A Frequency-Domain Condition for the Stability of Feedback Systems Containing a Single Time-Varying Nonlinear Element

By I. W. SANDBERG

(Manuscript received May 6, 1964)

It is proved that a condition similar to the Nyquist criterion guarantees the stability (in an important sense) of a large class of feedback systems containing a single time-varying nonlinear element. In the case of principal interest, the condition is satisfied if the locus of a certain complex-valued function (a) is bounded away from a particular disk located in the complex plane, and (b) does not encircle the disk.

I. INTRODUCTION

The now well-known techniques introduced by Lyapunov have led to many very interesting results concerning the stability of time-varying nonlinear feedback systems governed by systems of differential equations. However, these methods have by no means led to a definitive theory of stability for even the simplest nontrivial time-varying nonlinear feedback systems. The general problem is, of course, one of considerable difficulty.

The unparalleled utility of the Nyquist stability criterion for single-loop, linear, time-invariant feedback systems is directly attributable to the fact that it is an explicit frequency-domain condition. The Nyquist locus not only indicates the stability or instability of a system, it presents the information in such a way as to aid the designer in arriving at a suitable design. The criterion is useful even in cases in which the system is so complicated that a sufficiently accurate analysis is not feasible, since experimental measurements can be used to construct the loop-gain locus.

The primary purpose of this article is to point out that some recently

obtained mathematical results,¹ not involving the theory of Lyapunov, imply that a condition similar to, and possessing the advantages of, the Nyquist criterion guarantees the stability (in an important sense) of feedback systems containing a single time-varying nonlinear element.*•†

II. THE PHYSICAL SYSTEM AND DEFINITION OF \mathfrak{L}_2 -STABILITY

Consider the feedback system of Fig. 1. We shall restrict our discussion throughout to cases in which g_1 , f, u, and v denote real-valued measurable functions of t defined for $t \ge 0$.

The block labeled ψ is assumed to represent a memoryless timevarying (not necessarily linear) element that introduces the constraint $u(t) = \psi[f(t),t]$, in which $\psi(x,t)$ is a function of x and t with the

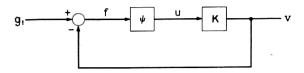


Fig. 1 — Nonlinear feedback system.

properties that $\psi(0,t) = 0$ for $t \ge 0$ and there exist a positive constant β and a real constant α such that

$$\alpha \le \frac{\psi(x,t)}{x} \le \beta, \qquad t \ge 0$$

for all real $x \neq 0$. In particular, we permit the extreme cases in which $\psi(x,t)$ is either independent of t or linear in x [i.e., $\psi(x,t) = \psi(1,t)x$].

The block labeled K represents the linear time-invariant portion of the forward path. It is assumed to introduce the constraint

$$v(t) = \int_0^t k(t-\tau)u(\tau)d\tau - g_2(t), \qquad t \ge 0$$

in which k and g_2 are real-valued functions such that

$$\int_0^\infty |k(t)| dt < \infty, \qquad \int_0^\infty |g_2(t)|^2 dt < \infty. \tag{1}$$

† For results concerned with frequency-domain conditions for the global asymptotic stability (a sense of stability that is different from the one considered here) of nonlinear systems, see, for example, Refs. 2–4.

^{*} The results of Ref. 1 relate to feedback systems containing an arbitrary finite number of time-varying nonlinear elements, but, with the exception of the case discussed here, they do not admit of a simple geometric interpretation.

† For results concerned with frequency-domain conditions for the global asymp-

The function g_2 takes into account the initial conditions at t = 0. Our assumptions regarding **K** are satisfied, for example, if, as is often the case, u and v are related by a differential equation of the form

$$\sum_{n=0}^{N} a_n \frac{d^n v}{dt^n} = \sum_{n=0}^{N-1} b_n \frac{d^n u}{dt^n}, \qquad t \ge 0$$

in which the a_n and the b_n are constants with $a_N \neq 0$, and

$$\sum_{n=0}^{N} a_n s^n \neq 0 \quad \text{for} \quad \text{Re}[s] \ge 0.$$

However, we do not require that u and v be related by a differential equation (or by a system of differential equations).

Assumption: We shall assume throughout that the response v is well defined and satisfies the inequality

$$\int_0^t |v(\tau)|^2 d\tau < \infty \tag{2}$$

for all finite t > 0, for each initial-condition function g_2 that meets the conditions stated above and each input g_1 such that

$$\int_0^\infty |g_1(t)|^2 dt < \infty.$$

Although this assumption plays an important role in the proof of the theorem to be presented, from an engineering viewpoint it is a trivial restriction (see Ref. 5).

Definition: We shall say that the feedback system of Fig. 1 is " \mathfrak{L}_2 -stable" if and only if there exists a positive constant ρ with the property that the response v satisfies

$$\left(\int_{0}^{\infty} |v(t)|^{2} dt\right)^{\frac{1}{2}} \leq \rho \left(\int_{0}^{\infty} |g_{1}(t)| + |g_{2}(t)|^{2} dt\right)^{\frac{1}{2}} + \left(\int_{0}^{\infty} |g_{2}(t)|^{2} dt\right)^{\frac{1}{2}}$$

for every initial-condition function g_2 that meets the conditions stated above, and every input g_1 such that

$$\int_0^\infty |g_1(t)|^2 dt < \infty.$$

In particular, if the system is \mathcal{L}_2 -stable, then the response is square-integrable whenever the input is square-integrable.

It can be shown* that the response v(t) approaches zero as $t \to \infty$ for any square-integrable input g_1 , provided that the system is \mathcal{L}_2 -stable,

^{*} See the proof of Theorem 6 of Ref. 1.

 $g_2(t) \to 0$ as $t \to \infty$, and

$$\int_0^\infty |k(t)|^2 dt < \infty. \tag{3}$$

In addition, it follows at once from the Schwarz inequality that the response v(t) is uniformly bounded on $[0, \infty)$ for any square-integrable input g_1 , provided that the system is \mathfrak{L}_2 -stable, $g_2(t)$ is uniformly bounded on $[0, \infty)$, and (3) is satisfied.

III. SUFFICIENT CONDITIONS FOR \$\mathcal{L}_2\$-STABILITY

Theorem: Let

$$K(i\omega) = \int_0^\infty k(t)e^{-i\omega t}dt, \quad -\infty < \omega < \infty.$$

The feedback system of Fig. 1 is \mathfrak{L}_2 -stable if one of the following three conditions is satisfied:

(i) $\alpha > 0$; and the locus of $K(i\omega)$ for $-\infty < \omega < \infty$ (a) lies outside the circle C_1 of radius $\frac{1}{2}(\alpha^{-1} - \beta^{-1})$ centered on the real axis of the complex plane at $[-\frac{1}{2}(\alpha^{-1} + \beta^{-1}), 0]$, and (b) does not encircle C_1 (see Fig. 2)

(ii) $\alpha = 0$, and $Re[K(i\omega)] > -\beta^{-1}$ for all real ω

(iii) $\alpha < 0$, and the locus of $K(i\omega)$ for $-\infty < \omega < \infty$ is contained within the circle C_2 of radius $\frac{1}{2}(\beta^{-1} - \alpha^{-1})$ centered on the real axis of the complex plane at $[-\frac{1}{2}(\alpha^{-1} + \beta^{-1}), 0]$ (see Fig. 3).

Proof: Note first that

$$\int_0^{\infty} |u(t)|^2 dt \le \max(\beta^2, |\alpha|^2) \int_0^{\infty} |f(t)|^2 dt,$$

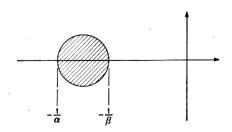


Fig. 2 — Location of the "critical circle" C_1 in the complex plane $(\alpha > 0)$. The feedback system is \mathfrak{L}_2 -stable if the locus of $K(i\omega)$ for $-\infty < \omega < \infty$ lies outside C_1 and does not encircle C_1 .

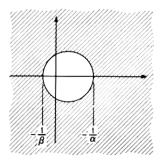


Fig. 3 — Location of the ''critical circle'' C_2 in the complex plane $(\alpha < 0)$. The feedback system is \mathfrak{L}_2 -stable if the locus of $K(i\omega)$ for $-\infty < \omega < \infty$ is contained within C_2 .

and hence, by a well-known result,

$$\int_{0}^{\infty} \left| \int_{0}^{t} k(t - \tau) u(\tau) d\tau \right|^{2} dt \leq \left(\int_{0}^{\infty} |k(t)| dt \right)^{2} \int_{0}^{\infty} |u(t)|^{2} dt$$

$$\leq \max \left(\beta^{2}, |\alpha|^{2} \right) \left(\int_{0}^{\infty} |k(t)| dt \right)^{2} \int_{0}^{\infty} |f(t)|^{2} dt.$$

Using Minkowski's inequality,

$$\left(\int_{0}^{\infty} |v(t)|^{2} dt\right)^{\frac{1}{2}} \leq \left(\int_{0}^{\infty} \left| \int_{0}^{t} k(t - \tau)u(\tau) d\tau \right|^{2} dt\right)^{\frac{1}{2}} \\
+ \left(\int_{0}^{\infty} |g_{2}(t)|^{2} dt\right)^{\frac{1}{2}} \leq \max(\beta, |\alpha|) \int_{0}^{\infty} |k(t)| dt \\
\cdot \left(\int_{0}^{\infty} |f(t)|^{2} dt\right)^{\frac{1}{2}} + \left(\int_{0}^{\infty} |g_{2}(t)|^{2} dt\right)^{\frac{1}{2}}.$$

Consider now the relation between $(g_1 + g_2)$ and f:

$$g_1(t) + g_2(t) = f(t) + \int_0^t k(t - \tau) \psi[f(\tau), \tau] d\tau, \quad t \ge 0$$

and suppose that

$$\int_{0}^{\infty} |g_{1}(t) + g_{2}(t)|^{2} dt < \infty.$$

According to the results of Ref. 1, our assumptions* imply that there

$$\int_0^t |f(\tau)|^2 d\tau < \infty$$

^{*} In Ref. 1 it is assumed that

exists a positive constant ρ_1 (which does not depend upon g_1 or g_2) such that

$$\int_0^\infty |f(t)|^2 dt < \rho_1 \int_0^\infty |g_1(t) + g_2(t)|^2 dt$$

provided that, with

$$K(s) = \int_0^\infty k(t)e^{-st} dt$$

and $\omega = \text{Im}[s]$,

(i) $1 + \frac{1}{2}(\alpha + \beta)K(s) \neq 0$ for $Re[s] \geq 0$, and

 $(ii) \ \tfrac{1}{2}(\beta-\alpha) \max_{-\infty<\omega<\infty} |K(i\omega)[1+\tfrac{1}{2}(\alpha+\beta)K(i\omega)]^{-1}| < 1.$

Thus the feedback system of Fig. 1 is \mathcal{L}_2 -stable if conditions (i) and (ii) are satisfied.

According to the well-known theorem of complex-function theory that leads to the Nyquist criterion, condition (i) is satisfied if (and only if) the polar plot of $K(i\omega)$ for $-\infty < \omega < \infty$ does not encircle or pass through the point $[-2(\alpha + \beta)^{-1},0]$. It can easily be verified that condition (ii) is met if one of the following three conditions is satisfied.

- (a) $\alpha > 0$, and the locus of $K(i\omega)$ for $-\infty < \omega < \infty$ lies outside the circle C_1 of radius $\frac{1}{2}(\alpha^{-1} \beta^{-1})$ centered in the complex plane at $[-\frac{1}{2}(\alpha^{-1} + \beta^{-1}), 0]$.
 - (b) $\alpha = 0$, and $\text{Re}[K(i\omega)] > -\beta^{-1}$ for all real ω .
- (c) $\alpha < 0$, and the locus of $K(i\omega)$ for $-\infty < \omega < \infty$ is contained within the circle C_2 of radius $\frac{1}{2}(\beta^{-1} \alpha^{-1})$ centered in the complex plane at $[-\frac{1}{2}(\alpha^{-1} + \beta^{-1}), 0]$.

If $\alpha > 0$, the point $[-2(\alpha + \beta)^{-1},0]$ lies on the real-axis diameter of C_1 , while if condition (b) or (c) is met, it is impossible for the polar plot of $K(i\omega)$ to encircle the point $[-2(\alpha + \beta)^{-1},0]$. Therefore, the conditions of the theorem guarantee that the feedback system is \mathfrak{L}_2 -stable.

Remarks

With regard to the necessity of our sufficient conditions for \mathcal{L}_2 -stability, consider, for example, the case in which $\alpha > 0$ and suppose, for simplicity, that v and u are related by a differential equation of the type mentioned in Section II. Then, a moment's reflection shows that there exists a $\psi(x,t)$, in fact a $\psi(x,t)$ which is independent of t and linear in x,

for all finite t > 0. Our assumption that (2) is satisfied for all finite t > 0 implies that this condition is met.

that satisfies our assumptions and for which the feedback system is not \mathfrak{L}_2 -stable, provided that for some value of ω , $K(i\omega)$ is a point on the real-axis diameter of C_1 . This clearly shows that the condition is in the correct "ball park." Similar remarks can be made concerning our conditions for the cases in which $\alpha < 0$ and $\alpha = 0$.

IV. FURTHER PROPERTIES OF THE FEEDBACK SYSTEM OF FIG. 1

It is possible to say much more about the properties of the feedback system on the basis of frequency-domain information if our assumptions regarding $\psi(x,t)$ are strengthened.

For example, suppose that

$$\alpha \le \frac{\psi(x_1,t) - \psi(x_2,t)}{x_1 - x_2} \le \beta, \qquad \psi(0,t) = 0$$
 (4)

for $t \ge 0$ and all real $x_1 \ne x_2$, and that one of the three conditions of our theorem is met. Let g_1 and \hat{g}_1 denote two arbitrary input functions such that

$$\int_0^t |g_1(\tau)|^2 d\tau < \infty \text{ and } \int_0^t |\hat{g}_1(\tau)|^2 d\tau < \infty$$

for all finite t > 0, and

$$\int_0^\infty |g_1(\tau) - \hat{g}_1(\tau)|^2 d\tau < \infty.$$

Let v and \hat{v} , respectively, denote the (assumed well defined) responses due to g_1 and \hat{g}_1 . Then if

$$\int_0^t |v(\tau)|^2 d\tau < \infty \quad \text{and} \quad \int_0^t |\hat{v}(\tau)|^2 d\tau < \infty$$

for all finite t > 0, and the assumptions of Section II are met, it follows* that

$$\int_0^\infty |v(\tau) - \hat{v}(\tau)|^2 d\tau < \infty$$

and that there exists a positive constant λ (which does not depend upon g_1 or \hat{g}_1) such that

$$\int_0^{\infty} |v(\tau) - \hat{v}(\tau)|^2 d\tau \le \lambda \int_0^{\infty} |g_1(\tau) - \hat{g}_1(\tau)|^2 d\tau.$$

^{*} Consider Theorem 1 of Ref. 6 with $h_1(t) = f_1(t) = 0$ for t < 0.

Suppose now that $\psi(x,t)$ satisfies (4) and is either independent of t or periodic in t with period T for each x, and that one of the three conditions of our theorem is met. Assume that the initial-condition function $g_2(t)$ approaches zero as $t \to \infty$, and that the input $g_1(t)$ applied at t = 0 is a bounded periodic function with period T. Then it can be shown* that there exists a bounded periodic function p, with period T, which is independent of g_2 and such that the (assumed well defined) response v(t) approaches p(t) as $t \to \infty$, provided that the conditions of Section II are met, (2) is satisfied for all finite t > 0, and

$$\int_0^\infty \left| \int_t^\infty |k(\tau)| d\tau \right|^2 dt < \infty, \qquad \int_0^\infty |(1+t)k(t)|^2 dt < \infty.$$
 (5)

Observe that the conditions of (5) are satisfied if u and v are related by a differential equation of the form described in Section II.

REFERENCES

- Sandberg, I. W., On the £₂-Boundedness of Solutions of Nonlinear Functional Equations, B.S.T.J., this issue, p. 1581.
 Popov, V. M., Absolute Stability of Nonlinear Systems of Automatic Control, Avtomatika i Telemekhanika, 22, Aug., 1961, pp. 961-978.
 Kalman, R. E., Lyapunov Functions For the Problem of Lur'e in Automatic Control, Proc. Natl. Acad. Sci., 49, Feb., 1963, pp. 201-205.
 Rekasius, Z. V., A Stability Criterion for Feedback Systems with One Nonlinear Element, Trans. IEEE-PTGAC, AC9, Jan., 1964, pp. 46-50.
 Tricomi, F. G., Integral Equations, Interscience Publishing, Inc., New York, 1957, p. 46.

- 1957, p. 46. 6. Sandberg, I. W., and Beneš, V. E., On the Properties of Nonlinear Integral
- Equations That Arise in the Theory of Dynamical Systems, to be published.

^{*} See Theorem 3 of Ref. 6.