Directional Control in

Light-Wave Guidance

By S. E. MILLER
(Manuseript received May 11, 1964)

The transmission of light waves for communicalion tn a medium sheltered
from atmospheric effects requires wave guidance providing frequent changes
in direction of propagation. This paper shows that, in any electromagnetic
waveguide having transverse planes in which the field is essentially equiphase,
the transverse width of the field distribution 2a and wavelength X determine
the order of magnitude of the direction-determining parameters, ..., , the
mintmum bending radius, and 8, , the maximum abrupt angular changes,
according to the relations

Rmin = g(aﬂ/hz)
dmaz = ¥(N/a)

which are valid in the region X < a. The significance of R, ts apparent,
with the note that in a system containing a multiplicity of bends, an appropri-
ate way of summing the effects of the individual bends should be used to es-
tablish an over-all equivalent bend radius for the complele transmission
path, which must be larger than R, . The quantity 6. may be regarded as
the maximum value of the accumulated angular errors (rms sum, for ex-
ample) in a transmission line including reflecting or refracting elements for
directional conlrol. For a light beam at X\ = 0.6328 microns having a diame-
ter of 1.0 mm, 8,4 = 0.036° and R,.;, = 600 meters.

Small-diameter beams ease the problem of directional control. There is no
Sundamental reason why small beams should not be achievable with low loss
in the straight condition, bul many guiding structures do have an tnverse
relation between beam diameter and straight-condition attenuation coefficient.
To explore the direction-controlling properties of specific media and the in-
leraction of R i, and 8uq: with straight attenuation coefficient, the following
waveguides and associated criteria for establishing Rnim and 8p.. were
studied:

(1) sequence of lenses: criterion, beam deflection from nomainal axis by
one beam radius,
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(2) hollow dielectric wavegquide: criterion, added bend loss equal to
stratght condition loss,

(3) round metallic circular-electric waveguides: for helix guide, criterion
is bend loss equal to straight loss; for simple metallic tube, criterion is a
transmission ripple (due to mode conversion) of about 1.7 db.

In all cases the functional dependence on a and \ for R 07 dmaz was the
same (given above) as derived for the generalized eleciromagnetic waveguide,
and the associated constants were tn most cases of stmalar magnitude.

I. INTRODUCTION

In research on techniques for transmitting light waves over appreciable
distances for communication it has become evident that control of direc-
tion of propagation is an important and difficult problem. Electromag-
netic waves in free space travel in a straight line. In a medium that is
sheltered from atmospheric effects, frequent changes in direction are
necessary to follow vertical terrain contours and to conform to a hori-
zontal path avoiding physical obstacles and regions of high-cost installa-
tion. The wave guiding medium must provide these direction changes.

In this paper some simple relations are derived to give the order of
magnitude of the direction-determining factors, bending radius and
abrupt tilt angle, for any wave guiding structure as a function of wave-
length and the transverse dimension of the guided electromagnetic
wave beam. These simple relations are then compared to the correspond-
ing more precisely defined quantities for specific waveguides: (1) a se-
quence of lenses,! (2) the hollow-dielectric waveguide,® and (3) round
waveguides for circular electric waves.

1I. DERIVATION OF GENERAL WAVEGUIDE DIRECTIONAL SENSITIVITY

In Fig. 1 we show a generalized waveguide for electromagnetic waves,
with an abrupt open end radiating into free space. We assume the field
at the aperture is essentially equiphase, which implies ending the guide
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Fig. 1 — Waveguide with abrupt open end.



LIGHT-WAVE GUIDANCE 1729

only at certain longitudinal locations if a periodic form of guidance (such
as a sequence of lenses) is employed. Let the field strength variation
across the aperture be approximately sinusoidal. Then, approximately,
the far-field beam angle 6 is

6 = \/a radians (1)

i which we require ¢ > . Other aperture distributions would give the
same order of magnitude for 6. In the near-field region the radiated beam
remains collimated in a width approximately 2a out to a distance z, from
the aperture, where

z0 = 2a (2)
z. = 2d°/\. (2a)

The key inference on directional sensitivity is introduced here. Since in
the absence of the guide the beam remains confined to essentially the
same region as in the presence of the guide, it is concluded that the guide
has little influence on the beam over the interval z. . Thus any appreciable
change in direction of wave propagation must not be made in a distance
less than z, .

With reference to Fig. 2, the departure of a circular are from the
tangent is

A = HP/R). (3)
We now require that A = a when [ = z.. Using (3), (2) and (1), we
obtain the minimum bend radius Ruiq

Ifflnin = 2&3/h2. (4)

/

Fig. 2 — Departure of a circular are from the tangent.
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Alternatively, this same relation may be arrived at by specifying that
the change in direction shall be one beamwidth 6 after traveling a dis-
tance z, in the minimum bending radius Ruix ; 1.€., Bnind = 2.
Equation (4) gives the order of magnitude of bend radius at which
the wave propagation will change character. At longer bend radii the
wave propagation will be essentially as in the straight guide, and at
shorter bend radii something drastic will happen. Just what changes oc-
cur in the latter case depend on the nature of the medium in detail. If
the medium is enclosed in a perfect conductor the change will be large
mode conversion. If it consists of a sequence of infinitely wide lenses we
will see that the change is a wide oscillation of the beam about the nomi-
nal axis of propagation. Note that in neither of these cases is energy lost
due to the bend. Nonetheless, we regard either change as undesirable.
Consider an abrupt angular change in the guide direction, 8. Following
a line of reasoning analogous to that given above, we can say that the
character of wave propagation will change rapidly in the region where

Omax = 8/2 = A/23' (5)

Smaller values of 8 will cause progressively less change in wave character,
whereas larger values of § will cause violent changes.

If we consider the relation of these quantities to a wave guiding me-
dium, it is apparent that R, is intended as the smallest radius at which
the otherwise uniform medium can be bent. When a multiplicity of bends
is included in a single transmission link, some way of summing their ef-
fects is needed to form an equivalent bending radius which must be
greater than R, .

The angle 5 is somewhat different. In many media where @ >> \ it is
possible to insert a large plane reflector and introduce a change of direc-
tion of arbitrary size. As long as the guides at both approaches to the
reflector are perfectly aligned according to geometric opties, the dis-
turbance on wave propagation may be negligible. However, there will be
an error in such angular alignment and &max tells us how large that error
may be. When many random angular errors are made, dmax 18 approxi-
mately the rms accumulation of such errors.

The numerical values of Rmin and dmsx have been plotted for A from
0.6328 to 10 microns and beam radius a from 0.1 to 100 millimeters in
Figs. 3 and 4, respectively. For example, at A = 0.6328 microns and
9% = 1.0 em, Rumin = 600,000 meters and duux = 3.6 X 107" degrees.
Dropping to 2¢ = 1.0 mm, Runin = 600 meters and dumx = 3.6 X 107?
degrees.

We consider next certain specific wave guiding structures to compare
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the results of directional changes in those structures to the generalized
conclusions drawn above.

11I. SEQUENCE-OF-LENS WAVEGUIDE

G. Goubau has proposed! a waveguide for electromagnetic waves con-
sisting of a series of lenses, and D. Marcuse has used geometric optics to
determine the effects of bends in such a waveguide.?

If the input to a lens waveguide is a ray which is inelined at an angle
5 to the longitudinal waveguide axis (Fig. 5) the departure of the ray
from the longitudinal axis has a magnitude at successive lenses which is
contained within an envelope which is a sinusoidal function of distance
along the longitudinal axis. Starting with the work of Marcuse, one can
show that there is an optimum strength of lens which minimizes the de-
parture of a ray from the axis; the optimum focal length f is related to
the lens spacing L by

of = L (6)

and under that condition the maximum deviation of the ray from the
longitudinal axis is

Tmax—1 = 6IJ- (7)

Consider a region of bend radius R following a straight region of lens
waveguide. For a ray incident on the curved region from the axis of the
straight region Marcuse has also calculated the ray’s departure from the
axis in the curved region; for the ease f = L/2 the maximum departure is

Fmax—2 = LZ/'R- (8)
We now relate these departures from the guide axis to the transverse

dimension of the beam. It is convenient to consider the beam radius to
be that value of radius beyond which a completely negligible amount of
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Fig. 5 — Sequence of lenses.
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field exists. We define this beam radius as
r o= (NoL ). (9)

Here Ny is the Fresnel number which previous work® shows is on the
order of unity for negligibly small diffraction loss when all energy out-
side the radius 7, is absorbed at the lenses.”

As a criterion of the maximum permissible abrupt angular change, we
somewhat arbitrarily set it to be that angle at which ry,..—1 18 equal to
the transverse beam radius r;, :

Bnax = (ro/1) = (NNL)' = Non/ry, . (10)

Since Ny =2 1, thisspecific guide and eriterion gives a permissible angular
change of twice that preseribed by (5). This may be considered an ex-
cellent agreement.

As a criterion of the minimum permissible bend radius, we set the re-
sulting beam deflection ryax—2 equal to the transverse beam radius r, :

Rmin = ]42/'!’.!) = rba/(j\r[)x)z. (11)

Since Ny =2 1, this specific guide and criterion gives a permissible bend
radius of one-half that preseribed by (4), which again may be considered
excellent agreement.

The most important aspect of the comparison between (4) and (5),
(10), and (11) is that the corresponding equations have the identical
dependence on A and @, which determines in a broad way the magnitude
of the direction determining parameters.

In this form of guide we can readily relate the beam radius to the as-
sociated lens spacing and the losses. Iig. 6 shows the lens spacing I,
versus beam radius in the 0.5- to 4-micron wavelength region. As before,
Ny will be about unity, but where extremely low losses per lens are re-
quired may have to he slightly greater than unity.” For the 1.0-mm beam
diameter referred to above, the lens spacing is about 0.4 meter for
A = 0.63 microns.

In principle, vanishingly small transmission loss could be obtained by
appropriate choice of lens diameter (i.e., choice of Ny), if the reflection,
absorption, and scattering losses were negligible at the lenses. In practice,
such losses may be very real. I'ig. 7 shows the total losses per lens re-
quired as a function of lens spacing with net transmission loss as a
parameter. I'or 3 db/mile net loss and the 0.4-meter lens spacing, a power
loss per lens of about one part in 10" is required.

* Further discussion of Ny and ry, is given in the Appendix.
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Fig 6. — Approximate beam radius vs lens spacing in a sequence of identical
lenses.

In general, of course, the smaller beam diameters which permit rapid
direction changes require more tight guidance (closer lens spacing) and
tend to increase the losses. Note, however, that the only inherent losses
associated with tight guidance for the lens guidance system are due to
scattering or reflection at lens surfaces or bulk lens absorption loss, both
of which may conceivably be made very small.

IV. HOLLOW DIELECTRIC WAVEGUIDE

E. A. J. Marcatili and R. A. Schmeltzer have proposed a waveguide
for light waves consisting of a hollow dielectric tube in which the useful
energy is entirely confined to the central hole.” When the guide is
straight, loss takes place through very slow radiation into the dielectric,
which is completely absorbing for the light energy.

The bending radius for such a guide which makes the extra loss due to
bending (also a radiation loss) exactly equal to the straight-guide at-
tenuation coefficient has also been determined.” They find, for the lowest-
order mode (EHu), in which the field varies roughly cosinusoidally
from the axis to the inner wall of the tube,

Rmin—D = 9.5 aﬂ/Az (12}
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where a is the inner radius of the tube. Once again, the functional de-
pendence of R,in—p on @ and X is identical to that in (4).

The straight-line attenuation coefficient for the lowest-order mode
can be reduced to’

a, = 0.214 A*/ad’ (13)

for an index of refraction of the diclectric tube equal to 1.5. As Mareatili
and Schmeltzer have pointed out, the dependence of «, on @ and X is the
exact inverse of that for R..i.—» ; hence for any prescribed straight-guide
loss there is a minimum permissible bending radius, which for the lowest-
order mode is

[Ijlllillfl) = 2-03/(1‘,, . (14)

For fixed «, this is independent of A. For R,.;,_» = 1000 meters, e, =
0.002 nepers/meter or 27.9 db/mile, and at A = 0.6328 microns, the
inner radius of the tube a = 0.35 mm.

V. CIRCULAR ELECTRIC WAVEGUIDES

We consider now the directional control relations for round waveguides
designed for the TEy, circular electric wave. Helix waveguide and smooth-
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walled metallic waveguide involve quite different criteria for tolerable
bending radius and will be discussed separately.

Consider first metallic guides in which the losses are negligible com-
pared to the mode coupling coefficients. We assume the degeneracy be-
tween TEg and TMy, is broken with a dielectric lining or other guide
modification. Then the limit on bending radius or abrupt tilt is the inter-
fering effect between the unperturbed TEq energy and the energy which
is converted to an undesired mode and reconverted back to the Ty
wave.

For an abrupt tilt, the amplitude conversion coefficient from TEy
to TE,» was found by 8. P. Morgan® to be, approximately

p = 1.935 (a/\)é (15)

where § is the tilt angle in radians. When converted energy from one tilt
strikes another tilt (presumed for simplicity here to be the same angle),
energy is reconverted back to the TEy, wave with the same conversion
coefficient given by (15). The amplitude of the reconverted wave com-
pared to the unperturbed wave is then p". Depending on the relative
phase of the reconverted vector, it may add at any phase angle to the
unperturbed wave. Henee the amplitude transmission coefficient varies
with wavelength between (1 + p°) and (1 — p°). Letting a transmission
fluctuation of 1.7 db, corresponding to p* = 0.1, be the criterion of limit-
ing tilt angle, we find

Smax—y = PA/1.935a = 0.164 \/a. (16)

Comparing this to the generalized relation for dma.x in (5), we note the
identical dependence on X and @ and a somewhat smaller constant multi-
plier. In practice, the existence of coupling to other modes would tend
to make somewhat smaller values of 8.y needed, but the dependence
on A and e would not be affected.

Still considering guides with negligible losses, we examine the effect
of a constant-radius bend. It may be shown that the reconverted vector
has the magnitude

p’ = K¢/ (T — Ta)’ (17)

where k, is the distributed coupling coefficient between TEq and an un-
desired mode and T, and T are the propagation constants for TEy and
the undesired modes, respectively. For TEy to TE.

k= j(2a/NR) (18)
where R is the bend radius and a is the radius of the guide. Also,

(Ty — Tu) =2 j(Bife) = j N/, (19)
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Hence
p° = 4a" /R (20)

As a criterion for minimum bend radius we set p,* equal to 0.1, giving
the same ripple in transmission loss as noted above, with the resulting
bending radius from (20)

Ruinew = (4/pH)d*/\Y) = 6.3 a®/\ (21)

Comparing (21) to (4), we again find the identical dependence on e and
A with a slightly different constant.

Turning now to the case of helix waveguide in which very strong loss
is introduced for the undesired mode, we find we do not have explicit
forms for the coupling coefficient. We take advantage of some numerical
evaluations carried out in the 30- to 100-kme region on guide varying in
diameter from 0.25 inch to 3 inches. It was found that the bend loss
coefficient is given by the expression*

ap = 0.0726 (a’/R*\"7). (22)

The TEqy loss of the guide when straight is very nearly that of a copper
eylinder, given by S. A. Schelkunoff as’

a, = 4.46 X 107° AY/a", (23)

In (23) we have assumed a’ >> (A/2)* so that the cutoff effect is negligi-
ble. As our criterion for minimum bending radius we equate the bend
loss ey and the straight-line loss «, , yielding

ll’miuvﬂ' = 128 0'31;.?\2‘1- (24)

The functional dependence of Ryi,—x on A and a is very nearly the same
as in (4), but the constant multiplier is much greater. This is a conse-
quence of the eriterion @, = ap, which is thereby proven much more
stringent than the rather lax transmission ripple eriterion used above for
the metallic tube guide in which dissipation was negligible. Since «, of
(23) and Runin_y of (24) have different dependence on A, a change of
wavelength will influence Ruin—» even though «, is held constant. We
can express this by substituting (23) into (24), giving

128 ,a’° 571 x 10°°

a
Rmin—ﬁ = x ﬁ - AU'GQ,

o (25)

At longer wavelengths, smaller bending radii are tolerable even though

* This is the result of unpublished calculations by the author, based on cou-
pling coefficients derived by methods due to Unger® and using coupled-wave
theory.1°
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@, is held constant by increasing a. At a wavelength of 5 mm and a
straight attenuation coefficient of 1 db/mile, Rmin—r = 191 meters. This
result and the numerical constant in (22) are dependent to some extent
on the wall impedance to the undesired modes used in the numerical
evaluations referred to above, which was on the order of one-half the free-
space intrinsic impedance.

VI. CONCLUSION

For any guided electromagnetic wave, the order of magnitude of the
direction-determining parameters R, (the minimum bending radius)
and 8max (the maximum abrupt angular change) are uniquely determined
by the wavelength and transverse beam dimension. Equations (4) and
(5) were derived, determining Rumin and dmax for a general guided elec-
tromagnetic wave by inferring the tightness of guidance from the be-
havior of a wave radiated from the open end of the waveguide. Investiga-
tion of specific forms of waveguide with precise criteria for setting limits
on R and & (as outlined in the abstract) lead to identical functional
forms for Buin and dmax , with similar constant multipliers.

APPENDIX

Previous workers™” have calculated the diffraction loss at a reflector
in a maser interferometer, and the same loss per lens would be expected
in a sequence-of-lens waveguide if the entire plane outside the edge of the
lens (of radius equal to that of the maser reflector) were absorbing. These
losses are plotted versus N = a’/L\ (where a is the reflector radius) in
Fig. 3 of Ref. 7 and in Fig. 15 of Ref. 3 for focal length f = L/2. We
chose N, to be that value of N which gives satisfactorily low loss per lens;
for example, for Ny = 1, Ref. 7 gives a power loss per lens of one part in
10* for the lowest-order wave, and for Ny = 1.4 the power loss is one
part in 10°. Fig. 3 of Ref. 1 shows that 99.8 per cent of the energy of the
normal mode for infinite lenses lies within the radius r = (M) at the
lens. In practical cases, therefore, N, will differ little from unity.

Another item of interest is the relation between r, of (9) and the field
amplitude given by previous workers.”® The field varies as a function of
radius » from the axis of the guide according to

exp (—r’/w’) (26)

where w is the radius at which the field drops to ¢ of its maximum (on
axis) value. The value of w varies with longitudinal position between
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lenses; at midway between lenses w = wy, where

wy = (Ln/2m)" (27)
At the lenses, w = w, , and for our cases of f = L/2
we = (LA/7)" (28)
It is apparent from (9) and (28) that
= W, (Nmr')%. (29)
In terms of w, (10) becomes
dmax = (No/7) (M w,) (30)
and (11) becomes
Ruin = (xNh) (w,*/2). (31)
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