Organization of No. 1 ESS

Central Processor

By J. A. HARR, F.F. TAYLOR and W. ULRICH
(Manuscript received January 28, 1964)

The central processor controls the operation of the No. 1 electronic
switching system by executing sequences of program instructions. The logi-
cal organization of the central processor is described by the simultaneous
evolution of:

(1) an instruction repertoire to carry out the required ltelephone and
system maintenance tasks efficiently, and

(2) a circuit logic design to provide the necessary circuits (flip-flop
registers, accumulators, etc.) to exvecule the instructions at a high data
processing rate.

The design aims, order structure, timing, internal sequencing, and com-
munications with the peripheral equipment of the system are described.

1. INTRODUCTION

Telephone central offices must cover a wide range of sizes and provide
a large variety of services to customers; in addition, they must be ecom-
patible with existing systems, adaptable to varied and changing operat-
ing conditions, dependable, reliable, and economical. The development
of an electronic switching system capable of satisfying these require-
ments presented many new problems to the designers. As a result, many
techniques new to the telephone switching field were introduced in the
system.! One of the most important new techniques is the control philoso-
phy, which utilizes a stored program.

A system employing a stored program is one which consists of mem-
ories for storing both instructions and data, and a logic unit which
monitors and controls peripheral equipment by performing a set of
operations dictated by a sequence of program instructions. The stored
program philosophy permitted the designers to use centralized logic
circuitry and large-capacity memory units as a means of attaining
flexibility and over-all economy in the system.

1845

1846 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

In this paper some of the design characteristics of the central processor
are described, followed by a step-by-step development of the central
control order structure and the corresponding logic circuitry needed for
its implementation.

II. DESIGN CHARACTERISTICS

A simplified diagram of the electronic switching system (ISS) is
shown in Fig. 1. The outer circle represents the entire No. 1 ESS, having
primary inputs from lines and trunks? via scanners,® and outputs to the
network* and signal distributor,® with teletypewriters as administrative
input-output devices and with a magnetic tape for automatic message
accounting (AMA)® output. The inner circle, the central processor,
contains a central control® unit which executes program instructions
and memory units used for storing program instructions and data.

In order for the central processor to handle traffic submitted by offices

TELEPHONE CUSTOMERS
I

NETWORK

CENTRAL SIGNAL
SCANNER PROCESSOR DISTRIBUTOR

TELETYPEWRITER
AUTOMATIC
MESSAGE
ACCOUNTING
TAPE

CENTRAL OFFICE PERSONNEL
AND OTHER CENTRAL OFFICES

Fig. 1 — Simplified diagram of the No. 1 ESS.

CENTRAL PROCESS0R ORGANIZATION 1847

serving 5000 to 60,000 customers, the number of memory units in the
system must be expandable over a wide range. Therefore the central
processor address registers, memory word size, and address buses are
designed to accommodate the largest office. The system design must
not only meet initial office size requirements, but must also include
growth capability.

Since the data processing operations required for performing telephone
functions are accomplished by executing a stored program?# which
must be error-free and remain error-free* at all times to insure the proper
behavior of the system and good service for the customers, the memory
chosen for storing the program is semipermanent and requires off-line
operations to change it. (This avoids the risk of an error in operation
introducing an error in the program.) Therefore the central processor
contains two types of memory: a semipermanent memory system (pro-
gram store)® for storing programs and a high-speed readable and writable
memory (call store)!® for storing call progress data.

An address of at least 21 binary bits is needed to gain access to the
total number of words required in both the program and temporary
memories. To meet this requirement, along with memory store design
considerations, the designers decided upon a word length in the call store
of 24 bits, comprising a parity check bit and 23 information bits. For
convenience, the same word length is used throughout the central control.
Most instructions which operate on memory words require a 21-bit
address field. Instructions which contain a data field must allow for 23
bits in the data field to be compatible with the length of temporary
menmory words. Accordingly, the operation fields of each of these types
of instructions are 16 and 14 bits in length, respectively, to accommo-
date the many types of instructions needed in each category. Therefore
the instruction word length is 37 bits. To check and correct program
instructions with single errors and to determine whether a word read
has a double error in it, 7 check bits are also needed for each program
instruction, making a total of 44 bits stored for each entry in the program
store.

Engineering studies of the number and kind of telephone funections
which the system must perform dictated a need for an efficient instrue-
tion repertoire with specific attributes. Some of these attributes will
now be described.

To perform the functions required to handle the busy-hour traffic
submitted by the largest office, the system can spend only approximately

* As will be seen later, facilities are available for detecting and correcting single
errors.

1848 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1064

5000 machine cycles per call. To meet this requirement, the instruction
repertoire must include efficient multifunctional program instructions.

Since the repertoire must include the storage of data of variable bit
length in the temporary memory and retrieval of these data, both read-
from-memory and write-to-memory instructions include masking fa-
cilities. As used here, the masking of words read from memory means
changing all of the bits of the word to zero except those which specify
the item of interest; these remain in the same state as they were in
memory. Masking of words written into memory is a facility for in-
serting an item of variable length into a word already in memory; the
remaining bits of the word are unchanged.

To assist in achieving program word efficiency, in most cases the same
functional program is used for all calls in progress requiring the execu-
tion of a given function.”®* For reliability, instructions in this system
are not changeable at run-time (i.e., while the machine is actually
processing calls). Indexing facilities provide means by which the pro-
grammer can change the addresses of memory words acted upon by
the same program. Also, the indexing facilities can be used to vary the
sequence of programs to be read and executed.

To carry out data processing of call information, the repertoire in-
cludes the arithmetic operations of addition, subtraction, comparison,
shifting, and rotation, and the following logic operations: AND, OR,
EXCLUSIVE-OR, and COMPLEMENT. Since the functions which the
system must perform do not require multiplication and division opera-
tions, it was not necessary to include these in the central processor.
To perform the logic functions required to carry out the many telephone
functions, a variety of decision instructions are required to transfer
control to specific program sequences based on the condition of internal
central control registers after data manipulations have been performed
on them. For example, a program of three instructions capable of per-
forming the following three operations illustrates the primary way the
central processor can vary the sequence of its operations according to
input data it has received.

(1) Read, at an address specified by an index register, the word from
memory containing the first dialed digit of a call; mask out all of the
bits in the word other than the four bit positions used for the first
digit; and load the word into an accumulator register.

(2) Compare the word just loaded into the accumulator with the
value 10 (i.e., the number of pulses counted when a customer dials Z€r0)
specified by the data field of the instruction.

(3) Transfer to the program specified in the address field of the in-

CENTRAL PROCESSOR ORGANIZATION 1849

struction if the two compared quantities are equal (this program will
cause the customer to be connected to an operator) ; otherwise, continue
the present program sequence.

For efficient operation, the central control should be capable of exe-
cuting instructions which combine a number of the operations listed
above. For example, the repertoire includes an instruction which reads
the word at a temporary memory address specified by an index register,
masks the word read, complements it, and then AND’s the result with
the accumulator register in the central control during one operational
cycle.

To make efficient use of data processing time the repertoire must
include a class of special instructions designed to facilitate the reading
and making of logical decisions on input data and special orders for
delivering output data to both the network controllers and trunk control
circuitry. Therefore the central control can be deseribed as an input-
output processor superimposed on a general-purpose data processor.

Since the fundamental task of the central processor is continuous
monitoring and controlling of its rapidly changing environment, con-
sisting of wide variations of traffic submitted by customer lines and
trunks, real time must be carefully considered when planning the system
and writing the program. Programs to monitor and gather input data
and to deliver output signals and data must be especially efficient in
their use of central processor cycle time.

Input-output programs must be executed on a strict schedule. For
example, the program to detect and receive dial pulses must be performed
every 10 milliseconds. In order to acecomplish this, an interrupt mech-
anism is included in the central processor. The interrupt mechanism,
when activated by a source such as a clock or check circuitry, generates
a new program address, thus transferring control of the system to an
interrupt program sequence. When this occurs, the address of the next
instruction which normally would have been executed is automatically
stored. When the interrupt program completes its task, control is re-
turned to the interrupted program.

To make the system capable of continuous operation during mal-
funetion of eireuit components, the central processor is duplicated. In
order to detect and ultimately pinpoint hardware malfunctions, the
central processors include:

(1) circuitry which compares the execution of instructions in both
central processors,

(2) circuitry for generating a parity bit for each word stored in the
temporary memory,

1850 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

(3) circuitry for checking the parity of words read from temporary
Mmemory,

(4) circuitry for detecting and correcting single-bit errors in instruc-
tions read from the program memory,

(5) circuitry within the peripheral equipment for checking data re-
ceived and for notifying the central processor when either data it
receives or its own check circuitry indicates trouble,

(6) cireuitry within the central control for verifying signals sent back
by peripheral equipment, and

(7) cireuitry for special-purpose instructions for controlling and inter-
rogating stores and peripheral equipment.

11I. BASIC DESCRIPTION OF CENTRAL CONTROL

In this section an order structure, including the symbolic names of
the instructions, and a central control block diagram will be concur-
rently explained.

3.1 Basic Facilities

In the simplest form (see Fig. 2), the central processor consists of a
central control, a program store which receives an address from central
control and returns the corresponding instruction, and a call store,
which receives an address and either receives data to be recorded at
that loeation or returns the data previously stored at that location.

As a starting point, central control must contain registers for receiving
program store instructions and call store data, and facilities for generat-
ing and transmitting addresses to both stores and data to the call store
(see Fig. 3). The buffer order word register (BOWR) receives instruc-
tions from the program store, and the data buffer register (BR) receives
data from the call store. The program store address register (PAR) is

PROGRAM
STORE

STCORE

WRITE |READ

ADDRESS
DATA |DATA

READ
INSTRUCTION ADDRESS

CENTRAL CONTROL

Fig. 2 — Block diagram of the data processor.

CENTRAL PROCESSOR ORGANIZATION 1851

PROGRAM CALL
STORE STORE
READ READ WRIT!
ADDRESS INSTRUCTION ADDRESS DATA BATA

BUFFER ORDER
WORD REGISTER

PROGRAM
STORE
ADDRESS
REGISTER

Fig. 3 — Derivation of the central control (1).

used as the source of addresses of instructions to the program store,
and the index adder is used to generate addresses for the call store.

These facilities must be augmented by an instruction decoder, the
buffer order word decoder (BOWD) attached to the buffer order word
register (see I'ig. 4). This decoder is used to control the gating of in-
formation inside central control.

Also needed to control such gating and to synchronize the decoding
with the reading of information from the stores is a clock. In the No. 1
IESS eentral control, the clock is a synchronous 5.5-microsecond clock,
with 22 distinet phases separated by 0.25 miecrosecond. Arbitrary-length
clocking pulses are derived by setting a flip-flop circuit with one arbi-
trary phase, resetting it with another, and using the output of the flip-
flop as the clocking pulse. Such pulses are repeated once every 5.5 micro-
seconds.

Giates are therefore controlled by decoding the output of the buffer
order word register and combining the decoded output with a suitable
clock pulse.

3.2 Index Registers

In addition to the buffer register, there are a number of general-
purpose flip-flop index registers, ¥, X, Y, and Z (see Fig. 4). The index
registers are 23 bits long, the basic word length of the central control and
the call store. (The 24th bit of the call store, a parity check bit, does
not store useful information; this bit need not be carried along in cen-
tral control data processing, although it must be generated anew when-

1852 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1684

PROGRAM CALL
STORE STORE
B e e — e S
BUFFER ORDER BUFFER
WORD REGISTER REGISTER

INDEX
ADDER
INTERNAL
GATE
CONTROL INDEX
REGISTERS
PROGRAM
ADDRESS
REGISTER BUS

Fig. 4 — Derivation of the central control (2).

ever information is stored in the call store and checked whenever infor-
mation is read from the call store.)

Indexing is useful for developing a program which is general for any
telephone central office. It is the process of deriving a memory address by
adding a constant from the instruction to a variable previously derived
and stored in an index register. For example, the index register might
contain the starting address of a block of call store words used for
accumulating dialed information; the constant might be the location of a
word within such a block, containing information known to be needed
at a certain stage of a call. Such an instruction may be described as
follows: fetch the call store reading in the third word of a block whose
starting address is stored in the Y index register, and store the reading
in the X index register. The description of the operation is divided into
three parts (see Fig. 5): the basic operation (fetch data from memory

INDEX
OPERATION | CONSTANT | JNDEX
MEMORY TO
(x REGISTER] MX 3 ¥

Fig. 5 — Basic instruetion format 1.

CENTRAL PROCESSOR ORGANIZATION 1853

and store in the X register), the constant of the instruction (3), and the
index register used in indexing (Y). In the basic mnemonics of the sys-
tem, memory to X register is written as MX; therefore this instruction
is written as MX,3,Y. Instructions which read or write in memory
contain M in their mnemonic representation and are collectively desig-
nated M instructions.

3.3 Bus

Information is transmitted among the index registers via a bus (Fig.
4) consisting of 23 parallel information paths. The F, X, Y, and Z regis-
ters plus the buffer register, which can also be treated as an index
register, all have output gates to and input gates from the bus.

3.4 Index Adder

In order to perform indexing, an adder (see Fig. 6) is required. The
index adder receives one input (the constant of the instruction) from
the buffer order word register, and the other input (the variable, i.e.,
the contents of the specified index register) from the bus. The output

PROGRAM CALL
STORE STORE
BUFFER ORDER BUFFER
WORD REGISTER REGISTER
_ '
BUFFER ORDER INDEX
CLock WORD DECODER ADDER

ORDER
WORD
REGISTER

ORDER
WORD
DECODER

it

L_- PROGRAM
ADDRESS
REGISTER

Fig. 6 — Derivation of the central control (3).

1854 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

of the index adder, as previously indicated, is the source of addresses to
the call store.

3.6 Order Word Register

The basic cycle time of the program store is 5.5 microseconds, and
the maximum time from the reception of an instruction such as MX,3,Y
until the specified reading from a call store is in the data buffer register
is about 6.0 microseconds. When one considers the additional data
processing of a call store reading after it has been received by central
control, it can be seen that the execution time of an instruction occupies
major fractions of two machine eycles. Thus there is overlap in the
execution of two consecutive instructions. This overlap is described in
Section VIII. An order word register and decoder are therefore provided
to control part of the execution of an instruction. The buffer order word
decoder and the order word decoder simultaneously control the execu-
tion of two consecutive instructions.

The buffer order word decoder controls the addressing of the call
store. On a reading instruction, the order word decoder controls the
gating of information from the call store to the data buffer register
and thence, via the bus, to the destination register; on a writing in-
struction, the order word decoder controls the gating of data from some
source register to the data buffer register and thence to the call store.
The actions of the two decoders are sufficiently independent that the
division of decoders into a buffer order word decoder and an order word
decoder does not cost very much compared to the use of a single decoder.

3.6 Masking: Logic Register, Unmasked Bus, Masked Bus, and Mask
Circuit

The 23-bit word length is much longer than many of the basic quanti-
ties of data. A long useful quantity of data is a 21-bit memory address.
A typical short quantity is a single binary-coded decimal digit, 4 bits
long; several such short quantities may be packed in a single word. In
order to treat partial words efficiently, the central control has masking
facilities (see Fig. 7). Since most data words pass over the bus, a single
mask circuit on the bus accomplishes most of the masking functions.
The mask circuit has two inputs, the unmasked bus, which is connected
to the gates at the outputs of index registers, and the output of a logic
register whose chief function is to control the masking function. The
output of the mask circuit is called the “masked bus” and is connected
to the input gates of index registers.

CENTRAL PROCESSOR ORGANIZATION 1855

PROGRAM CALL
STORE STORE

BUFFER ORDER

WORD REGISTER NSERTION
SR BUFFER
vioaine REGISTER
BUFFER ORDER INDEX
CLOCK WORD DECODER ADDER
-
WORD
REGISTER
— ¥ —
WORD
DECODER
MASKED UNMASKED
BUS BUS
L PROGRAM LOGIC
ADDRESS REGISTER
REGISTER
MASK

CIRCUIT
Fig. 7 — Derivation of the central control (4).

The logic register is 23 bits long; each bit controls the masking of 1
bit on the bus. The logic register is itself connected to the unmasked and
masked bus so that it may be controlled and read as easily as any
index register.

Masking is an option of most instructions. If in the previously de-
seribed instruetion (MX,3,Y) only the four least significant bits were of
interest and the logic register were already set up with these four bits
equal to one and the rest of the bits equal to zero, then by specifying
masking only the four least significant bits would be transmitted to the
X register (see Iig. 8). The rest of the bits would be transmitted as zero.
This form of masking is called PL masking (P = product, L. = state of
the logic register; therefore, product with the state of the logic register).
This instruetion would then be written as MX,3,Y,PL.

1856 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

OPERATION INDEX MASK AND
CONSTANT | REGISTER | INSERTION

MX 3 Y PL (MASK)

X REGISTER
[To MEMORY] XM 3 Y EL (INSERTION)

PL OR EL WILL USE THE CURRENT CONTENTS OF THE LOGIC
REGISTER L WHICH WAS SET BY A PREVIOUS INSTRUCTION

Fig. 8 — Basic instruction format 2.

3.7 Insertion Masking

Another form of masking that is used frequently is insertion masking,.
Insertion masking permits all but a selected group of the bits of a cer-
tain register to remain unchanged. The selected group of bits is then set
up according to the instruction. Because of the requirement that cer-
tain bits remain intact, it is convenient to associate the insertion mask
cireuit with only one of the registers. The most logical choice is the buffer
register, since insertion masking is most frequently used when only a
portion of a word in the call store is to be altered. The insertion mask
eireuit is also controlled by the logic register, since in most cases the
bits to be inserted and the position associated with these bits have been
set up in the logic register for some previous masking (PL) operation.
Insertion masking is indicated by specifying EL masking. (E = inser-
tion, and L. = the state of the logic register.) If, for example, the four
least significant bits of the X register are to be stored in the address
Y + 3* while leaving the other bits of that memory location intact,
this action could be performed with the following two-step program
(provided that the logic register is already set up to 1’s in the four least
significant bits and 0’s elsewhere): MB,3,Y (read the contents of mem-
ory at the address Y + 3 into the data buffer register); XM,3,Y,EL
(insert the contents of X into the BR for all bit positions of the logic
register equal to one, leaving the rest of the bits of the BR intact; then
write the buffer register into memory at address Y + 3). If PL, instead
of EL, masking had been specified, the contents of memory would be
all 0’s except in the four least significant bits; by specifying IEL the upper
bits remain the same as they appear in the BR.

There is no circuitry available at the call store for performing the
equivalent of insertion. Therefore, insertion into memory must always

* For simplicity, the following convention is used in this paper: the contents of
a register, such as Y, plus a constant, such as 3, are represented by an unbracketed

expression, such as Y + 3.

CENTRAL PROCESSOR ORGANIZATION 1857

be a two-step operation: the first step to read the word at which infor-
mation is to be inserted; the second step to insert this information and
then write a complete word back. Insertion is entirely a central control
funetion, not a store function.

3.8 Transfer Facilities

So far the details of addressing a program store have not been shown
except for a program store address register (PAR) which transmits such
an address. In the program, one of two things can happen. Normally,
the program advances from one instruction to the next, so the contents
of the program store address register are simply inecremented by one. This
is accomplished by attaching an increment circuit to the program
store address register (see Fig. 9). (The program stores themselves do
not have any incrementing facilities. A program store is always addressed
with a complete address.) However, sometimes in a program a transfer
is necessary. A transfer instruction is an instruction which causes the
program to go to another set of instructions, not the immediately fol-
lowing instruetion. The most convenient source of the address to which
the program would transfer is the output of the index adder, since this
is the place where the contents of the instruction are combinable with
the contents of registers and thus indirectly with memory readings.
A connection from the index adder to the program address register is
therefore provided (see Fig. 9).

Direct transfers are transfers to an indexed address, Indirect transfers
—1.e., transfers to an address stored in memory, the memory being
read through the use of an indexed address — are also possible in No. 1
ESS. An indirect transfer is indicated by an M suffix in the index regis-
ter field. An input (for simplicity, left out of the diagram) from the call
store to the buffer order word register transmits the transfer address
to the index adder, thence to the program store address register.

3.9 Complement Option

Another option existing in the system is the complement option.
When numbers are considered numerical rather than logical data, a
negative number is stored as the complement of the positive number
whose absolute value is the same. The most significant bit, 22, is the sign
bit of the entire quantity. This means that both a positive and a nega-
tive quantity 0 exist in the system, since the complement of all 0’s (4+0)
is all 1’s (—0). Such a system has the advantage of having very simple
adder circuits, even though it does introduce occasional programming

1858 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

PROGRAM CALL
STORE STORE

BUFFER ORDER
WORD REGISTER

INSERTION
MASK
CIRCUIT

o

BUFFER ORDER \ INDEX
€Lack WORD DECODER ADDE!

l

DECODER

1

PROGRAM
ADDRESS L c'rr«'?csuﬁr
REGISTER

Fig. 9 — Derivation of the central control (5).

problems. The complement circuit is in series with the mask circuit, (see
Fig. 10); masking takes place before complementing. The complement-
ing is specified as part of the mask field. Thus if we wish to load into
X the masked and complemented contents of memory found at the
address Y + 3 we may specify this instruction (sce Fig. 11) by writing
MX,3,Y,PLC.

3.10 Data Instructions

So far only instructions which deal with memory readings have been
considered. There is another large class of instructions which deal with
internal data manipulations and with the setting up or altering of regis-
ters by some constant (data word) within the instruction. These in-
structious are defined as W (for word) instructions. (It is important to
bear in mind the fundamental property that instructions in this machine
are not variable. A constant in an instruction is truly a constant until
such a time as the program itself is altered, which can be done only by

CENTRAL PROCESSOR ORGANIZATION 1859

PROGRAM CALL
STORE STORE

BUFFER ORDER l

R .
WORD REGISTE INSERTION BUFFER
™ MASK REGISTER
CIRCUIT
BUFFER ORDER INDEX
CLOCK WORD DECODER ADDER

REGISTER

!

ORDER
WORD
DECODER

l

W L x
L

INCREMENT
CIRCUIT
PROGRAM MASK AND
ADDRESS COMPLEMENT
REGISTER CIRCUIT

Fig. 10 — Derivation of the central control (6).

writing new permanent magnet twistor cards.) A natural channel for
performing such data manipulations is via the index adder. Therefore
the index adder has an output onto the unmasked bus (see Fig. 10).
Thus, for example, we ean increment register X by a constant by gating
the X register to the index adder, adding the constant of the instruction
and gating the output of the index adder via the bus back into the X
register. All these operations are performed by the instruction WX (W
equals indexed word, i.e., output of the index adder). This instrue-
tion is executed by eircuit actions equivalent to generating a mem-

INDEX INS| ?«"ﬁgﬁ AND
OPERATION | CONSTANT E
REGISTER |coMPLEMENT
MX 3 ¥ PLC
MASK AND
COMPLEMENT

Fig. 11 — Basic instruction format 3.

1860 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

ory address, except that the address is gated to the unmasked bus in-
stead of the memory.

W instructions are also maskable, since the output of the index adder
has to go through the mask circuit before it arrives at the destination
register. Thus the instruction WX,3,Y,PL takes the Y register, incre-
ments it by 3, and places the result in the X register after first masking
it according to the present contents of the logic register.

3.11 Accumulator

The central control must perform many additions and logical combi-
nations of two quantities. It is convenient to use one register as an
accumulator (K) and to permit this register to be combined readily with
masked memory and W-type data. The accumulator adder (see Fig. 12)

PROGRAM CALL
STORE STORE
BUFFER OROER ¥
WORD REGISTER
_|INSERTION| | surrER
e REGISTER
BUFFER ORDER INDEX
cLock WORD DECODER ADDER | __
1 L
ORDER '
WORD
REGISTER
I L
WORD
DECODER
K ADOER
INCREMENT
CIRCUIT K
[L
PROGRAM
ADDRESS
REGISTER
MASK AND
L—{ coMPLEMENT fa—]
CIRCUIT

Fig. 12 — Derivation of the central control (7).

CENTRAL PROCESSOR ORGANIZATION 1861

is capable of combining the present contents of the accumulator with
indexed data or memory readings, both optionally masked, by adding,
ANDing, ORing, or EXCLUSIVE-ORing the two. The timing problems
are sufficiently severe that a single adder system cannot serve both as an
index adder and an accumulator adder for combining two data operands.
Accordingly, central control contains two adder systems to handle both
operations concurrently.

Data in the accumulator can also be shifted and rotated. The shifting
is not usually done for multiplication purposes, but to line up two items
of information found in different positions within two data words to a
position where the two items may be logically combined or treated in
some other standard manner. For example, a pulse count for a decimal
digit may always be accumulated in bit positions 0 through 3 (see Fig.
13). However, it may have to be stored in positions 4 through 7, or 8
through 11, or 12 through 15, according to which digit of a number it
represents. To get data accumulated in positions 0 through 3 to positions
4 through 7, a shifting operation is necessary.

The rotation operation is similar to the shift operation except that
for a left rotate the contents of the most significant bit, instead of being
shifted out, are shifted back into the least significant bit, and vice
versa for a right rotate. A special-purpose rotation within 16 positions of
K is also available in central control. This rotation is extensively used
in the network path hunt program.

Shifting is also performed very frequently when a number is com-
posed of two parts, the first part indicating the location of an appropriate
table of information and the second part indicating the location within
that table.” I'or example, a line equipment number consists of a line
link network and line switch frame indication, which is used to find a
table, each table containing line translation information for one line
switch frame and a position within that line switch frame which is
used to find the line translation information within such a table. With-
out the ability to split such numbers into parts, it would be very diffi-

3 o]

|
PULSE COUNT
| PC e— PC OF 3RD DIGIT

DIGIT WORD

sT
ST DIGIT 2ND DIGIT 3RD DIGIT 4TH DIGIT LAYOUT

15 121 87 43 o]

Fig. 13 — Use of shifting.

1862 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

cult to organize the memory layout of the system for both rapid access
and compact storage.

3.12 Data from the Program Store

So far the simplifying assumption has been made that data always
come from a call store and instructions always come from a program
store. In practice, however, much of the data is stored in the program
store — specifically, the translation data. The process of reading a pro-
gram store for data is a complicated one, especially in view of the over-
lap operation that is used.

The same types of instructions are used to read data from the pro-
gram store and from the ecall store. This helps programming, since it
does not fix a memory location at the time the program is written and
helps to relieve the programmer from the burden of considering two
different types of memories. A memory address decoder (see Iig. 14)
connected to the output of the index adder recognizes when the output
of this adder specifies an address that is not in the call store but is in
program store.* It triggers a sequencer (see Fig. 14) which takes care
of a special group of operations to be described below.

A sequencer 18 necessary to prevent the data that are coming from the
program store from being incorrectly interpreted as an instruction.
This sequencer must cause the program store to be read at the address
specified by the output of the index adder and must then go on to the
next instruction.

Tig. 15 shows the contents of the buffer order word register, order
word register and program store address register during the processing
of an instruction for reading data from the program store. The instruc-
tion is MX,BB,Y.7 Y + BB specifies an address which happens to be in
the program store. This instruction is located at the address AA. At
time 1 the buffer order word register contains the instruction at address
AA, the order word register contains the instruction at address AA — 1
and the program store address register contains the number AA + 1 in
preparation for the reading of the next instruction. At time 2 the buffer
order word register has the instruction at address AA + 1 but it cannot
execute this instruction because the data word called for by the previous
instruction has not yet been fetched. The order word register, in the

* Blocks of memory addresses assigned to program stores and call stores are
fixed for all No. 1 ESS installations; the wiring pattern of the memory address
decoder is therefore the same in all installations.

1 BB is a symbolic representation of some constant; AA represents a program
address.

CENTRAL PROCESSOR ORGANIZATION 1863

PROGRAM CALL
STORE STORE

BUFFER ORDER 1 'NSE“T'LON BUFFER
WORD REGISTER MAS REGISTER

= CIRCUIT

INDEX
ADDER |—

BUFFER ORDER
CLOCK WORD DECODER

I

ORDER

WORD
REGISTER

A
L x
L
s 7 }—
p—{ e sooen
.

DECODER

MEMORY
ADDRESS
DECODER

K ADDER

SEQUENCERS

INCREMENT
CIRCUIT

PROGRAM MASK AND
ADDRESS l— COMPLEMENT r—
REGISTER CIRCUIT

Tig. 14 — Derivation of the central control (8).

meantime, has the instruction at address AA, while the program store
address register has received a data address from the index adder. This
data address Y + BB is now being used to read the program store. At
time 3 the buffer order word register contains the information located at
address Y 4 BB, and the order word register continues to hold the
instruction at address AA, while the program store address register has
now been incremented to the value AA + 1 to prepare for the reading
of the next instruction. At time slot 4 this instruction has been read
into the buffer order word register, the output of the buffer order word
register has gone via the index adder to the appropriate destination
(the X register) under the control of the order word register, and the
program address register is preparing to read the instruction at address

1864 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

PROGRAM
BUFFER ORDER ORDER WORD ADDRESS
TIME SLOT WORD REGISTER REGISTER REGISTER
1 (AA) (AA —1) AA+1
2% Jaa+(] (AA) BB +Y
3* (BB +Y) (AA) AA+1
4 (AA+1) (AA) AA+2
5 (AA +2) (AA +1) AA+3

(—)—= SYMBOL MEANING WORD STORED AT THIS ADDRESS
OR IN THIS REGISTER.
INSTRUCTION AT ADDRESS AA IS MX, BB,Y;
BB+Y IS AN ADDRESS OF DATA IN THE PROGRAM STORE.
*THESE ACTIONS ARE CONTROLLED BY CENTRAL CONTROL

INTERNAL SEQUENCE CIRCUITS SINCE THE OPERATION COVERS
MORE THAN ONE CENTRAL CONTROL CYCLE TIME.

Fig. 15 — Time sequence of words passing through BOWR, OWR, and PAR
when reading data from program store.

AA 4 2. At time 5 this instruction is in the buffer order word register
and the order word register has the instruction located at address AA +
1, while the program store address register has been incremented to
AA + 3. Since the order word decoder is strictly a combinational cir-
cuit, the sequencer must be used to control the actions of fetching the
data; otherwise the order word register would simply eontrol the execu-
tion of the instruction at address AA three consecutive times. Note that
the instruction for reading data from the program store consumes three
eycles: one basic cycle, one cycle to read the data from the program
store, and one cyele to reread the next instruction.

3.18 Clonditional Transfers

A very important part of any data processing machine instruetion
repertoire is the set of conditional transfer instructions. These instrue-
tions cause a transfer of program control to a specified address if some
data word or bit of data appearing in central control is some predeter-
mined value. If the word or bit does not have that value, the transfer
is not made, and the instruction immediately following the transfer
instruction is executed.

Eight transfer instructions are provided to interrogate the contents
of the accumulator for the following values: positive, negative, arith-
metic zero,* all but arithmetic zero, logical zero (40 only), all but logical
zero, less than or equal to arithmetic zero, and greater than or equal to
arithmetic zero.

* Arithmetic zero ineludes +0 (all zeros) and —0 (all ones). In both cases all 23
bits are alike, and arithmetic zero is therefore also referred to as “homogeneity.”

CENTRAL PROCESSOR ORGANIZATION 1865

A pair of control (C) flip-flops connected to the masked bus (see Fig,.
16) store the homogeneity and sign of data words read from memory
as the words appear on the masked bus. Another eight transfer orders
test the C flip-flops for the same combinations of values available for
testing the accumulator register.

Normally, the conditional transfer instructions follow immediately
after the condition is registered, either in the aceumulator or the C flip-
flops. The usual instructions for gating information into registers may
set the accumulator or the C flip-flops. In addition, there is a set of
compare instructions (see Fig. 17) which do not alter any register but

PROGRAM CALL
s?one STORE
BUFFER ORDER }
WORD REGISTER |NiEE;PN BUEFER
™ *| REGISTER
CIRCUIT
BUFFER ORDER INDEX
CLOCK WORD DECODER ADDER
—{ F —
WORD
REGISTER
| —{ v
ORDER
DECODER
MEMORY ’—'ﬁ
SEQUENCERS ADDRESS
DECODER
K ADDER
INCREMENT
CIRCUIT IIIIIIIIIII
::] -
ADDRESS
REGISTER
BUS SAMPLING MASK AND

GATES AND ' — COMPLEMENT —
FLIP-FLOPS CIRCUIT

Fig. 16 — Derivation of central control (9).

1866 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

MASK INSERTION
INSTRUCTION | CONSTANT | o INOEX COMPLEMENT
AND JUMP
CWR 10 X

COMPARE CONSTANT WITH INDICATED REGISTER AND GATE
RESULT TO BUS BUT NOT TO REGISTER

TCAZ BB8 J

[TRANSFER TO PROGRAM AT ADDRESS BBB AND SAVE RETURN
ADDRESS (NOW IN PROGRAM ADDRESS REGISTER) IF RESULT

OF PREVIOUS BUS ACTION INDICATED ARITHMETIC ZERO
(CONSTANT AND CONTENTS OF X EQUAL); OTHERWISE EXECUTE
NEXT INSTRUCTION WHICH 1S AT ADDRESS IN PROGRAM ADDRESS
REGISTER]

Fig. 17 — Basic instruction format 4.

which set the C flip-flops according to the result of the comparison.
For example, the instruction CWR,10,X compares 10 with X and places
the result in the C flip-flops. The comparison is performed by sub-
tracting 10 from X, placing the result on the bus, and gating it only to
the C flip-flops. One way to check whether the X register was actually
equal to 10 is to follow the first instruction with an instruction TCAZ,
BBB: transfer to the address BBB if the C flip-flops are equal to arith-
metic 0: if not, advance to the next instruction.

3.14 J Option and Register

Associated with transfer instructions is a return address (jump)
option (see Fig. 17). Unconditional or conditional transfer instructions
oceur frequently in the middle of a program and are used to transfer to
a subroutine to do a common task; subsequently the subroutine returns
control to the original program. Since the subroutine must know where to
return, a J register (see Fig. 16) has been provided which may be set
up at the discretion of the programmer whenever a transfer is exe-
cuted. If the transfer is actually executed, the J register is set to the
address of the instruction immediately following the transfer instruction.
To set up the J register, a path must be provided from the output of the
increment circuit to the unmasked bus and thence to the J register (see
Fig. 16).

3.15 Index Register Modification Options

Index register modification options are available in the No. 1 ESS
order structure. If some task is being performed on a number of sue-
cessive memory locations, it is sometimes convenient to set an index

CENTRAL PROCESSOR ORGANIZATION 1867

register to the value of the first memory address, then to increment the
register by —+1 as successive words are read from memory. This inere-
menting can be performed as an option on most reading instructions.
For example, the instruction MX3Y simply gates the contents of
memory at the address Y + 3 into the X register. The instruction
MX,3,YA (see Fig. 18) gates the contents of memory at the address
Y -+ 3 into the X register and increments Y by 1. The incrementing is
performed by connecting the inerement circuit input to the unmasked
bus (see Fig. 19); this allows the index register to be gated into the
increment circuit; the output of the inerement circuit may later be
gated to the index register via an output connection to the masked
bus.

Two other index register modification options exist which change the
indicated index register to the indexed quantity. Thus, the instruction
MX,3,YW reads the memory at address Y 4 3 and gates this into the
X register and also changes Y to the value W, the indexed quantity,
which is Y 4+ 3. Another index register modification option is the setup
index register modification. For example, MX,30000,SY would read
the contents of memory at address 30,000 into the X register and would
place the quantity 30,000 into the Y register (SY = set up Y).

3.16 Logic Register Setup Oplions

The logic register is changed very frequently in the course of a typical
program. Furthermore, many of the programs that are encountered
include effectively indirectly addressed readings,* i.e., one instruction
is used to read a quantity, and the reading is then used as the address
of the quantity which is actually desired. In such a case, the register
heing used for the second reading usually contains the complete address
so that no additional data are required as the constant of the instruction.
Consequently, it is desirable to be able to use the constant of the second
instruction to set up the logic register instead of performing unnecessary
indexing. A direct path has therefore been provided between the buffer
order word register and the logic register (see Fig. 19). If setup masking
is specified, then the constant of the instruction is used to set up the
logic register and is not used in indexing.

The interplay of index register modification and setup masking op-
tions can be illustrated by the following programming problem: com-
plement the 3 least significant bits of memory at the address Y 4 3.

* Indirect addressing was not considered worthwhile for data operations, because
it never saves time and rarely saves instructions in this system.

1868 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

INSTRUCTION

CONSTANT

AN
MODIFICATION

INDEX REGISTER
D

MASK INSERTION
COMPLEMENT
AND JUMP

MX

3

YA

[READ CONTENTS OF MEMORY AT ADDRESS Y +3 INTO X REGISTER}
THEN INCREMENT Y BY +1]

Fig. 18 — Basic instruction format 5.

CLOCK

WORD DECODER

ORDER
WORD
REGISTER

DECODER

SEQUENCERS

'

MEMORY
ADDRESS
DECODER

PROGRAM CALL
STORE STORE
BUFFER ORDER l
WORD REGISTER INSERTION BUFFER
™ MASK REGISTER
CIRCUIT
INDEX
BUFFER ORDER ADDER |

INCREMENT
CIRCUIT

PROGRAM
ADDRESS
REGISTER

Fig.

BUS SAMPLING
GATES AND
FLIP-FLOPS

l

MASK AND
COMPLEMENT
CIRCUIT

19 — Derivation of the eentral control (10).

!

CENTRAL PROCESSOR ORGANIZATION 1869

Using straightforward programming, this can be done by the following
three-step program: MX,3Y (read memory into the X register);
WL,7 (set up the logic register to the value seven, i.e., 1’s in the 3 least
significant bits, 0’s elsewhere); XM,3,Y,ELC (store X in memory
using insertion masking and complementing at the address Y + 3).
This program will result in 3 least significant bits of X — i.e., the bits
selected by the logic register — being complemented (C option) and
inserted (EL option) into, first the buffer register, thence the memory,
at the location Y + 3. A two-step program for performing the same
task is the following: MX,3,YW (read from memory at address Y + 3
into the X register and set up Y to the value Y + 3); XM,7,Y,ESC
(set up the logic register to the quantity 7 as indicated by the 8 in the
ESC mask option; complement, as indicated by C, the X register, and
insert, as indicated by E, into the buffer register the 3 least significant
bits as selected by the L register; and gate this information to memory
at the address which is now in Y, and which is 3 greater than the origi-
nal value of Y). Note that the first program repeated the constant 3
twice, whereas the second program used it only once. The index register
modification option permitted the constant of the instruction to be
remembered for subsequent instruetions without using any extra steps.
Similarly, the constant 7 for setting up the mask was useful in the
second instruction of the modified program because, since no constant
was necessary for addressing the memory, a constant could be used for
setting up the logic register.

It is important to remember that these options not only conserve
memory space for instructions but save the time necessary to execute
additional instruections. In this system, each instruction takes one cycle
whether it be a memory instruction (M) or a register setup instruction
(W).

3.17 Rightmost One Function

One function that oceurs frequently in the type of data processing
work that constitutes the call processing program of the No. 1 LSS
is that of detecting and identifying a one in the midst of a group of
zeros in a word. The one might signify a request for action, the zeros,
inactivity; the position of the one would represent which member of
the group requires the action. By concentrating always on the least
significant one, successively all requests will eventually be handled.

It is important to have some instruction which identifies the position
within a word of the rightmost one, because this operation is performed
often and is awkward to do using more conventional instructions. The

1870 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

word to be examined is placed in the accumulator; a rightmost one
detect circuit connected to the accumulator gates the binary position
of the rightmost one onto the unmasked bus. This information is
then transmitted via the buses to the F (for “first-one’”) register. A
circuit to reset this bit in the accumulator then receives its selection
information from the F register.

Two instructions exist for the first-one function: TZRFZ transfers if
the accumulator is zero; otherwise, it gates the position of the rightmost
one to the I register and resets that bit; TZRFU performs the same
actions, except that the bit in K is not reset. The programmer specifies
the transfer address information in the same way that it is specified for
any conditional transfer instruction.

3.18 Bujffer Bus Registers

In addition to the index registers deseribed above, a number of other
flip-flops in the central control are under the control of a programmer.
They include the bulk of the maintenance control and match flip-flops.
These flip-flops are in groups and are set up and read by buses connected
to the B register (see Ilig. 20). The flip-flop groups are then examined
and controlled as if they were word locations in memory. Each flip-flop
group is assigned a distinct address; when this address is generated,
the memory address decoder operates the gates to or from this flip-
flop group. Thus the control of registers does not consume instruction
code space.

3.19 Interrupt Facilities

The No. 1 ESS central control has interrupt facilities. These facilities
permit a signal to come in at any time and:

(1) cause the program currently being executed to be interrupted,

(2) permit the state of central control to be stored in memory,

(3) allow an interrupt program to be executed,

(4) allow the state of the central control to be restored to its pre-
interrupt state, and

(5) allow the interrupted program to be resumed.

In effect, the programmer need not be concerned about the possibility
of an interrupt oceurring at any time, since the interrupt will not inter-
fere with the execution of his program.

The interrupt is used for two purposes: first, dial pulse scanning and
similar functions which must be performed every five or ten milliseconds
are carried out by an interrupt program, triggered by a five-millisecond

CENTRAL PROCESSOR ORGANTZATION 1871

PROGRAM CALL
STORE STORE
BUFFER ORDER — -ﬁ r‘-
WORD REGISTER INSERTION
BUFFER
™ _MASK =™ pecisTER
CIRCUIT iy
BUFFER INDEX
ORDER ADDER
cLock DEr —
pECoDER L F
ORDER _m_.
WORD
REGISTER
— v

DECODER

SEQUENCERS j«#— ADDRESS

DECODER
K ADDER
] X

INCREMENT
CIRCUIT

PROGRAM
ADDRESS
REGISTER 1 L
BUS SAMPLING L MASK AND
GATES AND COMPLEMENT fe—!
FLIP-FLOPS CIRCUIT

Fig. 20 — Derivation of the central control (11).

clock within the central control. Second, any trouble indication leads to
an immediate interrupt to analyze the trouble and take corrective
action before the trouble source causes errors in calls.

Call processing programs are carried out at the base level, which may
be interrupted by any of the interrupt sources. Several levels of inter-
rupt exist. A signal from a higher level has the ability to interrupt a
program initiated by a lower-level interrupt. Most of the special inter-
rupt faeilities are obtained through the use of the interrupt sequencer.

In general, there is no problem of interaction among different inter-
rupt programs and between the base-level program and interrupt pro-
grams, provided they do not both write in the same sections of memory.

1872 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

Sometimes, this is unavoidable; for example, the program that detects
an incoming trunk service request (an interrupt-level program) and the
program that seizes an outgoing trunk on a terminating call (a base-level
program) both write into the same busy-idle bits if the trunk is a two-
way trunk used for both incoming and outgoing ealls. Interaction prob-
lems may occur if a bit is being inserted in memory and the interrupt
occurs between the reading and writing steps that constitute an inser-
tion into memory. Two instructions have been created to solve this
problem: MCII and MKII. These instructions are the normal MC
(memory to the buffer and also the C flip-flops)} and MK, except that all
but the maintenance interrupts are barred until the immediately
following instruction has been executed. By using one of these instruc-
tions as the first step of an insertion, a programmer guarantees that no
interfering interrupt will oceur while he 1s inserting the desired infor-
madtion.

3.20 Mized Indexing
Sometimes, a couplet of instructions such as
MX,0,Y
MZ,0,X

occurs. The second of these instructions uses the value of X that was
set. up by the first instruction. Since the call store reading of the first
instruction comes back at the same time that indexing is performed
for the second instruction, a timing problem exists. This is handled by
recognizing such situations (mixed indexing) and gating the data on
the masked bus, i.c., the data going into the X register, to the index
adder (see Fig. 20), instead of gating data from the unmasked bus, ie.,
the present contents of the X register. The eircuit for recognizing this
situation must examine the buffer order word register and the order
word register to check for this condition. Note that if an interrupt takes
place between these two instructions, then the X register will have been
set up to the new value, and no mixed indexing takes place; in effect,
the second member of the couplet has been preceded by a vacant or
no-op instruction.

3.21 Farly Transfer Instructions

Tor certain highly repetitive programs, especially those involving
scanning, it is desirable to have a conditional transfer instruction which

CENTRAL PROCESSOR ORGANIZATION 1873

will consume additional eyeles only if the transfer is made. This is ac-
complished by coupling a normal read or write instruction with an
indication that a transfer to a preset address is to be made if the C flip-
flops or the I register records a particular state. The instruction is
called an “early transfer” instruction because, if the transfer is made,
the reading or writing action is inhibited; the transfer decision must
be made sufficiently early so that the unwanted action is prevented.

Two of the early transfer instructions are TCMMF and TAULM.
TCMMF will transfer to the address (previously set up) stored in the
J register if the C sign flip-flop shows a 1 (or minus); otherwise, a nor-
mal M (memory to the I register) instruetion is executed. All options
normally available for an MF instruction can be specified, since the
TCMMT operation itself completely specifies the conditional transfer
instruction and does so without permitting any options or any choice
of the source of the transfer address. TAULM will transfer to the address
(previously set up) in the Z register if the C flip-flops show a nonzero
quantity; otherwise, a normal LM (logie register to memory) instruetion
is executed. Again, all options normally available for an LM instruetion
can be specified; the TAULM operation completely specifies the condi-
tional transfer instruction and transfer address source.

The advantage of the early transfer instruections is that the transfer
address need be set up only once for a large number of loops of a sub-
routine, or that the transfer address may have been previously set up
in the course of executing another part of the program; if no transfer
takes place, no cycles have been wasted on making the decision.

3.22 Logical Combinations of Registers with Memory or Data

Instructions are available which permit indexed data (W) or the con-
tents of memory found at an indexed location (M) to be logically com-
bined with the contents of the X, Y, or Z register. This is accomplished
by first gating the X, Y, or Z register to the L register via the buses,
then using the mask and complement circuit to logically combine L
with either M or W and gate the result back into X, Y, or Z. AND, OR,
AND complemented, and OR complemented are the logical expressions
that may be specified; natwally, this means that the mask circuit must
be able to OR as well as AND. Sinee these instructions use the L register,
no masking may be specified.

IV, PERIPHERAL SYSTEM FACILITIES IN CENTRAL CONTROL

In addition to communicating with the stores, the central control also
communicates with the peripheral system.’ This system contains three

1874 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

main bus systems (Fig. 21). The first of these is used in communicating
with the central pulse distributor.® This central pulse distributor either
operates flip-flops which drive relays directly or is used for selecting the
particular unit which is to be addressed via the second bus system, the
peripheral address bus. Responses from peripheral units come via the
scanner answer bus.

Peripheral actions are not generally performed in the middle of a
complicated data processing problem. Therefore, some of the general
purpose index registers of central control are used for driving these
buses (Fig. 22). The F register is used to drive the translator which
controls the central pulse distributor. The logic register is used to receive
answers from the scanner response bus. This makes it easy to combine
scanner answers with memory information, since the memory informa-
tion can be read into the buffer register and can be combined logically
with the contents of the logic register in the mask and complement cir-
cuit.

Ideally, it would be most reasonable to drive the peripheral address
bus from the data buffer register. However, the timing of the waves of
information leaving central control to address the peripheral system is
such that the buffer register would not be available for a reading on the
subsequent cycle; peripheral actions start after a considerable amount
of preliminary processing, frequently including a call store reading.
For this reason the contents of the buffer register are transmitted to the
accumulator addend register, which is known to be available at this
time. The accumulator addend register is used to drive the translators
connected to the peripheral addressing bus.

PERIPHERAL ADDRESS BUS

CENTRAL PULSE DISTRIBUTOR!
A
DDRESS BUS] (1/8,1/8,1/16)

Al
DDRESS VERIFY BUS |(\/q 1/a 1/8)

CENTRAL

EXECUTE VERIFY BU

CONTROL EXECUTE BUS
s]

PERIPHERAL RESPONSE BUS
(16 LEADS)

Fig. 21 — Block diagram of central control communication with peripheral
equipment.

CENTRAL PROCESSOR ORGANTZATION 1875

FROM PERIPHERAL
ACCEE)AE;JELNADTOR RESPONSE BUS

REGISTER l

LOGIC
REGISTER

FROM
CENTRAL PULSE
DISTRIBUTOR
ADDRESS
VERIFY BUS

{

j Y REGISTER |—

TRANSLATOR1 | ————— TRANSLATOR N [

TO PERIPHERAL FROM

ADDRESS BUS CENTRAL PULSE

DISTRIBUTOR
EXECUTE

VERIFY BUS

F REGISTER ‘
1 l CENTRAL PULSE

l DISTRIBUTOR
EXECUTE
ORDER VERIFY
WORD || TRANSLATOR| |1ganSL ATOR| | TRANSLATOR REGISTER
DECObER SELECTOR

!

‘ MATCH CIRCUIT

TO CENTRAL PULSE l I
DISTRIBUTOR
MATCH NO
EXECUTE BUS MATCH

TO CENTRAL PULSE
DISTRIBUTOR MATCH CIRCUIT

ADDRESS BUS
! t

MATCH NO
MATCH

Fig. 22 — Detached internal central control bloecks for communication with
peripheral equipment.

A large majority of the units driven by the peripheral system are
network units,* signal distributors,® and scanners.* For economic design
of the many peripheral controllers, a coded address is used for controlling
these units. For example, a 1024-point scanner requiring a 1-out-of-64
row selection is addressed by two 1-out-of-8 signals, not by 6 binary
signals. Furthermore, the address code for each of the various network
frames and the signal distributors is different. Central control has built
within it translators to convert the binary information, convenient for
data processing, to the particular code used for controlling a specific
unit.

Sinee many peripheral instructions are sent out from a section of call
store called the “peripheral order buffer,” it is desirable that the actual

1876 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

peripheral instructions be independent of which particular type of frame
is being addressed. Since the enable address for a particular frame is
always required along with the peripheral instruction, it is convenient
to store the type of frame along with this enable address so that the
proper translation of the binary addressing information will be made.
A peripheral action is therefore preceded by setting up the I register
to the enable address necessary for selecting the particular unit and a
code which will select the proper translation option of the binary infor-
mation to be sent to the peripheral bus. The actual peripheral instruc-
tion is then set out via an instruction, such as MA, which assumes that
the I register has been preset. MA first sends out an enable signal, then
takes the contents of memory and gates them via the buffer register
and accumulator addend register to the peripheral address bus, trans-
lating the binary information according to the code stored in the F
register.

When a peripheral (scanner) response is to be returned to central
control, it is sent to the logic register. Therefore the instructions for
controlling scanners are different from the instructions for simply send-
ing an instruction to a peripheral unit which does not give a response.
The basic general-purpose peripheral instructions are therefore MA and
MAS (MAS being used when a response is expected) and the counter-
parts, WA and WAS. The MAS instruction and WAS instruction also
reset the logic register and open gates to this register from the peripheral
response bus.

If a central pulse distributor is addressed only for the purpose of
operating or resetting a flip-flop, a special instruction, MD or WD, is
used. With these instructions it is only necessary to set up the F regis-
ter, since the peripheral addressing bus is not required.

For addressing the scanner, only 6 bits of information are necessary
to select a row. There is enough information in a 23-bit word to set up
an enable address and to actually address the scanner. The MSF and
WSF instructions, by simultaneously setting up the F register and the
accumulator addend and then performing a peripheral operation, ac-
complish this in one setup cycle. (The actual execution of the instruction
overlaps into the next cycle so that two scanner readings cannot be made
in consecutive cycles.)

For purposes of verifying peripheral operations, a verify response
signal comes back from the central pulse distributor. This response is
gated into the Y register and is then matched against the output of the
translator that is connected to the F register. (No response is returned
when executing MD or WD instruections.)

CENTRAL PROCESSOR ORGANIZATION 1877

For driving such units as the tape unit,® which will accept straight
binary information, and for sending test signals to peripheral units, it
is also possible to bypass the translator, simply letting the outputs of
the accumulator addend register go directly to the addressing bus. Since
the peripheral addressing bus is 36 bits wide, it is possible, if testing a
unit which requires more than 23 input leads, to take 13 bits from the
accumulator as well as 23 bits from the accumulator addend.

It is important to remember that in the case of network frames the
peripheral addressing bus contains instructions as well as addressing
data.

Another check made on peripheral operations is that the proper central
pulse distributor has been selected. When a central pulse distributor is
selected, it sends back an echo signal which goes to a flip-flop register
on the buffer bus. This is matched against the output of a translator
attached to the F register.

V. SUMMARY OF ESS ORDER STRUCTURE WITH OPTIONS

This section is a summary of No. 1 ESS instructions with their
available options, as shown in Table I. As has been previously indicated,
every instruction has three main modifiers: the data field; the RM
field, which includes index register modification and indirect addressing
for transfers; and the LCJ field, which includes masking options, com-
plementing, and the setting up of the J register on transfers. In addition,
although this is not specified in the actual writing of each instruction,
many instructions set up the C flip-flops, which can then be examined
on a subsequent T'C conditional transfer instruction.

The constant in the data field may serve one of three purposes: it
may be directly used data that is part of the instruction; it may be
part of the address used for finding such data; or it may be the mask
that is to be used in the instruction. In Table I, the symbol S in the
data or address section indicates that data or an address may be specified
unless an S occurs in the LCJ field, in which case no data or address
constant may be specified, since the constant of the instruction must
be used for setting up the mask.

The R subfield usually contains the identity of the indexing register;
in a few instructions, the R subfield specifies a register indicated by the
instruction. The latter include the instructions for adding the contents
of two registers (since only one of the registers can be specified as part
of the instruction, the other register must be specified as an option);
the CWR instruction, which is used to compare a register with a con-
stant in the order; and the TR family of instructions which sense the

1878 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

TaBLE I — SUMMARY

oF Bastc ORDERS AND AVAILABLE OPTIONS

Symbolic Order Fields............| DA RM LCT
Subfields DA R* Lt CcJ
I b0
NI £ |2
i) :ﬂa zZ |1 g e .8
General-purpose operation codes ﬁ K 1|z |2 wl g x| w Ela ‘Z_
sl s I E TS 3|25 |52 |8
El2sl s Tzl |B|2|2|E|2|E &
A P EHEEEHEHEE
2R |E|<|e|la|d|E|E|&|8|c||a
WK, AWK, SWK, PWK, | S VARV v v v
UWK, XWK
WF, WJ, WX, WY, WZ, | § RY v v v v
CWK, CWKU
WL, PWX, PWY, PWZ, | / IVAREYS V4 v
UWX, UWY, UWZ
WB 8 ViV VIV V] V]V v
H, HC, Qs QC v \/ '\/
MC, MCII S VARVAR- R V4 \/ v v
CWR S v v v v
MB) VARVAR- v/
BM S IEVARVAR-NE-) 4/
ABR, AFR, AJR, AKR, | L v v v/ v v
ALR,AXR,AYR, AZR
SBR, SFR, SJR, SKR, | L v A V4 V4
SLR, SXR, SYR, SZR
FM, JM, KM, XM, YM, S VARVIR-RN-) VIV V] V] AV
ZM,
MK, AMK, SMK, PMK, b VARVAR- RN V4 v 4
UMK, XMK, MKII
MF, MJ, MX, MY, MZ, =} IVAIRVAR -~ V4 v v £/
CMK
LM S ViWV|S|S VIV V|V
ML, PMX, PMY, PMZ, \/ NARVARVAIEYS / R4
UMX, UMY, UM%

CENTRAL PROCESSOR ORGANIZATION 1879

TaBLE I — Continued

|
Symbolic Order Fields } DA RM LC)
Subfields L |b ! Al R* M Lt cJ
5 =]
lz |25 F] £ 2
R g i 5
General-purpose operation codes = FERBLEN ﬁ k-4 Bl o %’ a “.‘;
glp 2Tl IS| 53|22 |21 |8
- AP A A AP i
HE P P R A B g P
T, TK... TC... \ VICIC|C| v v
TR... Vi) | € Clv| v
Input-output operation codes
MA, MAS, MSF, MD 8 ViV 8|S v v v
WA, WAS, WSF, WD S ViV v v v
Combined operation codes
TZRFU, TZRIZ v/ IVAIRVAIRYS v V4
TAULM, TCMMF H o+ +H+ o+ T+ T+
8 ARVIE- N v v v

* Of options A, S, and W, only one may occur in any one instruction,
t Not more than one of the four L options can be used in an instruction.

Key to symbols:

4/ — indieated use of field is available

S — 4/ unless S appears in L subfield

C — conditional and late: oceurs only if transfer occurs and after register is
used (or, in the case of TR... orders, after the register is tested)

L — 4/ only if 8 appears in L subfield

+ — action of options oceurs only if transfer does not oceur.

contents of some register and transfer accordingly. Three index register
modifications are available, of which only one, the A option, is available
if setup masking is used. (This is a direct result of the fact that only one
constant may be specified in any instruction; if this constant is used to
set up the mask, then it cannot be used to modify an index register.)
Some general observations may be made concerning the types of
options available with various instructions. W instructions do not have
W or 8 index register modification options. While these index modifica-
tion options are meaningful, they would have a relatively low utility
and require a great deal of code space. The W and S options are much
more useful on memory instructions for setting up a register to a full

1880 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

address, so that on a subsequent instruction, the constant in the data
field will be available for masking.

Certain instructions, such as PWX, UMY, WL, ML, etc., do not
permit setup masking, since they either set up the mask directly as
part of the instruction (WL), or the logic register is used in carrying
out the instructions (UMX, ete.).

On MB instructions, no masking or complementing is possible, since
the contents of the buffer register are fed directly by the memory and
do not pass over the bus. The PS option is included and allows a pro-
grammer to set up the logic register for a subsequent instruction even
though he does not use it in this instruction.

Insertion masking is used only on WB instructions and on the instruc-
tions which write the contents of some register to memory, since the
insertion mask can only be associated with the B register.

The C flip-flops in general are set up on all compares and on all orders
which gate W or M to some register other than K.

As can be seen, the rules for checking on which options are allowed
on any particular instruction are not too simple. Therefore, even though
they are summarized in Table I, the No. 1 ESS program compiler®
checks for violations of the allowed options. There are, of course, a
number of other restrictions that the compiler can check for. The
chief restriction within No. 1 ESS is the fact that the accumulator may
not be used as the indexing register on the instruction immediately
following AMK, PMK, UMK, XMK, or SMK instructions. Following
all peripheral instructions, there are a number of very complicated
restrictions; in general, the Y and I registers cannot be altered on the
next instruction, and the L register cannot be changed following MAS,
WAS, MSF, and WSF.

VI. ENCODING OF THE ORDER STRUCTURE

Each instruction or program order word obtained by central control
contains 37 information bits designated 36, 35, - -- , 0. Each such order
consists of an order field and a data-address field. The order field in-
cludes an order selection subfield, an index register subfield, and order
option subfields. When the order includes a data word, the data-address
field contains the data word in bits 22 through 0, and bits 36 through 23
compose the order field. When the order word contains an address in
the data-address field, the address occupies only bits 20 through 0 of
the word, and a larger order field appears in bits 36 through 21 of the
program order word.

The 21-bit address field permits full access by memory reading and

CENTRAL PROCESSOR ORGANIZATION 1881

writing orders to all locations in the program stores and call stores, as
well as to a group of flip-flop registers in central control. When an order
option subfield indicates the setting up of the logic register (e.g., PS or
ES masking), the data-address field contains the 23-bit word of data;
in such instances, the order field is restricted to bits 36 through 23, even
when the order selection subfield indicates a memory reading or writing
order.

The encoding of the instruction repertoire or order structure repre-
sents a compromise between: (1) attempting to provide an order
structure with the maximum flexibility that ean be represented by the
available binary combinations and (2) decomposing the combinations
of order selection, index register selection, and option selection into
simple subfields. Counting all meaningful combinations of order selec-
tion, index register selection, and nonconflicting order option values, the
encoding provides over 12,000 distinct combinations in the 14- and 16-
bit order word.

The index register subfield is always encoded in bit positions 34
through 32. Bit position 35 is reserved for the complement option for
all orders except regular transfer orders; bit position 35 serves as a J
option subfield for transfer orders. A complete decomposition is not
possible for index register modification options or masking options
without an excessive waste of code space. However, the encoding in-
cludes a grouping of the classes of related orders, this grouping being
represented by relatively simple bit combinations; within each group-
ing the index register modification and masking options are each grouped
into one-, two-, or three-bit subfields according to the number of mean-
ingful and useful combinations.

The encoding is shown as the Karnaugh maps in Figs. 23 through 26.
These maps represent the four binary combinations of bits 31 and 30;
this division of the encoding is representative of the grouping of several
large classes of orders. For example, the binary combination 31-30 =
01 is assigned exclusively to orders reading memory; all such orders are
encoded within this combination and its corresponding map in Fig. 23.
The combination 31-30 = 11 is assigned to W orders in which the
destination register is given expheitly by the mnemonic code and not
by the index register field (R, # R/); the encoding of this class is shown
in Fig. 24. Related orders, such as MA and WA, occupy corresponding
positions within the two maps. This correspondence provides for economy
in designing the gating functions which carry out the same steps for re-
lated orders. For example, a single destination register selector can be
activated by either a memory reading order or its corresponding W
order.

24 =1

25=14

27 =1+

24 =1

25=1

27 =1

23I=1

22=1
1

28 =1
L

F26=1

T 1 1 T 1
NBTA MY CMKU
NBTB NY
NB
MB-MBOP |uwr [puy] CMK PMK
MC MX MK XMK
NX NK
XHKC
- MCII
uux]puq AMK XGKU
MZ UMK
MBCS
NZ
HKU
MKII
UMZ|PMZ GKC
TCMMF ML MSF
— MA
NL
NF NJ
MAS
MF MJ MD

T
29=1

Fig. 23 — Memory reading orders (31-30 = 01).

23=1 22=1 25|= |
I I T T T T
- wY CWKU
- wB
PWY
- CWK PWK
uwy
- WX WK XWK
- wv
PWX
- AWK
uwXx
EMMS wz UWK
PWZ
uwz
wL WA WSF
WF wJ WAS WD

Fig. 24 — Word orders (Rp #= Rp); (31-30 = 11).

T
29 =1

1882

F26=I

23r=l 22=|I 28 =|
1 I

| — T
- LM LN TAULM
BMAP
24=1- |- BN
BM-BMOP
T
FM FN
25=14 TZRFU|TZRFZ
KM KN
T
26 =1
YM YN
TCAU,TCAZ, R iiary
=TCzZ (PL MASKING)
ZM ZN
27 =11
JM JN
TKAU, TKAZ, TRAL, TRAZ,
- TKZ (NO MASKING)
XM XN
T
29=|

Iig. 256 — Writing orders and regular transfer orders (31-30 = 00).

231=| 22‘=I 28=1
1
T T T T ! T
LG LH
24 =1 - BG BH
- FG FH
25=1-
- KG KH
~26=1
AKR
CWR
AYR
AZR
AXR
27 =14
ALR GBN
AFR
AJR
ABR
T
29 =1

Fig. 26 — Maintenance writing orders and word orders (B, = R;); (31-30 = 10).

1883

1884 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

The remaining classes of orders require less coding space than the
two classes just described and consequently occupy only portions of the
remaining maps in Figs. 25 and 26. The combination 31-30 = 00
includes all regular transfer orders, all but a special class of memory
writing orders, and a small class of miscellaneous orders including rotate
and shift orders. Fig. 26 represents the binary combination 31-30 =
10 and includes the class of maintenance writing orders and the word
orders (Rp = Ri). Figs. 23 through 26 include special classes or orders
described below. The maintenance writing orders include control mode
memory orders (represented by the letter N in the mnemonic equiva-
lents), G-mode memory orders, and H-mode memory orders (see Sec-
tion 7.7).

The early transfer orders are encoded according to the data processing
actions to be taken whenever the decision is made not to transfer. Thus
the order TCMMTF is encoded as a memory reading order (31-30 =
01), and the order TAULM is encoded as a memory writing order.

With the encoding just shown, the decoders were designed to optimize
whatever decompositions are made available for both the optional data
processing gates and in the selectors and gates common to related orders.
In addition to the buffer order word decoder and the order word decoder,
two classes of data processing functions must be included to complete
the above summary. The memory address decoder controls the genera-
tion, transmission, and central control response of each program store
command and each call store command; the data processing for memory
reading orders, memory writing orders, and indirect transfer orders
includes the use of the memory address decoder. The decoders described
here carry out those gating actions necessary to obtain and process
single-cycle orders. Many classes of orders cannot be executed in a single
machine cycle; the additional gating actions for such orders are handled
by a group of sequencers; these actions may include automatic retrial
and/or correction of program order words and data words.

VII. MAINTENANCE OBJECTIVES AND CIRCUITS

The No. 1 ESS must be able to provide continuing service to customer
lines in the face of occasional and random occurrences of circuit troubles.™
Duplication of subsystem units or portions of such units provides a
set of potential replacement parts. Whenever a circuit trouble occurs
within a subsystem, the detection of that trouble is followed by the
required replacement; this replacement is made at electronic speeds to
minimize the interfering effect of the trouble.

CENTRAL PROCESSOR ORGANIZATION 1885

Each subsystem includes maintenance circuits which: (1) serve in
detecting symptoms of circuit troubles as they appear and (2) aid in
determining the location of such trouble to facilitate repairs

The detection of circuit troubles leads to the execution of maintenance
programs which first determine whether a fault exists and if so whether
the ecireuit trouble occurred within the active (controlling) switching
system or within a standby duplicate unit. If a fault has occurred in an
active subsystem unit, the next step is the necessary switching of asso-
ciated active and standby units. The system is therefore quickly restored
to an operable state and returned to the normal business of processing
telephone calls; the subsystem unit in trouble is placed in an out-of-
service state; and finally, special program sequences are interleaved with
call processing programs to determine the faulty eircuit element. The
maintenance actions last described constitute a diagnosis of the out-of-
service unit by the switching system; the results of this diagnosis appear
as a printout on a special teletypewriter unit. Corresponding to each
such printout is an entry in a specially prepared dictionary™ which the
maintenance man consults; the “definitions’ in this dictionary are a
listing of plug-in circuit packs to be replaced.

The entire procedure just deseribed, from the detection of a circuit
fault to the replacement of associated circuit packs, takes place in a
matter of a few minutes; on completion of the repair of the out-of-service
subsystem unit it is returned to the standby state for protection against
future occurrences of circuit troubles. The maintenance circuits and
associated program sequences serve in meeting a primary maintenance
objective: essentially continuous telephone service with a minimum
degradation in the quality of service in the presence of occasional cir-
cuit troubles.

Certain of the maintenance actions operate continuously and inde-
pendently of the program sequences being executed in the central
processor; other actions are obtained with the maintenance circuits and
special program sequences. The integration of such program sequences
and maintenance circuits is deseribed elsewhere in this issue.™

7.1 Circuit Checks of Communication Channels between Central Control
and Connecting Subsystem Units

Communication of information between central control and the re-
maining subsystems comprises the transmission of commands and ad-
dresses to one or more such units; each command specifies the required
cireuit response, and cach address specifies the location or locations

1886 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

which are to respond to the command. These responses include setting
(resetting) flip-flops, scanning a group of ferrods, reading or writing a
24-bit word of call store data, etc. Accordingly, the cireuit responses
in some instances inelude the return of information to the subsystem
unit generating the command and address. Circuit check signals ac-
company redundantly encoded commands, addresses and responses
transmitted between the central control and (1) the program stores, (2)
the call stores, (3) the central pulse distributors, and (4) peripheral
units such as scanners, network controllers, and signal distributors.
Maintenance circuits in both central control and the connecting units
provide a continual check of communication and serve as a safeguard
against noise and ecircuit troubles in the communication channels.
Since the rate of communication between central control and its con-
necting units is quite high, most occurrences of circuit troubles within
(1) the eircuit generating the redundancy in the commands, addresses,
and responses; (2) the registers for transmitting and receiving these
commands, addresses, and responses; and (3) the associated check
circuits, will quickly result in the detection of a check failure. For ex-
ample, the check of communication between central control and the
program store is briefly outlined in Fig. 27. The decoder combines
clock signals from the microsecond clock with de inputs to generate
synchronizing, command and mode signals. These are transmitted along
with a 16-bit address and four-bit code to select the appropriate program
store information block via cable drivers connecting a twisted-pair
cable leading to the program stores. The selected program store responds
with synchronizing and check signals and a 44-bit reading from the
twistor memory which is returned to the buffer order word register of
central control. As this response is being returned, the contents of the
program address register are transmitted to an auxiliary storage register
so that the next information block code and address may be gated to
the program address register. This last gating action permits the simul-
taneous check of one program store response and the generation and
transmission of a following program store command. Under control
of timing signals derived from the decoders, the check circuits carry out
single-error and double-error checks of the information contained in the
auxiliary storage register (corresponding to the address of the word
obtained)!® and the buffer order word register. The check circuit also
verifies that the program store response included a check (all-seems-well)
signal from the responding program store. When one or more of these
checks fail, signals on the corresponding check-fail conductors lead to
the required remedial circuit action.

CENTRAL PROCESSOR ORGANIZATION 1887

SIGNALS FROM
MICROSECOND CLOCK

1

DECODERS i
’—v, SYNCHRONIZING,
| | COMMAND AND
PROGRAM L .| MODE SIGNALS TO OTHER
ADDRESS PROGRAM
REGISTER STORES
16BIT [—
ADDRESS
| I
|
| |
BINARY 2:4 CODE
] 2.4
‘ ENCODER i
| — I
PROGRAM
| STORE
UNIT
44 BIT WORD,
CHECK SIGNAL
AND SYNCHRON-
1IZING SIGNAL JTRH%MR
2 PROGRAM
AUXILIARY BUFFER { STORES
STORAGE ORDER WORD —
REGISTER REGISTER

1 |l

ALL CHECK
CHECKS FAILURE
PASSED QUTPUTS

Fig. 27 — Check of central control-program store communications.

7.2 Interrupt Actions

A simplified block diagram of the interrupt system is shown in Fig. 28;
it includes the three flip-flop registers in central control that are part
of the buffer register bus system. This access permits single-cycle
reading or writing access to these registers similar to that available
to call store memory locations.

The interrupt source register comprises a number of interrupt source
flip-flops; input signals to this register arrive from the millisecond clock
and various check circuits within central control. The interrupt-level
activity register serves to record the level interrupt corresponding to
the program sequences being executed in central control. That is, cor-

1888 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

INTERRUPT
SOURCES
FROM DATA T
BUFFER REGISTER
— ' ' '
INTERRUPT INTERRLUPT INTERRUPT
SOURCE P INHIBIT
REGISTER AR REGISTER
TO DATA
BUFFER REGISTER } ! !
A
INTERRUPT REQUEST LOGIC
MICROSECOND CLOCK INTERRUPT
SIGNALS — REQUEST GBN
ORDER
AD
SIGNALS FROM DECODERS LE
AND SEQUENCERS _I l
INTERRUPT RETURN
SEQUENCER SEQUENCER
GATING | DECODER GATING
OUTPUTS| INHIBIT OUTPUTS
OUTPUTS

Fig. 28 — Interrupt system.

responding to each of the priority classes is a flip-flop within the inter-
rupt-level activity register; whenever the interrupt system responds to
an interrupt request, the wired transfer of program control is accom-
panied by the setting of the corresponding flip-flop in the interrupt-level
activity register. The setting of flip-flops within the interrupt-level
activity register also serves to inhibit the interrupt system from honoring
interrupt requests from the level just served and all lower levels.
Assuming first that all flip-flops in the inhibit interrupt register of
Tig. 28 are reset, the sequence of actions associated with each interrupt
may now be described. When a given interrupt program sequence is
required, a signal appearing on the corresponding interrupt source signal
lead sets the corresponding interrupt source flip-flop. This signal propa-
gates through the interrupt request logic and enables the interrupt
request output conductor. The enabling of the interrupt request con-
ductor 1s combined with clock signals and signals from the decoders
and other sequencers to initiate the interrupt sequence. This assures
that the interrupt allows any multicycle order or order following an

CENTRAL PROCESSOR ORGANIZATION 1889

MCIT or MKII instruction to go to completion before generating the
wired transfer of program control. This consideration simplifies the
hardware and program design for returning to interrupted program
sequences.

Once activated, the interrupt sequencer carries out a number of
functions extending over a period of several machine cycles; accordingly,
the interrupt sequencer inhibits the order word decoder and buffer order
word decoder outputs and generates independent gating signals to
carry out a sequence of actions which include the following: (1) update
the interrupt level activity register by setting the flip-flop in that regis-
ter corresponding to the level interrupt currently being served (the
interrupt request logic will then respond only to interrupt requests
which may have a preassigned priority over the first interrupt program),
(2) generate a transfer address corresponding to the entry point of the
interrupt program sequence corresponding to the class of interrupt being
served and gate this address to the program address register to effect
this entry, (3) store the contents of the data buffer register in a first
reserved location in the call store (this location depending upon the
level of interrupt being served), and store the address of the instruction
immediately following the last instruction executed prior to the in-
terrupt.

Having completed these tasks, the interrupt sequencer returns to the
inactive state, and the interrupt system is then responsive to further
interrupt requests at higher levels. At this time, the entry to the corre-
sponding interrupt program is made; this program begins the further
storing of index registers, the logic register, ete., to complete the con-
struction of the eentral control image in a set of reserved call store
locations.

Upon completion of the required interrupt work functions, a program
sequence restores the image of central control from the block of re-
served call store locations. The interrupt program sequence then ends
with a special return order (({BN), which activates another sequencer
which completes the reconstruction of the central control image and
transfers back to the interrupted program in an efficient three machine
cyele sequence. This sequencer (also shown in Iig. 28) utilizes the
interrupt-level activity register to complete the restoration of central
control to the state occurring at the time of the interrupt. The sequencer
must: (1) reinitialize the program address register to reenter the in-
terrupted program at the proper point, (2) restore the data buffer
register, and (3) reset the flip-flop in the interrupt-level activity register
associated with the interrupt level from which the return is being made.
Having completed these actions, the return sequencer advances to the

1890 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

inactive state and is thereby made available for subsequent returns
from other interrupt program sequences.

The inhibit interrupt register shown in Fig. 28, as its name implies,
serves to selectively inhibit the response of the interrupt system to
selected interrupt sources. The inhibit interrupt register is also a buffer
bus register to which reading and writing access are provided. This
register is used to selectively inhibit the interrupt sequencer response
to interrupt signals during the execution of special test program se-
quences which, as part of their normal execution, cause the generation
of interrupt source signals. The interrupt inhibit register also serves to
inhibit interrupts due to repeated signals from defective subsystem units,

7.3 Matching Circuits and Match Control Decoder

In normal operation the duplicate central controls are executing
identical orders within the same program sequences, and since the
microsecond clock in both central control units is driven from one of
two crystal oscillators,* the individual data processing steps for each
order are closely synchronized in the two central control units. Nor-
mally, the two central controls are started by placing the same entry
address in the program address register to simultaneously obtain and
execute the same first program order. Each central control then con-
tinues in step with the other; the same data are read from memory or
the scanners, the same data processing steps are performed on this data,
and the outcome of each decision order is identical. Furthermore,
certain trouble signals are cross connected between central control units
so that any additional cycles inserted in one central control unit for
remedial actions are accompanied by the insertion of the same number
of eyeles in the other unit.

The mode of operation just described is designated as the “in-step
mode” and is utilized with the matching circuits to provide a continuing
hardware check of the operation of the two central controls. This check
consists of repeated comparisons of like information processing points in
both central control units to obtain rapid detection of trouble conditions
within either unit. The repeated comparisons are made with the match-
ing circuits under the control of the match control decoder. A simplified
block diagram of these matching circuits, decoders, and cross-connecting
buses is shown in Iig. 29.

Within each central control are two internal match buses which pro-

* A flip-flop in each central control defines one unit as the active central con-
trol and the other unit as the standby central control. The crystal oscillator in the
active central control drives the microsecond cloeks in both units.

CENTRAL PROCESSOR ORGANIZATION 1891

TO AR O
—_—
FROM OTHER

EXTERNAL EXTERNAL CENTRAL

MATCH BUS 0 MATCH BUS 1 CONTROL
TO OTHER
- CENTRAL
CONTROL

MATCHER MATCHER

AR 1
—
MATCH
MATCH MODE CYCLE
CONTROL CONTROL CONTROL
REGISTER REGISTER REGISTER

MATCH CONTROL DECODER

POINTS TO BE MATCHED
I

AUXILIARY STORAGE
REGISTER

PROGRAM ADDRESS
REGISTER
DATA BUFFER
REGISTER

UNMASKED
BUS

-

!_DECODERS AND
SEQUENCERS

BUFFER ORDER
WORD REGISTER

BITS 18-0

BITS 43-20

INTERNAL INTERNAL

Fig. 20 — Central eontrol matching circuits.

vide access to selected information processing points; these are labeled
internal mateh bus 0 and internal match bus 1. Under control of the
mateh control decoder, information from selected points is transmitted
to these internal match buses, and from there other gates are enabled
to place this information into internal match registers DRO and DRI
and simultaneously transmit the sampled information via external
match buses 0 and 1, respectively, to the other central control unit. The

1892 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

match control decoders in both central controls are normally operating
in step so that the information transmitted from the first central control
to the second is stored in external match registers ARO and ARI1, re-
spectively, in synchronization with the previously desecribed gating
actions. Two match circuits serve to compare the contents of ARO with
DRO and AR1 with DRI1; according to the state of the mode control
register and the presence or absence of the match condition, the match
control decoder generates the corresponding output signals. For ex-
ample, when the matching circuits are employed in the routine match-
ing mode, a selected sequence of common match points in each central
control is matched at the rate of 2 matches per cycle; the detection of a
mismatch condition generates a maintenance interrupt signal and further
matching is automatically halted.

Since the matching circuits are limited to a maximum rate of two
matches per machine cycle, the routine matching mode selects the
specific sequences of internal points to be matched; the points to be
matched depend upon the program and hardware actions being taken
in central control to strategically examine those points most pertinent
to the data processing steps that are oceurring during a given machine
eycle. Signals from the decoders and sequencers within central control
are transmitted to the match eycle control register shown in Iig. 29.
These signals set and reset specific flip-flops, which in turn direct the
match control decoder and the selection of internal points for matehing
during each machine cyecle.

The selection of points to be matched provides the detection of hard-
ware troubles developing within central control as soon as the effect of
that trouble would be communicated to other units in the switching
system. It should be noted that the routine four-cycle match does not
include the matching of all points to which the internal mateh buses
have access. These additional points serve in other match modes de-
seribed below.

7.4 Maintenance Matching Modes

A number of maintenance matching modes provide program-con-
trolled access to the array of register buses and test points connected to
internal match bus 0 and internal mateh bus 1. During the performance
of certain maintenance programs, the routine matching mode is in-
hibited, and instead one of a number of maintenance matching modes
may be selected to use the matching circuits to monitor test points
within the standby central control or use the matching circuits and

CENTRAL PROCESSOR ORGANIZATION 1893

connecting buses to communicate selected data from certain of these
points from one central control unit to the other.

The maintenance matching mode to be executed and optional gating
actions ensuing the detection of mismatch (or match) conditions are
selected by the information placed in the mode control register. Certain
of the maintenance matching modes match selected points at selected
time intervals; information placed in the match control register deter-
mines these selections.

The selection of the routine matching mode or one of the maintenance
matching modes is made by writing the selected word into the mode
control register and the match control register shown in Fig. 29. To
switch from one matching mode to another, a special flip-flop in both
central controls is reset by a central pulse distributor command; this
inhibits the response of the match control decoder to the matching mode
currently specified. This step is followed by updating the mode control
register and match control register to the new matching mode desired;
following these actions, the CPD-controlled flip-flop is again set and the
match control decoder is responsive to the new mode. A description of
each of these modes and its use appears in a companion paper.™

7.5 Fmergency-Action Sequencer

The preceding sections describe a number of hardware checks and
allude to both hardware and program remedial actions in response to
circeuit troubles detected in the central processor. These remedial actions
include program sequences which are calculated to isolate circuit troubles
to a particular unit and to control any required switching of units to
obtain a working system. The execution of these sequences is in itself
possible only if the active central processor includes an operable com-
bination of the central control, certain program stores and the inter-
connecting bus system. That is, if the fault itself lies in one of these units,
the central processor may be incapable of performing the necessary
rearrangements. The emergency-action sequencer serves as a hardware
checking and corrective means to handle this problem.

A block diagram of the interconnections between the emergency-action
sequencer and its inputs and outputs is shown in Fig. 30. The inputs
consist of four hardware checks; the failure of any one or more of these
checks generates trouble signals to activate the emergency-action se-
quencer. These signals are de-connected to the inputs of a monostable
pulse circuit; the output of this monostable pulse circuit is connected to
a series of monostable pulse amplifiers to provide a sequence of output

1894 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

SIGNALS FROM PROGRAM SIGNALS FROM
SIGNALS FROM MICROSECOND CONTROLLED MILLISECOND
SEQUENCERS CLOCK INPUTS CLOCK
SEQUENCER CLOCK ERROR REAL TIME ANALOG
CHECK CIRCUIT DETECTOR CHECK CIRCUIT TIMER
1 EMERGENCY ACTION ENABLE

EMERGENCY ACTION SEQUENCER

TO STATUS
FLIP—-FLOPS
TO CORRESPONDING IN PROGRAM
INPUTS IN OTHER STORES
CENTRAL CONTROL

B-LEVEL INTERRUPT
SOURCE FLIP-FLOP

CENTRAL CONTROL AND BUS
CONNECTION STATUS FLIP-FLOPS

SANITY
TIMER

EMERGENCY ACTION
STATE COUNTER

Fig. 30 — Central control emergency-action system.

pulses. The emergency-action sequencer is therefore operable in the
presence of circuit troubles in the microsecond clock.

Each sequence of output pulses generated by the pulser and delay line
defines an emergency action. Each emergency action increments an
emergency-action state counter, initiates a B-level interrupt, and sets
and resets selected status flip-flops in the duplicate central control.
Switching these flip-flops results in a corresponding rearrangement of
active and standby central controls, program store input and output
connections, and selection of connecting buses. The rearrangements
made during each emergency action depend on the internal state of the

CENTRAL PROCESSOR ORGANIZATION 1895

emergency-action state counter. It is quite possible that a given rear-
rangement of duplicated units in the central processor will not result in
an operable combination of subsystems; the result will be the reactivation
of the emergency-action sequencer which, under control of the emer-
gency-action state counter, forms a new arrangement.

When an operable combination of units have been connected together
to become the active central processor, the execution of a test program
(initiated with a B-level interrupt) can be completed in approximately
100 machine cycles. If the active central processor contains faulty
equipment, which inhibits the proper execution of the test program se-
quences, the sanity timer will recycle in approximately 128 machine
cycles. Such recyeling reactivates the emergency-action sequencer.

A more detailed description of sequencer actions and the additional
hardware and program checks performed with the emergency-action
sequencer are covered in a companion paper.*

7.6 Maintenance Orders

Included in the order structure of the central processor are classes of
orders designed specifically for use in maintenance program sequences to
obtain test results or to place test signals within central controls, call
stores, and program stores. These orders perform special gating actions
that are either inconvenient or impossible to obtain with combinations
of other orders described above. The maintenance orders include the
following classes: (1) G- and H-mode memory reading and writing orders,
(2) control mode memory reading and writing orders, and (3) miscel-
laneous test and test signal orders.

7.7 G- and H-Mode Memory Orders

As previously noted, all program and data information is duplicated;
each word stored in one program store unit or call store unit is also stored
in another store unit. There are many situations where initial installation
requirements or growth in an office require an amount of duplicated
semipermanent and/or temporary memory that could be satisfied with
an odd number of store units. The duplication scheme employed in the
No. 1 ESS central processor permits the use of an odd number of units
to gain economy over a system using only an even number of stores.™
In this duplication scheme each store unit is divided into two blocks of
memory. Each block or half-store is assigned a different code. One block
in the memory unit is designated the H block; the remaining block is
labeled the G block of memory. All the information appearing in the H
block of one store unit is duplicated in the G block of another store unit.

18906 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

Commands to read or write in memory include a code and address.
Fach code and address corresponds to one word of information in mem-
ory, but since cach word is duplicated in the memory, the code and
address correspond to two memory locations, one appearing in the G
block of one store unit and the other location appearing in the H block
of a different store unit.

The usual communication of data and program words between the
central control and connecting stores is accomplished with normal mode
commands. Each normal mode command is capable of generating a
simultaneous response in the store units containing the G and H dupli-
cate memory locations; however, no store unit simultaneously receives
two commands to which it is to respond, and no central control unit
simultaneously receives both of the duplicate responses.

When troubles are detected in the communication of information
between the stores and the central controls, the remedial actions include
program sequences to examine individual store units; it is desirable to
read or write test information specifying the store unit which is to re-
spond to these commands. Consequently, the order structure includes
G and H memory reading and writing order words or instructions that
specify which duplicate location is to be read or written. These memory
reading and writing orders are processed in central control like the nor-
mal mode reading and writing orders: the codes and addresses are gen-
erated in the same fashion, but the command includes G- or H-mode
signals. For example, a G-mode memory reading order will obtain in-
formation from only the duplicate unit which contains the G image of
the memory location specified by the code and address. H-mode memory
reading and writing commands make a similar distinetion.

The G- and H-mode memory reading orders include additional features
when applied to the reading of data in program stores. Certain of these
orders call for the reading of data from the G or H locations, respec-
tively; when the data is obtained from a program store, the readings are
accepted and processed as valid data without carrying out any rereading
or correcting steps as indicated by the check circuit. Other G and H
memory reading commands, when applied to program store memory
locations, permit the correction of data as required, but no rereadings
may take place. The G and H memory reading and writing instructions
just described are given in Table IT.

7.8 Control Mode Orders

Control orders resemble the normal mode memory reading and writing
orders in that central control carries out the reading or writing of data in

CENTRAL PROCESSOR ORGANIZATION 1897

TasLk Il — G axp H Memory ORDERS

Mnemonic
Representa- Order Available Options
tion

HKU Read H image of specified memory loca- | Indexing; index register
tion; no remedial actions for invalid re- modification options,
sponses; data reading replaces contents including inerement-
of accumulator ing, W, and register S

options; product (PL

GKC Read G image of specified memory loca- and PS) masking and
tion; remedial action limited to single- complementing of data
error correction of program store data reading

readings; data reading replaces eontents
of accumulator

NGKU | Read (i image of specified memory loea-
tion; no remedial actions for invalid re-
sponses; EXCLUSIVE-OR of datareading
and accumulator contents placed in ac-
cumulator

XHKC Read H image of specified memory loca-
tion; remedial action limited to single-
error correction of program store data
readings; EXCLUSIVE-OR of data read-
ing and accumulator contents placed in
accumulator

BG, BH | Place contents of data buffer register in | Indexing; index register

specified G (H) eall store memory loea- modifications listed
tion; no remedial actions for invalid re- above
sponses

FG, FH | Place contents of index register F (accumu-| Indexing; index register

KG, KH,| lator K, logic register L) in specified G modification options
LG, LH (H) call store memory location; no reme- listed above; product
dial actions for invalid responses (PL and PS) masking;

complementing and in-
sertion (EL and ES)
masking of data to be
stored

such units as the program store and the call store. These orders differ
from normal mode memory order in that: (1) when commands are trans-
mitted, the mode signals which appear as part of these commands indi-
cate the control mode, and (2) control mode memory writing orders
may be used also to treat flip-flop registers in the stand-by central con-
trol as memory locations in a ecall store.

Control orders are designed to provide the convenient setting, reset-
ting, and reading of status flip-flops and other test points in the program
stores, call stores, and standby central control.

The control mode orders are listed in Table TIT; this table includes
comments regarding the specific application of certain control mode

1808 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1064

TaBLE III — ConTROL MobpE ORDERS

R:;?l:z:ﬁﬂ‘i on Order Available Options
NB Read specified control location;) Indexing; index register modi-
place reading in data buffer fication options, including
register incrementing, W, and register
S options
NF, NJ, Read specified control location;| Indexing and index register
NK, NL, place reading in index regis- modification options: product
NX,NY,NZ terF(J,K,L,X,Y, %) (PL and PS) masking and
complementing of data
NBTA, Special control reading orders | Indexing and index register
NBTB to test call store address modification options
translators; translated ad-
dress placed in data buffer
register
BN Place contents of data buffer
register in specified control
location
FN, JN, Place contents of index register | Indexing and index register
KN, LN, FJ,K, L, X, Y, Z) in speci- modification options: product
XN, YN, ZN| fied control location (PL and PS) masking, com-
plementing, and insertion (EL
and ES) masking of data to be
stored
WNPS Transmit control command | Indexing
(specifying) loeation and
data for control flip-flops in a
specified program store

orders. For example, the order WNPS is designed specifically for writing
information into duplication status and test flip-flops within the program
stores. The program stores are the semipermanent memory of the system.
No on-line writing of information within the twistor memory is possible
and therefore none of the previously deseribed writing orders has access
to the program store. The WNPS order is executed by sending a com-
mand on the program store bus which indicates a control mode writing
operation, and part of the address transmitted is treated by the respond-
ing program store as the data to be placed in control flip-flop registers
within that store.

7.9 Maiscellaneous Maintenance Instructions

In addition to the two classes of special memory reading and writing
instructions described above, there are a number of specific orders, in-
cluding some normal mode memory reading and writing orders designed

CENTRAL PROCESSOR ORGANIZATION 1899

specifically to create trouble conditions not encountered in other normal
memory commands or to initiate special tests.

Executing the order WV causes a data word to be transmitted to a
special V register in eentral control; the outputs of this register are then
transmitted as half-microsecond pulses to special points within the
central control and via cable drivers and connecting twisted-pair cables
to the other central control unit. This order is used, for example, for
transmitting signals from the active central control to standby central
control to:

(1) start or stop data processing in the standby central control;

(2) reset certain registers in the standby central control unit such as
the buffer order word register and the order word register, or

(3) generate maintenance interrupt signals in the standby central
control.

A mismatch sampling order, EMMS, concurrently carries out a num-
ber of information processing steps to initiate the mismatch sampling
mode as deseribed in a companion paper.'*

The remaining miscellaneous maintenance orders (BMAP, BMOP,
MBOP, and MBCS) comprise normal memory reading or writing orders
which are specifically designed for exercising or examining the parity
generation and check circuits in both central control and the call store.

VIII. TIMING CONSIDERATIONS

The central processor is a synchronous data processing system; a
microsecond clock in central control provides clock pulses defining a
machine cycle and intervals or phases within that cycle. A significant
aspect of both the logical organization and detailed circuit specifications
of the central processor is the integration of the response times of pro-
gram store and call store systems and the multiphase data processing
steps of central control in response to each of a diversity of program
orders. This integration began with the preliminary design of a central
control and its order structure.

The classes of orders considered for inclusion in the order structure
consist primarily of different combinations of meaningful data proc-
essing operations or steps such as indexing, index register modification,
and the placing of a data word obtained from memory into a specific
index register in central control. Iach major data processing step is as-
signed to one or more clock phases; the minimum time for a clock phase
is fixed according to the maximum propagation time of information
through the longest logic chains corresponding to the data processing

1900 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

steps assigned to that phase. These phases are then fitted into a machine
eycle which approximately equals the minimum cyele times of communi-
cation between the central control and both the call store and program
store; the relative placement of each of the phases is dictated by the
time of appearance of related data processed in central control to form
commands, addresses and data for communications between central
control and its stores.

In the design of classes of order words and the determination of the
number of clock phases, an extra clock phase is provided by overlapping
operational steps of successive orders. To maximize the average data
processing rate, most of the orders are designed to be executed at the
rate of one order per machine cycle. Certain orders, such as transfer
orders and orders to read data words from the program store, require
more time and are designed to fit into a timing framework of two or more
machine cycles.

Detailed timing studies based on min-max component tolerances
served to provide a “paper simulation” of the central processor. This
simulation revealed that a number of logic chains and communication
paths are limiting in fitting all the operations steps into a 5.5-microsecond
clock cycle; accordingly, an improvement of any one logic chain or sub-
system could not materially increase the central processor’s data pro-
cessing speed capabilities.

8.1 Single-Cycle Call Store Memory Orders

The central processor is designed to execute most of its sequences of
program orders at the rate of one order per machine cycle; such orders
are referred to as “single-cycle” orders. Multicycle orders require addi-
tional time (2 to 4 machine cycles, depending on the order) and are
executed with the aid of special sequential control circuits described
later in this article. The data processing time of the single-cycle orders
determines the machine cycle time and the allocation of phase intervals
within this cyecle; included in this class are memory reading and writing
orders which receive and transmit data from memory locations in the
call stores.

Call store memory reading and writing orders comprise an estimated
60 to 70 per cent of the instructions executed in call processing program
sequences; the ability to execute these orders at the rate of one order per
machine cyele defines a machine cycle, which may be limited by one or
more of three considerations:

(1) the maximum repetition rate of obtaining program order words
from a program store system including up to 6 program stores;

CENTRAL PROCESSOR ORGANIZATION 1901

(2) the maximum repetition rate of a call store system of up to 37 call
stores in response to a random sequence of reading and writing commands
generated in the execution of a sequence of call store memory orders; and

(3) the maximum turn-around time at which a data reading can be
obtained from a call store and combined in an index adder to generate
an address for use in a call store reading or writing command.

An additional requirement in allocating clock phase intervals is noted
in fitting call store writing orders into the machine cycle. An upper bound
is placed on the interval from the beginning of the clock phase which
initiates indexing (to obtain a call store address) to the beginning of the
clock phase which moves the data to be stored from an index register to
the data buffer register.

There is no difficulty in fitting the data processing steps of the non-
memory data processing orders into this framework; the only orders
employed in significant numbers in the program sequences requiring
more than one machine cycle for their execution are orders to transfer
program control and memory reading orders which obtain data words
from the program store.

8.2 Phases of the Machine Cycle

The overlapped execution of sequential program orders combined
with 3 basic data processing phases per machine cycle provides four data
processing intervals per instruction. This is a sufficient number of in-
tervals for all the data processing steps required for transmitting in-
formation via one or both of the unmasked bus and masked bus from
one register to another through logie combining circuits such as the
index adder or the mask and complement circuit.

Fig. 31 shows how call store memory orders are fitted into the over-
lapped execution of single-cycle orders. An order is obtained from a
program store during phase 1 of cycle 1 in response to a program store
command transmitted from the central control in the preceding machine
cycle. At the beginning of this phase, the buffer order word register is
reset to erase the preceding order word, and the register inputs are
connected to the program store response bus. Depending on the response
time of the program store unit and its distance from central control,
the order word arrives at some time during phase 1. In this interval, the
command and address for the first succeeding program order are trans-
mitted to the program store.

Phase 2 and 3 clock pulses are applied to the buffer word decoder to
control indexing and index register modification during cycle 1. The
indexing addition is completed towards the end of phase 2 and the sum

1902 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

COMMAND FOR I5T SUCCEEDING
ORDER TRANSMITTED TO
PROGRAM STORE

COMMAND FOR 2ND SUCCEEDING
ORDER TRANSMITTED TO
PROGRAM STORE

CYCLE 1 CYCLE 2
1
7 pHasE PHASE 2 PHASE 3 PHASE 1 PHASE 2 B
ORDER OBTAINED | INDEX INDEX 1ST SUCCEEDING | INDEX
FROM PROGRAM | ADDING REGISTER | ORDER OBTAINED | ADDING
STORE DURING | IN THIS MODIFI- DURING THIS FOR 15T
2His INTERVAL | INTERVAL | CATION INTERVAL SUCCEEDING
ORDER
UNDER CONTROL
OF BUFFER ORDER
WORD DECODER
INDEX ADDER SUM USED AS DATA TRANSMITTED TO CALL
CODE AND ADDRESS I | | STORE WHEN EXECUTING
OF CALL STORE COMMAND MEMORY WRITING ORDERS
T
UNDER CONTROL OF
MEMORY ADDRESS DECODER
PHASE 1 o
DATA MOVED
FROM INDEX
REGISTER OR
WRITING COMMAND T ereR
TO DATA BUFFER
REGISTER
PHASE 2
DATA OBTAINED |DATA GATED
FROM CALL TO DESTI-
READING COMMAND STORE DURING | NATION
THIS INTERVAL | REGISTER

T
UNDER CONTROL OF
ORDER WORD DECODER

MASKED BUS SERVES FOR GATING DATA
TO DESTINATION REGISTER-UNMASKED
BUS SERVES (UNLESS MIXED INDEXING
APPLIES) TO GATE INDEX REGISTER
CONTENTS TO INDEX ADDER

OVERLAP OF
EXECUTION

OF SUCCESS-
IVE ORDERS

Fig. 31 — Timing of execution of single-cyele memory orders.

is gated to an index adder output register (contained in the index adder).
This register serves as an address register for call store memory orders.
Index register modification is performed during phase 3, and the call
store command and address are concurrently transmitted under control
of the memory address decoder to the call store.

At the beginning of phase 3 of cycle 1 the call store memory order
depicted in Fig. 31 is transmitted from the buffer order word register to
the order word register. Phase 1 and phase 2 clock pulses applied to the
order word decoder and memory address decoder carry out the remaining
steps for the order. Two sequences of these remaining steps are shown:
the first sequence is that of a call store memory writing order, and the
second corresponds to a call store memory reading order.

Call store memory writing orders select the contents of one of the

CENTRAL PROCESSOR ORGANIZATION 1903

seven index registers or the logic register to be transmitted as data to
the call store. The data buffer register in central control is connected to
the call store data transmission and call store response buses; accord-
ingly, the contents of the selected register are transmitted via the un-
masked bus, the mask and complement circuit, the masked bus and the
insertion mask to the data buffer register. A parity generator connected
to the outputs of the data buffer register produces a parity bit which is
then transmitted simultaneously with the 23-bit data word to the call
store to complete the call store memory writing order,

Call store memory reading orders employ phase 1 of cycle 2 to accept
data words by connecting the inputs of the data buffer register to the
call store response bus. The data buffer register is reset at the beginning
of phase 1 and the data word is received at some time during phase 1,
depending on the response time of the call store unit and the distance
between that unit and the central control.

During phase 2 of cycle 2, the data reading is transmitted to the
destination register selected by the memory reading order by gating the
reading through the data buffer register and the mask and complement
circuit onto the masked bus.

Concurrently with the completion of the memory reading order, the
first succeeding order begins its indexing. That is, phase 2 of cycle 2
includes the transmission of the contents of a selected index register to
the index adder via the unmasked bus. Certain pairs of orders occur
where the first order reads data from a call store and the second order is
a call store memory order which selects as its index register the destina-
tion register of the first order. (These pairs of orders require the previ-
ously described mixed indexing.) To execute such pairs correctly, the
lower bound on the machine cyele time must equal or exceed the maxi-
mum round-trip time of call from call store command to response, in-
cluding the indexing addition in central control.

Indexing and index register modification of all other orders are also
performed during phase 2 and phase 3 of the first cycle, as shown for
memory orders in Fig. 31. W class combining orders move the data word
to a specified destination register during phase 1 of the second ecycle;
shift and rotate orders are also completed in the same interval. The
earlier completion of these orders (as compared to memory reading
orders) permits the accumulator to be selected as the index register in
the succeeding order; such a selection is not feasible when the first order
is & memory reading order moving data to the accumulator, since the
accumulator will not contain the correct result in time for indexing
during phase 2.

1904 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

The data processing steps of orders such as UWX, PMZ include mov-
ing the contents of an index register (X,Z) to the logic register; this step
is performed using the unmasked bus during phase 3 of the first eycle.
The unmasked bus is available, since the index register modification step
requires the use of only the masked bus; accordingly, the two steps may
occur concurrently, as required by the order.

Whenever an order specifies that the data word is to be transmitted
to the logic register (PS or ES masking) this step is accomplished during
phase 3 of the first eycle under control of the buffer order word decoder.

Decisions are made by the order word decoder for regular transfer
orders at the beginning of the second cycle; decisions for early transfer
orders are made at the beginning of phase 3 of the first cycle. In both
cases, the decision to transfer is implemented by activating a sequencer
at the stated times.

8.3 Basis of Timing Specifications

Tigs. 32 and 33 show the response times of the program stores and call
stores in terms of minimum and maximum calculated response times.
To provide sufficient spacing for large numbers of program stores and
call stores, bus lengths from a few feet to a maximum of one hundred
feet were assumed for each bus. The buses are all twisted-pair cables
having a delay constant of approximately 2 nanoseconds per foot.!? A
single program store command bus system connects both central control
units to all program stores; each store has a lightly coupled set of pulse
receivers connected in series with the bus system, and the bus ends with
a terminating resistor. These receivers add a small fixed delay to the bus
system, 1.5 nanoseconds per receiver, which is insignificant in most
timing considerations. Similarly, a single program store bus system con-
neets all program store memory outputs (cable drivers are shunt con-
nected) to inputs in both central controls. A similar arrangement of
shunt and series connections of cable drivers and pulse receivers connects
the eentral controls and the call stores. These connections include a call
store command bus system, a call store response bus system, and a call
store data transmission bus system.

To predict the delays of logic chains in central control, the charac-
teristic minimum and maximum delay times of the low-level logic (LLL)
AND-NOT gate® and the medium-current logic (MCL) AND-NOT gate
were determined, as tabulated in Fig. 34. These limits include allowance
for lead capacitance, and wiring rules restrict the actual capacitances to
less than this allowance.® The characteristics of the cable driver (CD),
cable pulse receiver (CPR) and clock pulse output amplifier (CPOA)

CENTRAL PROCESSOR ORCGANIZATION 1905
[CENTRAL CONTROL —l
l BUFFER ORDER /|

WORD REGISTER |

1
CABLE !
DRIVER |
CLOCK PULSE
PROGRAM STORE |
COMMAND |
-]
__________ TWISTED-PAIR CABLES — ————— _ _ _ _
e —— ——
MINIMUM REPETITION RATE = 5.5 uSEC
COMMAND — PROGRAM STORE _| RESPONSE
BUS BUS
CABLE
PULSE CABLE |
| RECEIVER DRIVER
| 1 ACCESS CIRCUITS
] AND
‘ ‘ TWISTOR MEMORY I
- - ‘
TO OTHER FROM OTHER
PROGRAM PROGRAM
STORES STORES
I&****MINIMUM REPETITION RATE = 5,5 ,U.SEC7774)|
| PROGRAM STORE COMMAND | I
[~ ~MINIMUM RESPONSE TIME ——>{
| =3.6 USEC I_I
RANGE OF
PROGRAM STORE
pe————— MAXIMUM RESPONSE TIME ————— -] RESPONSE TIMES
| =4.8 HSEC

[1

Fig. 32 — Program store timing tolerance limits.

gates complete the information needed for caleulating propagation de-
lays of central control.

In certain timing chains, minimum pulse widths become a part of the
design considerations, and therefore a pulse-shortening characteristic
for each class of gate is included in Fig. 34. It is assumed that the turn-on
time of an LLL gate or an MCL gate cannot exceed its turn-off time; a
consequence is that reduction in the width of a pulse propagating through
a number of stages of logic gates due to differentials in turn-on and
turn-off times is caleulated to occur only in alternate stages which have
negative-going pulse inputs.

1906 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

r CENTRAL CONTROL 1

N
|

DATA BUFFER
REGISTER

CLOCK PULSE ;
| CALL STORE COMMAND |
CLOCK PULSE J
COMMAND RESPONSE
BUS BUS
[CALL STORE
ACCESS CIRCUITS
AND FERRITE
SHEET MEMORY
DATA |
WRITING
BUS
DATA
REGISTER |
I |
|(———— MINIMUM REPETITION RATE = 5.5 WSEC ————ﬁ
| | CALL STORE COMMAND | |
MINIMUM
| TIME
=1.38 HSEC
[—l CALL STORE
ACCEPTANCE LIMITS
—— MAXIMUM TIME —— OF TIME BETWEEN
BETWEEN COMMAND WRITING COMMAND
\ AND DATA = 2.70 uSEC l—'l AND DATA TO BE
WRITTEN
——MINIMUM ——
RESPONSE TIME
| =1.96 USEC
CALL STORE
—MAXIMUM RESPONSE— RESPONSE TIME
TIME = 2.99 uSEC LIMITS TO A
J ‘_l READING COMMAND

Fig. 33 — Call store timing tolerance limits.

CENTRAL PROCESSOR ORCGANIZATION 1907

TURN-ON TIME TURN-OFF TIME MAXIMUM SHRINKAGE
IN NANOSECONDS IN NANOSECONDS OF PULSE WIDTH
LOW-LEVEL
LOGIC
55NS - FOR
:1 b 10-65NS 10-65NS NEGATIVE-GOING
INPUT PULSES
i ONLY
LLL
MEDIUM CURRENT
LOGIC
75NS—-FOR
] - _ NEGATIVE-GOING
} 10-75NS 20-85NS INPUT PULSES
b ONLY
MCL
" — 10-75NS 10NS-UNSPECIFIED NONE
CABLE DRIVER
>' 10-65NS 10 NS—-UNSPECIFIED NONE
CABLE PULSE
RECEIVER
—] CPOA —=
10-75NS 10-75 NS 20NS

CLOCK PULSE
QUTPUT
AMPLIFIER

IMig. 34 — Logic package timing characteristics.

8.4 Microsecond Clock Characteristics

The multiphase clock in eentral control defines the machine cycle of
5.5 microseconds and the three phases within the machine cycle. In addi-
tion, a number of shorter pulses are provided by the clock to carry out
the gating of commands and addresses from central control through cable
Arivers onto twisted-pair cables connecting to stores, central pulse dis-
tributors and peripheral units such as scanner and network controllers.
Other short pulses are required for resetting registers and gating informa-

1908 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

tion from one flip-flop register to another at times other than the three
principal phases; data processing results are thereby transmitted as they
are completed. Half-microsecond pulses spaced at quarter-microsecond
intervals over the entire machine cycle are provided to permit maximum
flexibility in the logic design; timing chains were easily modified as addi-
tions and alterations were made in the development of the logical organi-
zation of the central processor. This large array of pulses thus satisfies
the need for (1) selecting optimum gating times for internal data proc-
essing transmission and (2) obtaining a useful minimum pulse width
(where reasonable clock pulse tolerances are a consideration) for (a)
gating information from one register to another, (b) resetting a register,
and (e¢) transmitting a pulse of sufficient width over twisted-pair bus
systems to the most distant stores, central pulse distributors, and periph-
eral units.

The microsecond clock for central control includes a erystal-controlled
2-megacyele oscillator driving an 11-stage counter. The outputs of the
counter drive logic chains which translate the states of the counter into
the array of half-microsecond pulses and the basic phase pulses are shown
in Fig. 35. The machine cycle is divided into 22 quarter-microsecond

|‘— ———————— ONE 5.5 LSEC CYCLE ————————~— ->1

TO T5 T10 Ti15 T20 TO TS5
L Y N D I B I B N YN O Y D B

—»| |« ONE 0.25 uSEC INTERVAL

oT8 I |

PHASE
1 {J oT8 | | L
[Totia |
PHASE{ e
PHASE { [Te20]
0\ G
T o M
Il 1
[era [1

1 [am

Fig. 35 — Phases of central control microsecond clock.

CENTRAL PROCESSOR ORGANIZATION 1909

intervals and the beginning of cach interval is denoted as TO, T1, - - -,
T21. Each clock pulse begins and ends at one of the times TO, T1, -- -,
T21, so that each clock pulse is labeled ATB, where A is a number corre-
sponding to the time of the leading edge of the pulse and B corresponds
to the trailing edge time.

Both central controls contain a complete clock, but the oscillator in
the active central control drives the 11-stage counter in both central
control units to keep the units closely synchronized. To keep the counters
in step, a phasing signal is transmitted from the active central control
counter to the standby unit once every machine cycle.

The tolerances on the clock outputs in each central control and the
cross-connection tolerances are tabulated in Iig. 36. Fig. 35 depicts an
ideal set of clock pulses and the table indicates additional delays from
that ideal. That is, the figure represents all minimum delay conditions
in the clocks, and only positive tolerances appear in Fig. 36. This ap-
proach simplified the many calculations to be made in the design. Only
minimum/maximum values were substituted into delay equations,
rather than nominal values plus or minus a tolerance figure. Examples of
this technique follow.

8.5 Sample Timing Caleulations

The half-microsecond pulses are employed in transmitting multibit
commands and addresses to units connecting to the central control. To
meet high fan-out requirements, a clock output amplifier is usually
interposed between the clock pulse output and the array of cable drivers
to be pulsed. This connection is exemplified in Fig. 37 using the pulse
0T2 for purposes of illustration.

To T2
ALLOWABLE TOLERANCE
ON LEADING OR TRAILING 9‘ i‘— S00 NS
EDGE OF 0.5- uSEC PULSES
IS 0 TO 75 NANOSECONDS IDEAL OT2

| LEADING EDGE DELAYED BY 75-NS
SHORT 0T2 425-NS PULSE WIDTH

EXAMPLES OF

LIMITING CLOCK l |

PULSE WIDTHS TRAILING EDGE DELAYED BY 75-NS
LONG 0OT2 575-NS PULSE WIDTH

Fig. 36 — Microsecond clock tolerance limits. Allowable tolerance on leading or
trailing edges of bus phase pulses (0T6, 0TS, 10T14, 10T16, 10T20, 10T22) is 0 to
150 nanoseeconds. Allowable tolerance of propagation of oscillator signal from
active to standby eentral control is such that idealized phases of Fig. 35in standby
central control lag by 0 to 75 nanoseconds.

1910 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

LEADING EDGE DELAY = Acpoa
_—

TRAILING EDGE DELAY = Acpoa — 20NS
_— >

\ —_—
CcD
oT2
TWISTED PAIR CABLE
CPOA '\

—————i CcD

DC CONTROL —_—

SIGNAL FROM

DECODERS

COMMAND
AND ADDRESS
INFORMATION

Fig. 37 — Clock pulse transmission chains.

A timing calculation was made to determine if such an arrangement
would always provide command and address pulses of sufficient width
(250 nanoseconds minimum) to a receiving unit located at the maximum
allowable distance from central control. To determine this minimum pulse
width, one first assumes the shortest allowable clock pulse and then cal-
culates the maximum pulse shortening in logic chains and cables.

Referring to Fig. 36, the latest leading edge of the pulse would occur
at TO 4+ 75 nanoseconds, and the earliest trailing edge would appear at
T2, yielding a minimum clock pulse width of 425 nanoseconds. According
to Fig. 34, the clock pulse output amplifier may shorten this pulse as
much as 20 nanoseconds, and the eable driver would contribute no pulse
shortening. Thus the minimum pulse width at the cable driver output is
405 nanoseconds.

Impirical equations for the shrinkage of the width of current pulses
on a twisted-pair cable with an arbitrary number of series-connected
cable receiver transformers as a function of that number (N) and the
length of the twisted-pair cable (L in feet) have been derived.!®

Shrinkage in nanoseconds = 50 In (WQ;?TEN) (1)
The bus system connecting central control to the peripheral units may
be required to serve a large number (N) of such units and the bus length
be correspondingly large. With limits of N = 50 and L = 450 feet the
maximum shrinkage would be approximately 70 nanoseconds. Thus the

CENTRAL PROCESSOR ORGANIZATION 1911

minimum pulse width at the input of the most distant peripheral unit
would equal or exceed (405 — 70) = 335 nanoseconds, which meets the
peripheral unit minimum pulse requirements.

The previously deseribed round trip of one call store reading to be used
in generating a call store command is outlined in Fig. 38 and results in a
round-trip time of 5.36 microseconds, which fits into a 5.5-microsecond
cycle. The caleulated round-trip time does not allow for a slight delay
in the loop deriving from clock pulse gating between the index adder and
the index adder output register. Further, it should be noted that the late
clock pulse arriving at point Y cannot be considered, since the memory
reading may be obtained in response to a call store command generated
in the active central control and utilized in the standby central control
for generating a call store address. The 10 LLL delays in the index adder
represent the maximum delay of carry propagation signals. Other adder
designs with shorter delays were considered; however, smaller delays

CLOCK (MAXIMUM
LEADING EDGE
DELAY =75 NS)

® [eronl B bR
LE LENGTH CALL STORE
1 CPOA] oD =100FT = 200NS
30 CABLE RECEIVER Y\ MAXIMUM
TRANSFORMERS RESPONSE
Q) = 45NS DELAY TIME
=2.99 pSEC
INDEX ADDER ’
OUTPUT __=l135!,:,§‘
REGISTER
s MAXIMUM
INDEX wLLUs ROUND TRIP
ADDER =650N5 FHOM@ TO @

=536 uSEC

INDEX ADDER SLLL' s
AUGEND =195N5
REGISTER -

L« MASKED BUS

~ DELAY DUE
TO CAPACITANCE =100NS
MASK AND DATA A MAXIMUM CABLE
LENGTH=100FT
COMPLEMENT BUFFER CPR
CIRCUIT REGISTER ‘

3LLL's+1MCL 2LLLUs+1MCL 65Ns
=280NS =215NS

Fig. 38 — Call store round-trip time.

1912 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

and a slightly shorter machine eycle could be achieved only with much
larger adding circuits.

Other timing chains not deseribed here also work with the 5.5-miero-
second eycle but could be made to work with a shorter cycle only with
additional logic cireuits. Other limiting cases not described in detail
here include:

(1) ecommunicating commands to peripheral units once every two
machine cyeles to establish a maximum rate for supervisory scanning of
customer lines,

(2) round-trip times of call store memory reading orders including the
cross connection of associated check failure signals between central
control units, and

(3) various combinations of related sequences of data processing steps
in the execution of consecutive orders.

Fig. 39 illustrates some of the constraints that govern the subdivision
of the clock phases within the machine cycle. The longer of the pair of
pulses for each phase must not overlap, but time intervals between
phases is allowed.

Phase two data processing includes the last step of a memory reading
order where the contents of the data buffer register are transmitted via
the mask and complement circuit and the masked bus to a selected
destination register. This step requires a one-microsecond interval to
complete the required propagation of information, and therefore phase
two comprises the one-microsecond bus sampling interval 10T14 and a
corresponding source-to-bus interval 10T'16. A similar propagation delay
requirement for index register modification options applies to phase

END OF INDEX REGISTER INCREMENTING — MINIMUM OF 1.5 SEC REQUIRED
PROGRAM ADDRESS INCREMENTING BEGINS FOR INDEX REGISTER MODIFICATION
1 \
[\
| PROGRAM ADDRESS

| REGISTER CONTAINS MINIMUM OF 1.5 SEC |
| INCREMENTED ADDRESS REQUIRED FOR |
[WHICH IS TRANSMITTED TRANSMITTING DATA TO |
| TOPROGRAM STORE DESTINATION REGISTER |
| I |
Al ¥ ! , TO
L | | | | | v 1l * |
TO T6 | PHASE | PHASE | T8 | PHASE | PHASE |
2 3 2 3

l—| MINIMUM ROUND TRIP OF PROGRAM
STORE RESPONSE COMPLETED PRIOR

PROGRAM STORE
COMMAND TO END OF PHASE 3

{ l ' MAXIMUM ROUND TRIP
TIME COMPLETED BY T8

Fig. 39 — Fitting of elock phases into a machine cycle.

CENTRAL PROCESSOR ORGANIZATION 1913

three, where the contents of the index adder output register are trans-
mitted via the mask and complement ecircuit and the masked bus to the
selected index register. Accordingly, clock pulses 16T20 and 16T22
define phase three.

Phase two and phase three require 3.0 microseconds of the machine
cycle, and the incrementing circuit is employed throughout this interval
for index register incrementing. The end of this interval is represented
as T22 or T0, the beginning of the next machine cyecle. Starting at this
time, the contents of the program address register are transmitted to
the incrementing circuit; the ineremented quantity is then returned to
the program address register and transmitted as part of a program store
command to obtain the next program order word in sequence. The
maximum time for the above steps is 1.5 microseconds, so that the pro-
gram command is transmitted during 6T8 to the program store command
bus. The maximum round trip returns the program word by T8 of the
following cycle. This leaves a reasonable margin of 500 nanoseconds for
signals to propagate through the bufter order word decoder before be-
ginning gating actions starting at T10.

Calculations indicate that the minimum round-trip time to the pro-
gram store returns the next program word before the buffer order word
decoder has completed gating actions on the immediately preceding
order. To ecircumvent a conflict on the use of the buffer order word
register, an auxiliary register is placed between the program store re-
sponse bus and the buffer order word register. I'or phase three gating
actions, the operation field of the order in the buffer order word register
must be retained, but not the accompanying 21-bit data field portions
and 7-bit Hamming and parity portions of that program word. Aeccord-
ingly, only the 28 corresponding cells of the buffer order word register
are reset and connected to the program store response bus system during
phase three; the auxiliary register serves to receive and retain the 16-bit
operation field of the succeeding order until the buffer word decoder has
completed phase three data processing steps for the current order. The
contents of the auxiliary register are then transmitted to the buffer order
word register during phase one of the following eyele in preparation for
data proecessing steps beginning at phase two.

The above sample calculations are representative of those made as
part of determining the realizability of the logic organization and de-
tailed cireuit design of the central processor for No. 1 ESS. These calcu-
lations served not only as a check of feasibility of proposed circuit design
but also as guides in determining specifications for:

(a) tolerance limits on duplicate multiphase clocks driven from one of
two crystal-controlled oscillators,

1914 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

(b) maximum lengths of twisted-pair cable connecting central control
to its communicating units, and

(c) tolerances between individual pairs and between buses of twisted-
pair cables.

IX. DESCRIPTION OF SEQUENCER FUNCTIONS AND DESIGN

As indicated in Fig. 31, the buffer order word decoder, mixed decoder,
and order word decoder serve to execute sequences of single-cycle overlap
orders at the rate of one order per 5.5-microsecond machine cycle. The
overlap of data processing occupies only one phase of the machine eycle,
but when the generation of commands to obtain program order words is
considered an additional degree of overlap is evident. The execution of
certain orders (as well as hardware remedial actions such as the auto-
matic rereading of information from the program stores and call stores)
requires either the insertion of additional cycles of data processing or an
extension of overlap to provide the necessary time. In providing these
additional gating actions in central control a number of sequencers are
provided; each sequencer carries out a specific class of data processing or
remedial actions. Those sequencers which insert extra machine cyecles
inhibit the decoders to momentarily halt the flow of instructions obtained
from the program store, and in this interval additional gating actions
are carried out. Other sequencers do not insert cycles but extend the
overlap by operating concurrently with the decoders; the decoders con-
tinue processing sequences of orders without regard to sequencer gating
actions; in this latter instance, programming restrictions are applied to
prevent, conflicts in the overlapping flow of data processing. A brief
description of the functions associated with some typical sequencers fol-
lows.

9.1 Data Reading Sequencer

All of the memory reading orders previously described (including G-
and H-mode memory reading orders and control mode memory reading
orders) may obtain data not only from the call stores but from any loca-
tion within one of the program stores. Each of these memory reading
orders generates a code and address during its indexing cycle, and the
code so generated determines the memory location to be read and hence
whether the data word is to be obtained from a call store or a program
store. If the code and address refer to a call store location, then the cen-
tral control carries out the single-cycle memory reading operation previ-
ously described. Whenever the code address refers to a program store

CENTRAL PROCESSOR ORGANIZATION 1915

location, the data reading sequencer is enabled to obtain these data.
Once this has been accomplished the data reading is in the same position
as data obtained from the call store (i.e., placed in the data buffer regis-
ter), and the data reading sequencer returns to the inactive state. The
order word decoder then proceeds to complete the moving of the data
from the data buffer register to the destination register specified in the
memory reading order.

As the data reading obtained is returning from the program store the
data reading sequencer simultaneously returns the address of the next
instruction in sequence to the program address register. Consequently,
as the order word decoder is completing the processing of the data reading
the next order word in sequence is returned and data processing from
that order begins under control of the buffer word order decoder.

9.2 Transfer Sequencer

Because of the degree of overlap in the central processor a transfer
sequencer is enabled when a transfer is to be executed. The transfer
sequencer stops the flow of instructions for at least one cycle, until:
the transfer address has been placed in the program address register,
transmitted to the program store, and the first program order word of
the new sequence of instructions has been returned to the central control.
In addition, the transfer sequencer controls gating actions required for
indirect transfers, and in such instances one or two additional machine
eyeles are inserted, depending on whether the transfer address is to be
obtained from a call store or program store location.

A class of early transfer orders is included in the order structure; the
term “‘early” alludes to the enabling of the transfer sequencer at a time
in the machine cycle earlier than that performed for regular transfer
orders. The early enablement of the transfer sequencer serves to inhibit
the decoders, so as not to carry out the reading or writing operation when
the decision is to execute the transfer of program control.

9.3 Program Store-Correct Reread Sequencer

When program or data words areread from the program store, checking
cireuits in central control examine the 44-bit word received and the
previously transmitted program address which has been retained in
central control for such checking purposes. Output signals from the
checking cireuit indicate either:

(1) that all checks are passed and eentral control continues the proc-
essing of that word,

(2) a single error is detected in the 44-bit word received, or

1916 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

(3) an error is detected in the address transmitted, or an even multiple
error is detected, or the program store response did not include an all-
seems-well signal. The program store correct-reread sequencer responds
to conditions (2) and (3) to correct or to reread and recheck the program
store response. The program store correct-reread sequencer increments
one of two binary counters for each word corrected or reread. The
counters are periodically interrogated to determine the rate at which
central control is receiving program store responses containing single or
multiple errors.

The failure of the program store correct-reread sequencer to succeed
on a retry is designated a ‘reread failure condition,” which requires
maintenance action, since the repeated trouble condition is not assumed
to be due to a transient error condition. The program store correct-
reread sequencer carries out several hardware steps leading to these
maintenance actions. First, a maintenance interrupt source signal is
generated to switch control to the E-level maintenance interrupt program
sequences. Second, the program store correct-reread sequencer stores in
a special register in central control the information indicating the trouble
condition associated with the rereading failure. The contents of this
program store error summary register indicate whether the detected
trouble condition was due to a double-error condition, an error in the
transmitted address, or a failure of the program store to return its hard-
ware check signal.

Each of the sequencers described here consists of an individual counter
and gating circuits within central control; however, the actions taken
by one sequencer may serve as part of the data processing steps of other
sequencers in central control. For example, the program store correct-
reread sequencer is activated to correct or reread program order words,
but it is also responsive to data readings obtained from the program
store by the data reading sequencer and to indirect transfer addresses
obtained from the program store by the transfer sequencer. Whenever
the data reading sequencer obtains a data word from the program store,
the previously described checks are made, and when correction or reread-
ing is required the program store correct-reread sequencer is activated.
In such instances the program store correct-reread sequencer inhibits the
gating actions of the data reading sequencer and prevents the counter of
the data reading sequencer from advancing to the next internal state.
The program store correct-reread sequencer then proceeds to carry out
the required correetion or rereading, and upon conclusion of its remedial
actions returns to the inactive state. This last action automatically re-
leases the data reading sequencer, which continues its handling of the

CENTRAL PROCESSOR ORGANIZATION 1917

corrected or reread data word. Similar interactions occur between the
program store correct-reread sequencer and the transfer sequencer.

9.4 Accumulator Sequencer

This sequencer provides gating actions necessary to the completion of
a special class of memory reading orders. The orders are those which
perform a memory reading and transmit this memory reading to the
accumulator system to become one of the operands in an arithmetic or
logical combining operation to be completed in the accumulator. Since
the logic combining operation requires additional data processing time,
the last gating action (the gating of the resulting combination into the
accumulator register) cannot be completed in the time framework for
the single-cycle instruction shown in Fig. 31. Accordingly, the accumu-
lator sequencer is enabled whenever an order of this class is executed, and
it completes its gating action in one additional clock phase. This se-
quencer differs from the previously described sequencers in that it
shares control of gating actions with the decoders and extends the degree
of overlap, rather than inserting additional machine cycles. Such addi-
tional time is required to process a memory reading when it is trans-
mitted to the accumulator system, and since extended overlap rather
than inserted machine eyeles is used in this instance, a memory reading
order which uses the aceumulator as the destination register may not be
followed by an order which uses the accumulator as the index register.

9.5 Peripheral Sequencer

The peripheral sequencer is similar to the accumulator sequencer just
described in that it carries forward the data processing and instructions
on an extended overlap basis rather than within inserted machine cycles.
It differs from the accumulator sequencer in that its actions extend over
a period of nearly two machine cycles to carry out the transmission of
commands and addresses to the central pulse distributor and (as re-
quired) to all of the peripheral units such as scanners, signal distributors,
network controllers, and so on. The sequencer continues to remain
active in order to gate check signals and scanner responses from the
addressed units, and to generate trouble signals if any of the appropriate
checks fail.

The peripheral orders are used in repetitive scanning operations of
lines, trunk circuits, and junctors. To achieve efficient use of real time,
the maximum scanning rate of one scan for every two machine cy-

1918 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

cles is provided. In such instances, the peripheral sequencer remains
active during the execution of such a sequence of orders and does not
return to the inactive state until (1) the scanning sequence has been
completed, (2) an error in the response of the eentral pulse distributor or
peripheral unit is detected, or (3) an interrupt intervenes in the execution
of the scanning sequence.

9.6 Sequencer Design

A total of ten sequencers is contained in central control. The remainder
of the sequencers serve in multicycle operations — for retrial of call store
reading and writing operations, for special circuit actions and subsequent
return from interrupted programs, for stopping and restarting data
processing in the standby eentral control, and for obtaining special main-
tenance program sequences from the call store.

The ten sequencers perform different data processing steps as required
in the execution of program sequences by central control. The sequencers
are designed as a collection of individual counter circuits rather than as
one large counter. As noted, one sequencer may “call” a second as re-
quired to carry out a class of data processing steps associated with the
second sequencer, Thus the decomposition of a sequencer counter results
in relatively efficient use of the number of internal states required of
the counters. Perhaps more importantly, the flexibility of design gained
by this decomposition has proved helpful in developing circuit specifica-
tions in the face of simultaneously evolving requirements for each of
these circuits.

The heart of each sequencer is a synchronous counter. This synchro-
nous counter responds to input signals from the decoders and check
cireuits and selected phases of the microsecond clock. It is enabled and
advanced through various active states at definite times within a se-
quence of machine cycles. Although the counters are synchronous in the
sense just described, the counters are designed as asynchronous counters
and do not require delay lines in their feedback loops. This simplifica-
tion is achieved by requiring that at least two changes of state must
oceur in any 5.5-microsecond interval of time (unless of course the se-
quencer is inactive or being inhibited by another sequencer).

An example of a sequencer counter is shown in Fig. 40 along with the
time diagram showing the advancing of the sequencer through a succes-
sion of its active states.

Assuming the inactive state corresponds to both flip-flops being reset
and assuming that an enable signal appears by TO0 of a given machine

CENTRAL PROCESSOR ORGANIZATION 1919

SEQUENCER
ENABLE
INPUT

SEQUENCER

INHIBIT

INPUT
INACTIVE STATE

U

TO

1ST ACTIVE STATE

i
y

0 T6

T2 oT2
| | I
2ND ACTIVE STATE
G1 G2 G3 G4
0|

| TRANSITION MADE

| UNLESS INHIBIT

| SIGNAL 15 PRESENT
S g R

3RD ACTIVE STATE

6TB| 16T18

U

w
m
m

D

1 2

1 o] 1 o}
TI6
OUTPUT 1 QUTPUT 3
OUTPUT 2 l: INACTIVE STATE
QUTPUT 4

Fig. 40 — Sequencer counter.

ceycle, this sequencer is enabled by activating gate G, at TO to set flip-flop
1. This in turn enables output 1 so that gate G; is enabled at T6, and the
sequencer advances from its first active state to the second active state
at this time. Accordingly, by T0 of the following eycle a signal appearing
on output 4 will disappear so that gate G; cannot be agamn activated in
the immediately succeeding machine cycle. Instead, gate G. will be
cnabled to reset flip-flop 1 unless a signal appears on the inhibit input at
this time. If an inhibit signal appears (e.g., the output of another se-
quencer), the sequencer will remain in the second active state until the
inhibit signal disappears and a new machine cycle begins with the reap-
pearance of the clock pulse 0T2.

The example in Fig. 40 illustrates a relatively simple counter design.
Some of the more complicated counters, such as the transfer sequencer
counter, include alternate sets of active states according to the type of
transfer order being processed; the different sets of states serve to carry
out different gating actions over different numbers of machine cycles.

The selection of clock pulses for the various counters is made to span

1920 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

selected phases of various machine cycles to provide the simplest trans-
lation of counter state outputs into gating control signals. Where possi-
ble, these transitions were placed at such a time as to make sequential
lockout of one sequencer to another possible; the extra connection of
inhibit signals required in simultaneous lockout schemes is thereby
avoided.

Although sequencers seize and release control of each of the decoders
at different times (according to the function being performed), the
grouping of decoder leads into four classes according to decoders and
clock phase suffices for all but a few of the decoder-controlled gates.
Accordingly, the outputs of the sequencers are combined to generate four
sets of inhibit signals to selectively seize and release control of central
control gates for all situations in which the sequencers insert additional
machine eycles. The gates that could not be so grouped consist primarily
of those which control the flow of program order words from the program
store to eentral control. These had to be handled separately to provide
sequencer control gating actions that performed the necessary functions
with a minimum number of inserted machine eycles.

X. SUMMARY

This article has deseribed some aspects of the logic design of the central
processor, including (1) design considerations, (2) a development of the
program order structure, (3) a development of the logic blocks and their
interconnections to implement the order structure, (4) a desecription of
order encoding, (5) the circuits and program orders needed to meet
maintenance objectives, (6) a discussion of timing requirements, and (7)
a description of sequencing circuits required for multicycle data process-
ing functions.

Table IV summarizes the number of components in each of the fune-
tional units in one central control unit.” One such unit occupies four
standard No. 1 ESS bays® and requires approximately 2800 printed
wiring boards of various logic packages.

This design of the central control represents a balanced compromise
between the data processing capability, economy, and reliability of
operation in a telephone switching system. Furthermore, the system is
able to grow through the addition of modular memory and input-output
equipment without extensive wiring changes. The use of overlap opera-
tion and the inclusion of special orders to carry out several steps of highly
repetitive input-output functions simultaneously assist in obtaining
high data processing capability.

CENTRAL PROCESSOR ORGANIZATION 1921

TasLE IV — NuMBER oF TransisTtor Gartes 1N Fuxcrionan UniTs
1N Oxk CexTrRAL Contron Uxir

Functional Unit 1 No. Transistor | Percentage of
Program store bus circuits | 260 2.1
Call store bus eircuits | 290 2.3
Instruction registers 390 3.1
Decaoders (including memory address decoder) ‘ 1160 9.3
Error-checking and -correcting circuits and parity 640 5.1
generators ‘
Sequencers and sequencer-controlled gates | 870 7.0
Index adder system ‘ 810 6.5
Program store register, inerement circuit, and aux- 720 5.8
iliary storage register 1
Mask and complement circuit and insertion mask 280 2.3
Peripheral communieation cireuits 1140 0.2
Index registers and logic register 1140 9.2
Aceumulator system, including shifting and find- ‘ 1050 8.4
rightmost-one circuit i
Masked bus sampling gates (C flip-flops and logic) | 80 0.6
Matching eircuits 1860 15.0
Emergency-action cireuit 170 1.4
Clock cireuits 330 2.7
Miscellaneous buffer bus registers, including inter- 1010 8.1
rupt sources, central processor status and error
summary registers
Miscellaneous eireuits, including power control and 240 1.9
maintenance seanning access
Total 12,440 gates| 100.09;,

XI. ACKNOWLEDGMENTS

Many of our colleagues contributed materially to central control
organization. Mrs. I5. 8. Hoover and I. D. Nehama performed many of
the early and fundamental systems studies which led to the present plan,
A. H. Doblmaier contributed to the over-all organization of the central
control, M. P. Fabisch worked out much of the encoding scheme, R. W.
Downing specified most of the maintenance facilities, J. S. Nowak
specified the emergency-action cireuit, 15. Graeve designed the clock
cireuits, and R. B. Smith and Miss V. R. Smith created the mnemonic
representation of orders and the programmer’s manual.

REFERENCES

1. Keister, W., Ketchledge, R. W., and Vaughan, H. E.,, No. 1 ESS: System Or-
ganization and Objectives, B.S.T.J., this issue, p. 1831.

2. Biddulph, R., Budlong, A. H., Casterline, R. C., Funk, D. L., and Goeller, L.
F., Line, Trunk, Junctor, and Service Circuits for No. 1 ESS, B.S.T.J., this
issue, Part 2.

3. Freimanis, L., Guercio, A. M., and May, H. F., No. 1 ESS Seanner, Signal Dis-
tributor, and Central Pulse Distributor, B.8.T.J., this issue, Part 2.

1922 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

. Danielson, D., Dunlap, K. 8., and Hofmann, H. R., No. 1 ESS Switching Net-

work Frames and Circuits, B.S.T.J., this issue, Part 2.

. Dougherty, H. J., Raag, H., Ridinger, P. G., and Stockert, A. A., No. 1 ESS

Master Control Center, B.S.T.J., this issue, Part 2.

. Cagle, W. B., Menne, R. S., Skinner, R. S., Staehler, R. Ti., and Underwood,

M. D., No. 1 ESS Logic Circuits and Their Applieation to the Design of the
Central Control, B.8.T.J., this issue, p. 2055.

. Harr, J. A., Hoover, Mrs. E. S., and Smith, R. B., Organization of the No. 1

ESS Stored Program, B.S.T.J., this issue, p. 1923.

. Carbaugh, D. H., Drew, G. G., Ghiron, H., and Hoover, Mrs. E. 8., No. 1

ESS Call Processmg, B.S.T. J this issue, Part 2.

. Ault, C. F., Gallaher, L. E., (;reenwmd T, 8., and Koehler, D. C., No. 1 ESS

Progx am Sture B.S.T. J., this i issue, . 2097.

. Genke, R. M., Hardiug, P. A., and Stae ler, R. E., No. 1 ESS Call Store — A

0.2-Megabit Ferrite Sheet Memory, B.8.T.J., this issue, p. 2147.

. Ulrich, W., and Vellenzer, Mrs. H. M., Translations in No. 1 ESS, B.S.T.J.,

this issue, Part 2.

. Connell, J. B., Hussey, L. W., and Ketchledge, R. W., No. 1 ESS Bus System,

B.S.T.J., this issue, p. 2021.

. Martellotto, N. A., Oehring, H., and Paull, M. C., Process III, A Compiler-

Assembler for No. 1 ESS, B.S.T.J., this issue, Part 2.

. Downing, R. W., Nowak, J. S., and Tuomenoksa, L.. S., No. 1 ESS Maintenance

Plan, B.S.T.J., this issue, p. 1961.

. Tuomenoksa, L. 8., and Ulrich, W., Coding and Information Identification,

IEEE Trans., 67, 1963, p. 403.

. Butler, T. T., unpublished work.
. Menne, R. 8., unpublished work.

