A Frequency-Domain Condition for
the Stability of Feedback Systems
Containing a Single Time-
Varying Nonlinear
Element

By 1. W. SANDBERG
(Manuscript received May 6, 1964)

It is proved that a condition similar to the Nyquist criterion guarantees
the stability (in an important sense) of a large class of feedback systems
containing a single time-varying nonlinear element. In the case of principal
interest, the condition is satisfied if the locus of a certain complex-valued
function (a) is bounded away from a particular disk located in the complex
plane, and (b) does not encircle the disk.

I. INTRODUCTION

The now well-known techniques introduced by Lyapunov have led
to many very interesting results concerning the stability of time-varying
nonlinear feedback systems governed by systems of differential equa-
tions. However, these methods have by no means led to a definitive
theory of stability for even the simplest nontrivial time-varying non-
linear feedback systems. The general problem is, of course, one of con-
siderable difficulty.

The unparalleled utility of the Nyquist stability criterion for single-
loop, linear, time-invariant feedback systems is directly attributable
to the fact that it is an explicit frequency-domain condition. The Nyquist
locus not only indicates the stability or instability of a system, it pre-
sents the information in such a way as to aid the designer in arriving at
a suitable design. The criterion is useful even in cases in which the system
is so complicated that a sufficiently accurate analysis is not feasible,
since experimental measurements can be used to construct the loop-gain
locus.

The primary purpose of this article is to point out that some recently
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obtained mathematical results,! not involving the theory of Lyapunov,
imply that a condition similar to, and possessing the advantages of, the
Nyquist eriterion guarantees the stability (in an important sense) of
feedback systems containing a single time-varying nonlinear element.* f

II. THE PHYSICAL SYSTEM AND DEFINITION OF £,-STABILITY

“onsider the feedback system of Tig. 1. We shall restrict our discus-
sion throughout to cases in which g, f, », and v denote real-valued
measurable functions of ¢ defined for ¢ = 0.

The block labeled ¢ is assumed to represent a memoryless time-
varying (not necessarily linear) element that introduces the con-
straint «(¢) = ¢[f(¢),t], in which ¢(a,t) is a function of x and ¢ with the

9 +T f "

Fig. 1 — Nonlinear feedback system.

properties that ¢(0,{) = 0 for ¢ = 0 and there exist a positive constant
B and a real constant « such that
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0
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T
for all real x # 0. In particular, we permit the extreme cases in which
Y(a,t) is either independent of ¢ or linear in x [i.e., Y(x,t) = ¢(1,t)x].
The block labeled K represents the linear time-invariant portion of
the forward path. It is assumed to introduce the constraint

v(l) = fﬂ! (it — Dulr)dr — g.(1), t=0

in which & and ¢, are real-valued functions such that

f k() |dt < =, [ | () Pdl < . (1)
Jo 0

* The results of Ref. 1 relate to feedback systems containing an arbitrary finite
number of time-varying nonlinear elements, but, with the exception of the case
discussed here, they do not admit of a simple geometric interpretation.

t For results concerned with frequency-domain conditions for the global asymp-
totic stability (a sense of stability that is different from the one considered here)
of nonlinear systems, see, for example, Refs. 24.
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The funetion g, takes into aceount the initial conditions at ¢ = 0. Our
assumptions regarding K are satisfied, for example, if, as is often the
case, u and v are related by a differential equation of the form

i w4 “f p 4 1> 0
o drm T dim =

in which the a, and the b, are constants with ay # 0, and

N

> a.s" =0 for Rels] = 0.

n=0
However, we do not require that w and v be related by a differential
equation (or by a system of differential equations).
Assumption: We shall assume throughout that the response v is well
defined and satisfies the inequality

/.! Lo(r) Pdr < (2)
Ja

for all finite ¢ > 0, for each initial-condition function g that meets the
conditions stated above and each input g, such that

fu L) [Pt < wo.

Although this assumption plays an important role in the proof of the
theorem to be presented, from an engineering viewpoint it is a trivial
restriction (see Ref, 5).
Definition: We shall say that the feedback system of Fig. 1 is *“£o-stable”
if and only if there exists a positive constant p with the property that
the response » satisfies

([hwea)so([ 100+ 0w ra) + (100 a)

for every initial-condition funection g, that meets the conditions stated
above, and every input ¢, such that

f: L) [Fdt < .

In particular, if the system is £,-stable, then the response is square-
integrable whenever the input is square-integrable.

It can be shown® that the response »(#) approaches zero as { — =
for any square-integrable input g, , provided that the system is £.-stable,

* See the proof of Theorem 6 of Ref. 1.
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gs(t) > 0ast— o=, and
f k() [Pdt < <. (3)
0

In addition, it follows at once from the Schwarz inequality that the
response »(t) is uniformly bounded on [0, ) for any square-integrable
input ¢, provided that the system is £.-stable, g.({) is uniformly
bounded on [0, ), and (3) is satisfied.

III. SUFFICIENT CONDITIONS FOR £o-STABILITY
Theorem: Let
bl .
K(iw) = f k(e ™ dt, — o < w < w.
0

The feedback system of Fig. 1 is Lo-stable if one of the Jollowing three condi-
tions s salisfied:

(i) a > 0; and the locus of K(iw) for — o < w < = (a) lies oul-
side the circle Cy of radius ot — B') centered on the real axis of the
ecomplex plane at [—%(a " + 87,01, and (b) does not encircle Cy (see
Fig. 2)

(i1) a = 0, and RelK (iw)] > —87" for all real w

(7i1) a < 0, and the locus of K(iw) for —= < w < = 18 contained
within the circle Cy of radius 18" — &) centered on the real axis of the
complex plane al [—4(a + 871),0] (see Fig. 3).

Proof: Note first that

[ 10 s max(@ 1 P) [ 1500 P
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Fig. 2 — Location of the “‘critical cirele” C) in the complex plane (a > 0).
The feedback system is £s-stable if the locus of K (iw) for —0 < w < @ lies outside
() and does not encirele € .
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Fig. 3 — Location of the ‘‘critical circle’ (. in the complex plane (a < 0).
The feedback system is £.-stable if the locus of K(iw) for —% < w < © is con-
tained within ', .

and hence, by a well-known result,

[ e ([ v id‘t)z INECK
< max(# 1 F)([C1RO 1) [T 150 P

Using Minkowski’s inequality,
: i
1)

(f:w(n |‘~’fu)* g(f”w

+ (1o ra) s mx,lab [ 140 @

([ ra) + ([ 1o a).

Consider now the relation between (g, + g¢2) and f:

fut k(t — 7)ulr)dr

[‘t K — Pulr)dr

IV
=]

0®) + 00 =10 + [ K= DU a1z
and suppose that
[ 100 + g0 it < =

According to the results of Ref. 1, our assumptions® imply that there

* In Ref. 1 it is assumed that
t
[f(r) I2 dr < =
0
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exists a positive constant p; (which does not depend upon g, or ga)
such that

[ pa < o [ 10 + @0 P
0 0
provided that, with
K(s) =f k(e dt
1]

and w = Imls],
(4) 1+ 3(a + BK(s) = 0 for Re[s| = 0, and
(1) 3B — @) max |K(iw)[l + 3(a + BIK (i)' | < L

—wolw<o
Thus the feedback system of Fig. 1 is Ls-stable if conditions (i) and
(72) are satisfied.

According to the well-known theorem of complex-function theory
that leads to the Nyquist criterion, condition (i) is satisfied if (and
only if) the polar plot of K(iw) for —= < w < = does not encircle
or pass through the point [—2(e + B)7',0]. It can easily be verified
that condition (¢i) is met if one of the following three conditions is
satisfied.

(a) « > 0, and the locus of K(iw) for —» < o < = lies outside
the circle (1 of radius 4(a' — 87') centered in the complex plane at
[—3(a +87),00

(b) @« = 0, and Re[K (iw)] > —p " for all real w.

(¢) a < 0, and the locus of K(iw) for —e < w < =® is contained
within the circle Cy of radius (™" — ') centered in the complex
plane at [—-;—(oz—l + 87H,01

If « > 0, the point [—2(a + £)7',0] lies on the real-axis diameter of
'y, while if condition (b) or (¢) is met, it is impossible for the polar
plot of K(iw) to encircle the point [—2(a + 8)7",0]. Therefore, the
conditions of the theorem guarantee that the feedback system is L£o-
stable.

Remarks

With regard to the necessity of our sufficient conditions for Lo-stability,
consider, for example, the case in which « > 0 and suppose, for sim-
plicity, that » and w are related by a differential equation of the type
mentioned in Section IT. Then, a moment’s reflection shows that there
exists a ¥(x,t), in fact a y(x,t) which is independent of ¢ and linear in z,

for all finite ¢ > 0. Our assumption that (2) is satisfied for all finite ¢ > 0 implies
that this condition is met.
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that satisfies our assumptions and for which the feedback system is
nol Lo-stable, provided that for some value of w, K(iw) is a point on
the real-axis diameter of (';. This clearly shows that the condition is
in the eorrect “ball park.” Similar remarks ean be made concerning our
conditions for the cases in which « < 0 and & = 0.

IV. FURTHER PROPERTIES OF THE FEEDBACK SYSTEM OF FIG. 1

It is possible to say much more about the properties of the feedback
system on the basis of frequency-domain information if our assump-
tions regarding ¢ (x,t) are strengthened.

For example, suppose that

o < playt) — plant) _

&ry — €Ue

B, ¢(0,0) =0 4)
for t = 0 and all real 2; # 2, and that one of the three conditions of

our theorem is met. Let g, and ¢, denote two arbitrary input functions
such that

¢ I3
[ o) [Far < = and [ 1) [Far <
0 (1]
for all finite ¢ > 0, and
[ 106 = i) Pdr < =,
1]

Let v and 8, respectively, denote the (assumed well defined) responses
due to ¢; and g, . Then if

t 13
f L o(7) Pdr < = and [ | 8(r) [Pdr < =
0 Lo

for all finite £ > 0, and the assumptions of Section IT are met, it follows™
that

j: Lo(r) — #(r) Pdr < =

and that there exists a positive constant A (which does not depend upon
¢ or §;) such that

f: lo(r) — 8(7) [Pdr £ X ]: | gu(r) — dil(r) | dr.

* Consider Theorem 1 of Ref. 6 with Ay () = fi(f) = 0fort < 0.
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Suppose now that ¥(x,t) satisfies (4) and is either independent of
¢ or periodic in ¢ with period T for each x, and that one of the three
conditions of our theorem is met. Assume that the initial-condition
funetion g,(¢) approaches zero as { — <, and that the input g,(¢) applied
at { = 0 is a bounded periodic function with period 7. Then it can be
shown™ that there exists a bounded periodic function p, with period T,
which is independent of g. and such that the (assumed well defined)
response (i) approaches p(¢) as { — o, provided that the conditions
of Section IT are met, (2) is satisfied for all finite ¢ > 0, and

L[ 1w e

Observe that the conditions of (5) are satisfied if » and » are related by
a differential equation of the form described in Section II.

2dt<oo, f:|(1+t)k(t)[2dt<oo. (5)
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