SYS
is in canonical form.

RFNPRT X1

RFNPRT X2
Print X1 and X2.

X1

X2
These are names of single cells in

memory which will be filled in with
“pointers”* to the physical repre-
sentations of the solutions in the
computer.

The usefulness of the linear system operations was demonstrated in
a problem from queuing theory, proposed by L. Takacs,T in which a
truncated power series of 813 terms was involved in forming a system
of nine linear equations in nine unknowns. One of these unknowns was
the third moment of a probability distribution. Its numerator had
200 terms in five variables with maximum degrees 1, 1, 3, 7, and 9 and
its denominator had 39 terms in two variables with maximum degrees
7 and 10.

II. LINEAR SYSTEMS

In this section are discussed the different forms of linear systems as
they are dealt with in the ALPAK context. It is important in writing
ALPAK programs to remember what these forms are. The next section
discusses the ALPAK subroutines for changing one form to another.

* See Ref. 2, p. 795.
t See Ref. 1, pp. 2090-2002.

ALPAK SYSTEM 1551

2.1 System of Kquations

A linear system of m equations in n unknowns, x;, is a set of m ra-
tional functions, (1), of v variables (» = n), each of which is linear in
the z; and is implicitly equal to zero.

S A — ;=0 (1 =7=m). (1)
i=1

Thus for each ¢ in (1) the X;; are the coefficients of the x; and together
with e, may be thought of as n + 1 rational funetions with a common
denominator.

2.2 System Coefficients

Consider (1) written in the form:
2 hwi=e (1
J=1

The X\;; and the ¢; of (2) shall be referred to as the system coefficients
of the linear system (1). In ALPAK they form an array of m(n + 1)
rational functions stored row-wise and forwards.

1A

i < m). (2)

2.3 System Canonieal Form

Let @, , +- -, @, be a subset of the unknowns a;, -+, x, which we
shall call the dependent set, and let x, ,, ---, x,, be the remaining
unknowns, which we shall call the independent set. The dependent set
is said to be valid if r is the rank of the system and if the associated
columns of system coefficients are linearly independent over the field
to which they belong. The system

n

T, + Z Nija; = ¢ (1

J=r+1

IIA

= 7r) (3)

and its array of system coefficients are both said to be in canonical form
with respect to such a dependent set.® It can be shown that for any
linear system and a given valid dependent set, there exists a unique
canonical form which is obtainable from the original system and which
is satisfied by the same values of the ... One obtains this canonical
form by Gaussian elimination; i.e., operating on the system by suitably
chosen row operations and column interchanges.t When there is a choice
of row interchange, the row with the most zero coefficients is selected
to minimize the work involved. If, in the derived canonical form, r < m,

* The dependent set in (3) is clearly valid.
t See Refs. 3 and 4.

1552 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

the last m — r rows should be of the form 0 = 0. If they are not, the
system is said to be inconsistent. If r < n, the system is said to be singu-
lar.

2.4 System Solulion

The solution of a linear system is a set of r rational functions, (4),
of v variables (v = n — r), each of which is linear in the x,; (r + 1
< j = n) and is implicitly equal to z,, .

n

Xoy = Ci — > Nija; (1=7=r). (4)

j=r+1
The solution is easily produced once the system is in canonical form,
and if the system is nonsingular the solution is of the form =z, = ¢

(1=i=mn).
I, LINEAR SYSTEM OPERATIONS

3.1 General Remarks

In this section are discussed the ALPAK subroutines for convert-
ing the different linear system forms discussed in Section II. The name
of a set of system coefficients must be defined by operations SYSNAM
or SYSRES if it is to be used in any other operations. This name is the
BSS address of a three-word system heading in which are stored the
five system parameters. These parameters are the BSS address of the
system coefficients, the number of equations, the number of unknowns,
an ALPAK format address, and the number of leading variables in
this format of which the equations are independent. They are set at
assembly time by operations SYSNAM and SYSRES or at run time
by operations SYSSET and SYSMPR.

The m(n + 1) system coefficient pointers are stored row-wise and for-
wards, and a block of n + 1 cells must immediately follow to be used
by ALPAK as work space. In the ALPAK format statement of the sys-
tem equations, the n unknowns must have consecutive variable numbers
k + 1 through k 4+ n (k = 0). If & > 0, the system equations must
be independent of the first k variables, and thus the system coefficients
are independent of the first k + n variables. The system parameter
fmt is normally this ALPAK format statement and is referenced in
any system operations involving the names of the unknowns. If it is
not supplied by SYSNAM, SYSRES, SYSFRM, or SYSSET, all such
operations must refer to variables by number (VARTYP NUM or
VARTYP NUMx).

Those arguments of operations SYSFRM, SYSCFM, and SYSSLV
which are lists are specified according to the conventions established

ALPAK SYSTEM 1553

in Section V. System parameters and system names are not indexable,
but the addresses where they are stored or to be stored are. As in other
ALPAK operations, index registers are preserved with the exception of
index register four.

3.2 Notational Conventions

The following conventions of notation are used in descriptions of
instructions. Upper-case letters are used for operation codes (including
macro names) and for any parameters which must appear exactly as
shown. Dummy parameters are indicated by lower-case letters. A dummy
parameter usually stands for the symbolic address of a cell or block of
cells in the program where the argument is stored. Those dummy param-
eters which are the arguments themselves are in boldface. Finally,
optional parameters are enclosed in brackets, and parameters which
usually have subarguments are enclosed in parentheses. All integer
arguments are decimal. By this notation, then, the instructional de-
scription

8ys SYSRES m,n,[fmt],[k]

specifies certain properties and restrictions about the arguments of the
following call:

COEFF SYSRES 9,9, INDEP

Thus, only SYSRES must appear exactly as shown and all other pa-
rameters are dummies with the third one omitted, as it is optional.
The number of equations is nine, but the number of leading variables
of which the equations are independent is in the cell whose symbolic
address is INDEP.

3.3 Linear System Operations

sys SYSNAM bss,m,n,[fmt][k] name (a)
sys SYSRES m,n,[fmt],[k] reserve (b)
SYSPRT sys print (e)
SYSFRM sys,(listr),n,[k] form (d)
SYSCFM sys,[(listv)],[inc],[ids] canonical form (e)
SYSSLV (listr),sys,[(listv)] solve 63}
SYSOBT [(abss)],[(m)],[(n)],[(afmt)], obtain parameters (g)
[(k)],sys

SYSSET sys,[abss],[m],[n],[afmt],[k] set parameters (h)
SYSMPR sys,[(op oper)], [(op oper)] modify parameters (i)
[(op oper)], [(op oper)],
[(op oper)]

1554 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

sys = name of system (symbolic address of heading)
hss = BSS address of the array of system coefficients
abss = address where bss is or is to be stored
m = the number of equations in the system
n = the number of unknowns in the system
fmt = the address of the system’s ALPAK format statement
afmt = address where fmf is or is to be stored
k = the number of leading variables in this format statement
of which the system equations are independent
listr = list of rational functions (see Section V)
listv = list of variables (specified in the manner indicated by the
last previous VARTYP declaration — see Section V)
(op oper) = a 7090-94 machine operation and an operand separated by
a blank
in¢c = inconsistency return
ids = invalid dependent set return.

3.4 Descriplions
(a) sys SYSNANM bss,m,n,[fmt],[k]

Declare a block of length (m + 1) (n + 1) starting at bss to be a set of
linear system coefficients and work space, and name it sys by reserving
remotely a three-word system heading. This heading is filled in with
bss, m, n, fmt, and k. If fm¢ and/or k is omitted, the corresponding fields
in the system heading are filled in with zeros.

(b) sys SYSRES m,n,[fmt],[k]

Reserve remotely a block of length (m + 1) (n + 1) for a set of system
coefficients and work space, and name the set sys by reserving remotely
a three-word system heading as in SYSNAM. sys is to be filled in at
run time (e.g., by SYSFRM).

(c) SYSPRT Sys
Print the set sys of system coefficients.
(d) SYSFRM sys,(listr),n,[k]

Replace sys by the set of system coefficients formed from the set listr
of system equations and remove the common factors between the
coefficients of any given equation (listr is destroyed). The contents of
n and k and the number of rational functions in lLstr together with
their format are copied into the heading of sys. If k is not supplied, it

ALPAK SYSTEM 1555

is assumed to be zero. If SYSFRM is not used to fill in sys, the system
parameters must be filled in with operations (a), (b), or (h).

(e) SYSCFM sys,[(listv)],[inc],[ids]

Replace the set sys of system coefficients by its associated canonical
set, using Gaussian elimination. fZslv is a list of unknowns (specified in
the manner indicated by the last previous VARTYP declaration) to
be included in a valid dependent set. If listv is not supplied, the list
is assumed to be empty. If sys is found to be inconsistent, control will
be transferred to inc (or to the REMARK subroutine if #ne¢ is not sup-
plied) and sys will have a canonical form with an inconsisteney. If the
set of unknowns in /istv cannot be included in a valid dependent set,
control will be transferred to ids (or to the REMARK subroutine if
ids is not supplied) and sys will have a canonieal form with some subset
of listv in the dependent set. At ine or 7ds it is possible to call SYSSLYV,
SYSPRT, or to go to some other part of the program.

() SYSSLV (listr),sys,[(listv)]

Replace listr (whose length must not be less than that of listv) by the
solutions for the list of unknowns list» (specified in the manner indicated
by the last previous VARTYP declaration). sys is assumed to be in
canonical form. If listv is not supplied, all the unknowns in the dependent
set are solved for in the order in which they were at the start of SYSCFM.

) SYSOBT [(abss)L,[(m)],[(m)],[(afmt)],[(K)],sys

Obtain the system coeflicient parameters of the system whose name is
sys. Each optional argument is a memory location in whose address
field the parameter is to be stored. Thus the parameter bss is stored in
the location abss specified by SYSOBT, ete. Each optional argument
may actually be several arguments, and if an argument is an integer
equal to seven or less, it refers to an index register.

(h) SYSSET sys,[abss],[m],[n],[afmt], k]

Set the system coefficient parameters of the system whose name is
sys from the locations specified by the bracketed arguments. Thus the
parameter bss is set to the contents of the location abss specified by
SYSSET, ete.

(1) SYSMPR sys,[(op oper)],[{op oper)]

[(op oper)], [(op oper)], [(op oper)]

1556 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

Modify the system coefficient parameters of the system whose name is
sys using the 7090-94 machine operations op with operands oper. Thus,
the parameter bss is modified by the first operation and operand, m
is modified by the second, n by the third, fmt by the fourth, and k by the
fifth. Each operation and operand may be different. Typically, the
operation is ADD or SUB and the operand is the address of some incre-
ment or decrement.

IV. SIDE RELATIONS

4.1 General Remarks

The ALPAK programmer may find that expressions involving radi-
cals oceur in his problem. A radical can be handled by assigning it a
variable name and writing the rational functions using this name.
Thus in the polynomial @ + 2a4/3, we let X = /3 and the expression
becomes a + 2aX. The problem is that in the outputs of arithmetic
operations involving such rational functions, X' can have an exponent
greater than one and the fact that X*=3X"=3X,X"=9, - wil
be ignored. The implicit equation X* = 3 is called a side relation of
degree two on X. A subroutine is provided for simplifying rational
functions using side relations of the general form

XY =c (4 an integer = 1)

(5)
(€' a rational function independent of X).

This category includes especially = —land s = 1 — ¢ where s

and ¢ can stand for sin @ and cos «, respectively.

1.2 Limitations

Many limitations exist in the present handling of side relations. In
the relation X" = €, n must he a power of two and X a single variable.
Dependencies between relations are not observed; i.e., R'=2and 8 =3
and T% = 6 will not result in the implieit relation of 7' = +RS. More-
over, relations are not handled automatically by the lowest-level sub-
routines, thus causing exponents to grow unnecessarily until simplifica-
tion is done at main program level. A more sophisticated version of
ALPAK would prevent this by including the relations as part of the
format statement. To repair these limitations would require a great
deal of extra programming, and it turns out in practice that these limita-
tions do not usually matter. The general problem of dependencies is
especially difficult, as it involves algebraic extensions of the field of
rational funetions of several variables.

ALPAK SYSTEM 1557

4.3 I'mplementation

The simplification of a rational function, RF, by a side relation
X* = (' is accomplished with the aid of a specially constructed tempo-
rary ALPAK format statement. The temporary format is the same as
the original one except that the exponent field of X is split into two parts.
The right j bits are assigned the name X and the remaining left-hand
bits form a temporary exponent field which is assigned any name and
stands effectively for X*'. The rational function €' is then substituted
for the temporary variable by the call SIDREL. If several side relations
are defined on several variables, then a single temporary format state-
ment ean be used to split up these variables. There will then be a list
of rational functions to be substituted for the temporary variables by a
single call to SIDREL (see Seetion 3.2).

SIDREL rf, (listv), (listr) ,timt

rf = rational function to be simplified
listv = list of temporary variables (specified in the manner indicated
by the last previous VARTYP declaration — see Seetion V)
list of rational functions to be substituted for these variables
and specified in the same order (see Section V)
tfmt = address of temporary format.

listr

The format of »f after simplification is the format of the items in /listr,
or if none of these items has a format, the format of rf is unaltered.

4.4 Frample

Suppose it is desired to simplify the function RF using the side re-
lation I* = —1. This is done by the following program.
FMT POLCVF (X,5,Y,5,1,5,Z2,21)
Permanent format.
TFMT POLCVE (X,5,Y,5,I8Q41,1,Z,21)
Temporary format with 7 split up
into 7SQ with four bits and 7 with
one bit.
VARTYP NAM
POLSTC MON,=—1
SIDREL RIISQMON,TFMT

RF
MON

1558 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

Testing equality of rational functions B and S which have been
simplified by a side relation should always be done by subtracting and
testing for zero as follows:

RFNSUB TEMPRS
SIDREL TEMP,ISQMON,TFMT
: The side relation applied to K and
S is applied to TEMP.
RFNZET TEMP
Test if TEMP is zero.

This procedure will recognize that the expressions (1 + 7)/(1 —) and
1 are equal.

V. LIST NAMING OPERATIONS

5.1 General Remarks

Whenever an ALPAK subroutine argument is a list, the list may be
specified either by actually listing the contents; e.g.,

SYSSLV (P,Q,R),SYS,(X,Y,Z)
or by name; e.g.,
SYSSLV (LISTP,*),SYS,(LISTV,*)

Here the asterisk indicates that the list has been specified by name.
Both methods may be used within the same command; e.g.,

SYSSLV (P,Q,R)SYS(LISTV,)

This section describes a set of operations LSTNAM, LSTMAK, and
LSTRES for assigning names to lists and blocks of storage, thus enabling
one subsequently to call them by these names in the appropriate sub-
routines. The operations LSTOBT, LSTSET, and LSTMPR serve as
auxiliary operations. The facilities are especially useful whenever the
items of the list are to be filled in at run time or whenever the items
do not form a eontiguous block in core. A list has two parameters, which
are its BES address and its length. These can be set at assembly time
by LSTNAM, LSTMAK, and LSTRES or changed at run time by
LSTSET and LSTMPR (see Section 3.2). List parameters and list
names are not indexable, but the addresses where they are stored or to
be stored are. Each item in the specified contents of a list may be tagged.
Index registers are preserved with the exception of index register four.

ALPAK SYSTEM 1559

5.2 List Naming Operations

ttl LSTNAM bes,Ing,[VAR] name (a)
ttl LSTMAK (items),[VAR] make (b)
ttl LSTRES Ing,[VAR] reserve (e)
LSTOBT [(abes)],[(Ing)],ttl obtain (d)
LSTSET ttl,[abes],[Ing] set (e)

LSTMPR tt][(op oper)],[(op oper)] modify (f)

ttl = name for list
bes = BES address of list
abes = address where ““bes” is or is to be stored
Ing = length of list
items = contents of list
(op oper) = 7090-94 machine operation and an operand separated by
a blank.

5.3 Descriplions
(a) ttl LSTNANM bes,Ing,[VAR]

Declare a set of items in a contiguous block of length ing to be a list
whose BES address is bes, name it #l, and set the list parameters to
bes and Ing. If VAR is present, the list is assumed to consist of variables
(specified in the manner indicated by the last previous VARTYP decla-
ration). If VAR is not supplied, the list is assumed to consist of rational
funetions, polynomials, ete. (i.e., of symbolie addresses of pointers.)

(b) ttl LSTMAK (items),[VAR]

Declare the set whose elements are the subarguments in #ems to be a
list, name it !, and set the list parameters accordingly. VAR is as de-
seribed in LSTNANM. The items need not be in a contiguous block as
in LSTNADM.

(€) ttl LSTRES Ing,[VAR]

Reserve remotely a block of length Ing for a list, name it. i/, and set the
list parameters to the BES address of the block and Ing. VAR is as
described in LSTNANM. The list is to be filled in at run time (e.g., by
SYSSLV).

(d) LSTOBT [(abes)],[(Ing)],tt]

Store the BES address of the list whose name is # in location abes
and store its length in Ing. The bracketed arguments may actually

1560 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

consist of several subarguments, and if an argument is an integer equal
to seven or less, it refers to an index register.

(e) LSTSET ttl,[abes],[Ing]

Set the BES address of the list whose name is ¢l to the contents of abes
and set its length to the contents of ing.

$9) LSTMPR ttl,[(op oper)],[(op oper)]

Modify the BES address of the list whose name is ! using the 7090-94
machine operation op with operand oper specified by the first bracketed
argument. Modify the length of the list in a similar manner as indicated
by the second bracketed argument. Typically, the operation is ADD or
SUB and the operand is the address of some increment or deerement.

5.4 Example

The following example shows how list naming can be used to good

advantage. We are given polynomials (4,, -+, 4,; y = 15), a set
of variable names (m;, -+, m,; y = 15), and polynomials (Fy, ---.
F,;y £ 15). It is desired to form a set of polynomials (G, ---, Gy ;

y = 15) in the following way, where m;: A, means A; is substituted for
m;

G]_ = Fl(mlel)
GQ = F‘g(ml :Al ,mg:Ag}

G, = F,(mp Ay ma:Ay) -+) myi4,).

Assume that the Fy's, A;’s, M /’s, and G/’s are stored forwards in blocks
whose BES addresses are F, A, M and G respectively and that the
parameter y is in location Y. The following program will perform the
substitution.

POLS LSTNAM A]l5
VARS LSTNAM DM,15
Define the lists thus setting the list
parameters to (A,15) and (M,15)
LSTMPR POLS(SUB Y) (SUB =15)
LSTMPR VARS(SUB Y) (SUB =15)
Initialize the list parameters to (A —
v,0) and (M — y,0).
LXA Y,1

ALPAK SYSTEM 1561

LOOP LSTMPR POLS(ADD =1) (ADD =1)
LSTMPR VARS(ADD =1) (ADD =1)
POLSST (G,1) (F,1) (POLS,%) (VARS,*)
TIX LOOP,1,1
Increment the list parameters by
one at each repetition of the above

loop.
F BES 15
A BES 15
M BES 15
G BES 15
'Y’

VI. OUTLOOK

Our experience has shown us that the present handling of linear
systems has its limitations. Large linear systems are always difficult
to put into canonical form, and even a relatively simple set of system
coeflicients can grow quite rapidly throughout the course of SYSCFM
and cause some form of overflow. This growth becomes coupled with
the growth produced by the greatest common divisor algorithm,*
thus making the inadequacies of the latter most apparent. The
success or failure of SYSCFM depends less on the dimensions of the
system and more on the internal structure and size of the individual
coefficients. Moreover, it is very difficult to tell by looking at the input
array whether the structure and size at a later stage of the reduction
will cause trouble. This difficulty is illustrated in that SYSCFM suc-
ceeded in reducing a 9 X 9 array with large, apparently complex, en-
tries, T but failed in a related queuing theory problem to reduce a 10 X 10
array whose entries averaged only two or three terms. It can at least
be said that there will be no GCD problems if the original array con-
sists of all rational numbers.

The subroutine SYSCFM is perhaps too comprehensive. A series of
orders which would enable one to perform the Gaussian elimination
method a step at a time, leaving the choice of row and column permuta-
tions completely up to the user, might be useful. SYSPRT could then be
called at any time during the reduction. A routine for evaluating de-
terminants, if available, would enable the solution of nonsingular systems
by Cramer’s method as an alternative.

* See Ref. 2, pp. 791-794.
1 See Ref. 1, pp. 2090-2092.

1562 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1964

The growth problem could be reduced by allowing multiple precision
polynomial coefficients and by allowing a polynomial to be represented
as a product of polynomials (not necessarily irreducible). Thus one could
compute the GCD as a product of simpler GCD’s. To do this would
require the ability to have a data structure hierarchy in the data buffer
more complicated than that of a rational function.* This ability would
also enable a linear system itself to be such a data structure rather
than an array in the main program.

A new version of ALPAK (to be called ALPAKB) is now being de-
veloped. Its foundation is a programming system® called OEDIPUS
(Operating Environment with Dynamic storage allocation, Input-out-
put, Public push down list, Unhurried diagnosties, and Symbolic snaps)
which provides for the dynamic storage allocation of such data struc-
tures, among other things. ALPAIB will also include multiple precision
integer arithmetic which will handle polynomial coefficient overflow.

VII. ACKNOWLEDGMENT

I would like to thank W. S. Brown for many valuable suggestions
and discussions concerning every aspect of this paper.

REFERENCES

1. Brown, W. 8., The ALPAK System for Nonnumerical Algebra on a Digital
Computer — I: Polynomials in Several Variables and Truncated Power Series
with Polynomial Cuefficients, B.S.T.J., 42, Sept., 1963, p. 2081.
2. Brown, W. 8., Hyde, J. P, and Tague, B. A., The ALPAK System for Nonnu-
merical Algebra on a Digital Computer — II: Rational Funetions of Several
Variables and Truncated Power Series with Rational-Funetion Coefficients,
B.8.T.J., 43, March, 1963, p. 785.
3. Hyde, J. P., unpublished work.
4. Stoll, Robert R., Linear Algebra and Matrix Theory, MeGraw-Hill, New York,
1952. (See especially Chap. 1.)

. Brown, W. 8., and Leagus, D. C., OEDIPUS: Operating Environment with
Dynamic storage allocation, Input-output, Public push down list, Unhurried
diagnosties, and Symbolie snaps, to be published.

* See Ref. 2, p. 794.

(=1

