B. S. T. J. BRIEFS

A Condition for the £∞-Stability of Feedback Systems Containing a Single Time-Varying Nonlinear Element

By I. W. SANDBERG

(Manuscript received May 14, 1964)

In the automatic control literature, a feedback system is frequently said to be stable if, regardless of the initial state of the system, each bounded input applied at t = 0 produces a bounded output. The purpose of this brief is to present a sufficient condition for the feedback system of Fig. 1 to be stable in this sense.

Our discussion is restricted to cases in which g_1 , f, u, and v (in Fig. 1) denote real-valued measurable functions of t defined for $t \ge 0$. The block labeled ψ is assumed to represent a memoryless time-varying element that introduces the constraint $u(t) = \psi[f(t),t]$, in which $\psi(x,t)$ is a function of x and t with the properties that $\psi(0,t) = 0$ for $t \ge 0$ and there exist a positive constant β and a real constant α such that

$$\alpha \le \frac{\psi(x,t)}{x} \le \beta, \qquad t \ge 0$$

for all real $x \neq 0$.

The block labeled K represents the linear time-invariant portion of the forward path, and is assumed to introduce the constraint

$$v(t) = \int_0^t k(t - \tau)u(\tau)d\tau - g_2(t), \qquad t \ge 0$$
 (1)

in which k and g_2 are real-valued measurable functions such that

$$\int_0^\infty |k(t)| dt < \infty, \qquad \sup_{t \ge 0} |g_2(t)| < \infty.$$

The function g_2 takes into account the initial conditions at t = 0. We do not require that u and v be related by a differential equation (or by a system of differential equations).

Assumption: We shall assume that the response v(t) is well defined and such that for all finite y > 0

$$\sup_{0 \le t \le y} |v(t)| < \infty,$$

Fig. 1 — Nonlinear feedback system.

for each initial-condition function g_2 that meets the conditions stated above and each input g_1 such that

$$\sup_{t\geq 0} |g_1(t)| < \infty.$$

Definition: We shall say that the feedback system of Fig. 1 is " \mathfrak{L}_{∞} -stable" if and only if there exists a positive constant ρ with the property that the response v satisfies

$$\sup_{t \, \geq \, 0} \mid v(t) \mid \, \leq \, \rho \, \sup_{t \, \geq \, 0} \mid g_1(t) \, + \, g_2(t) \mid + \, \sup_{t \, \geq \, 0} \mid g_2(t) \mid$$

for every initial-condition function g_2 that meets the conditions stated above and every input g_1 such that

$$\sup_{t\geq 0} |g_1(t)| < \infty.$$

Clearly, if the system is \mathfrak{L}_{∞} -stable, then the response is bounded whenever the input is bounded.

Theorem: Suppose that

(i) with
$$K(s) = \int_0^\infty k(t)e^{-st}dt$$
 for $Re[s] \ge 0$,
$$1 + \frac{1}{2}(\alpha + \beta)K(s) \ne 0 \text{ for } Re[s] \ge 0, \text{ and}$$

(ii) with $h(\cdot)$ the inverse Laplace transform of

$$\frac{K(s)}{1 + \frac{1}{2}(\alpha + \beta)K(s)}, *$$

$$\frac{1}{2}(\beta - \alpha) \int_0^\infty |h(t)| dt < 1.$$

Then the feedback system of Fig. 1 is \mathcal{L}_{∞} -stable.

It is of interest to note that condition (ii) is satisfied whenever condition (i) is met, $\alpha > 0$, $h(t) \ge 0$ for $t \ge 0$, and

$$\int_0^\infty k(t)\,dt > 0,$$

^{*} Condition (i) and our assumption regarding $k(\cdot)$ imply that $h(\cdot)$ exists, and that its modulus is integrable on $[0,\infty)$ [see Ref. 1].

for then

$$\frac{1}{2}(\beta - \alpha) \int_0^\infty |h(t)| dt = \frac{\frac{1}{2}(\beta - \alpha)K(0)}{1 + \frac{1}{2}(\alpha + \beta)K(0)} < 1.$$

The theorem can be proved with the techniques discussed in Refs. 2 and 3. More specifically, consider the relation between f and $(g_1 + g_2)$:

$$g_1(t) + g_2(t) = f(t) + \int_0^t k(t - \tau) \psi[f(\tau), \tau] d\tau, \quad t \ge 0$$
 (2)

and suppose that

$$\sup_{t\geq 0} |g_1(t) + g_2(t)| < \infty.$$

Arguments very similar to those used to prove Theorem 1 of Ref. 2 and Theorem I of Ref. 3 show that if (a) f satisfies (2), (b)

$$\sup_{0 \le t \le y} |f(t)| < \infty$$

for all finite y > 0, and (c) conditions (i) and (ii) of our theorem are satisfied, then there exists a positive constant ρ_1 (which does not depend upon g_1 or g_2) such that

$$\sup_{t \ge 0} |f(t)| \le \rho_1 \sup_{t \ge 0} |g_1(t)| + g_2(t)|.$$

Our theorem is a direct consequence of this fact, in view of (1) and the relation between u and f.

REFERENCES

Paley, R. E., and Wiener, N., Fourier Transforms in the Complex Domain, Publ. Am. Math. Soc., Providence, R. I., 1934, pp. 60-61.
 Sandberg, I. W., On the \(\mathcal{L}_2\)-Boundedness of Solutions of Nonlinear Functional Equations, B.S.T.J., this issue, p. 1581.
 Sandberg, I. W., Signal Distortion in Nonlinear Feedback Systems, B.S.T.J., 42, Nov., 1963, p. 2533.