Organization of the No. 1 ESS

Stored Program

By J. A. HARR, MRS. E. 5. HOOVER and R. B. SMITH

(Manuseript received January 22, 19G4)

The stored program of the No. 1 ESS must perform switching functions
reliably and promptly. Iis design must be economical of memory and
execulton time, and must accommodate office growth easily. The program is
organized so thal an interrupt system initiales the input-oulpul programs
that must be performed to accurate timing tolerances. The data collected by
these input-output programs are passed to the call processing programs
which decide what course of action the calls shall follow. The program also
assigns an appropriate share of central control time for maintenance and
administrative functions. The program is generic tn the sense that specific
quantities which change from office to office are looked up in tables and are
not embedded in the program itself. This article describes the basic program
structure and illustrates it with some typical programs.

I. INTRODUCTION

The program for the No. 1 electronic switching system (ESS)! con-
stitutes the operating intelligence of the system. In fulfilling this fune-
tion it must meet the stringent operating requirements of a telephone
switching office. This article describes the most important of these re-
quirements and outlines the implementation selected as a result.

There are six main classes of requirements. First, the system must
respond appropriately in real time to demands for service. Second, the
system must perform a large variety of actions to provide the many
services which are offered and to work compatibly with a wide range of
connecting systems. Third, the system must be extremely reliable. In
forty years of continuous operation, the total time the central processor
may be out of service is measured in minutes. Fourth, the system must
work in wire centers which are growing in the amounts of equipment
and in the scope of features offered. Fifth, although there will be a large
number of installations which may differ from each other in the kind
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and quantities of equipment and in the services which they offer, costs
of compiling programs must be kept at a minimum. Finally, the program
should be designed to keep system costs low whenever possible, prin-
cipally the cost of program storage, the cost of call storage, and the cost
of the required number of central processors needed for the total market.

1.1 Requirements on Processing Capability

Telephone customers are used to receiving prompt service whenever
they request it. As a result, much of the call processing work performed
by a switching system cannot be postponed for long. For example,
when a customer answers a ringing telephone, ringing stops in less than
a quarter of a second and the two customers may begin conversation.

A particular wire center also receives signals from other wire centers
as well as from customers directly. The size and extent of the total
investment in switching equipment makes it necessary for new equip-
ment to communicate with older systems. For example, because step-
by-step switching trains are driven by the customer’s own dial pulses,
the step-by-step office will spill digits into another office without check-
ing to see if the receiving office is ready. Therefore, if calls are to be
processed correctly, the No. 1 ESS must be ready to receive dial pulses
from a step-by-step office in a few hundredths of a second from the time
the trunk is seized.

A third source of demand for prompt action comes from the character
of the switching system which the program must control. The relay
circuitry has been much simplified compared to that in previous com-
mon control systems. However, relays are still used both in the network
controllers and in trunk, junctor, and service circuits. Simplification has
been possible because the program has taken on the job of triggering
the operation of relays in proper timing and sequence. In the case of
the dial pulse receiver, for example, pulse detection, counting, and
memory functions are performed by the program. In order to make
sure that the pulses are detected under the worst cases of pulse dis-
tortion, the program must look every 11.5 milliseconds for a change in
the line current. The higher the repetition rate of scanning, the larger
the percentage of time which the central processor must spend in
scanning. Because the duration of the scanning program itself varies
with the number of pulses detected, there is variation in the actual rate
of seanning a given receiver. Study has shown that when a group of
receivers is scheduled to be examined every 10 milliseconds, the interval
between inspections of any particular receiver will almost never exceed
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11.5 milliseconds. Thus, certain funetions are performed by the program
on fairly tight timing tolerances in order to simplify circuitry in the rest
of the switching system. The need to perform a number of tasks with
different tolerances is inherent in the nature of the switching function.
Tailure to organize the program properly would result in inefficient use
of the central processor, which in turn would mean a larger investment
in data processing equipment.

1.2 Versalility

A fundamental reason for using a stored program in the No. 1 ESS is
the need for versatility. The No. 1 ESS must be compatible with other
switching equipment and must provide the ever growing list of special
services which the telephone industry offers to its customers. By using
a stored program, these objectives can be attained economically. Even
though much development work may go into designing programs for
new features, the program, once written, can be easily installed. Only
the contents of memory must be changed and not a large number of
wired connections. Because the program must perform so many func-
tions, it is very large. To keep it manageable, it is divided into func-
tional blocks which are utilized in different ways to perform a large
number of complicated tasks. When a new service is needed, much of
the required program may be already available. The manner of dividing
the program is discussed in the paper on call processing.*

1.3 Reliability

The ability to process calls is the principal function of the central
processor and its program. Of almost equal importance is the ability to
do so reliably. A complete failure of a central office for even a period of
15 minutes is an event so rare that it generally is reported in newspapers.
Yet the No. 1 ESS has so centralized the intelligence of the central
office that no call ean proceed without the attention of the central
processor. Therefore, when a failure or malfunction is detected in the
central processor, the faulty unit must be switched out and a working
system put together from the duplicated units. The faulty unit must
then be diagnosed so that plant personnel may quickly repair it and put
it back into service.

About half of the total program instructions are devoted to fault
recognition, diagnosis, and routine maintenance. The detection of a
fault, the analysis of which unit is faulty, and the actions taken to
assemble a working central processor are assigned the highest levels of
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priority. Once a working system has been put together, the detailed
diagnosis of the faulty unit can proceed at a more leisurely pace than
that of normal call processing,

Included within the call processing programs are checks for abnormal
inputs and processing errors. For example, a customer ought not to be
able to generate more than ten dial pulses before there is a pause while
the dial is wound up again. If, however, there is a weak power cross
which has been undetected by the power cross test, a longer series of
dial pulses may be generated. The input program which counts pulses
checks for an excessive count and treats such a call as a partial dial.

1.4 Ability to Accommodate Growth

A given wire center will have a unique set of engineered equipment.
With growth, the amount of equipment changes. It would be expensive
to rewrite the program every time an additional frame of equipment is
added to the center. Therefore the basic program is designed to treat
all information about quantities of office equipment as data which can
be changed as the office grows.

1.5 Standardization of the Program

Additional flexibility is required of the program to meet the needs of
wire centers with differing features. One wire center needs to communi-
cate with step-by-step switching equipment, another with panel switch-
ing equipment, a third offers TOUCH-TONE calling service to its cus-
tomers, and so on. Producing a tailor-made program for each office
would increase programming and eompiling costs and entail problems in
guarantecing an error-free program. Therefore, a further requirement is
that a single program contain all features needed for a wide range of
applications. This standard program, called a generic program, may thus
be used in many installations.

1.6 Economic Balance

The length of the program in program store, the number of call store
words, and the number of machine cyeles required to perform a task can
all be traded off against each other. These quantities have associated
costs; for example, the number of machine cycles affects the total amount
of processing equipment required to serve a given market. Therefore an
over-all requirement is achievement of a sound economic balance in the
use of these quantities.
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The following pages describe the organization and implementation of
the program plan chosen to meet these requirements.

II. PROGRAM STRUCTURE

The organization of the No. 1 ESS program is strongly influenced by
the fact that it must operate in real time. That is, the program must
respond promptly to signals and data submitted to it by customers and
other switching systems. In addition, it must respond quickly to errors
detected by the many trouble detector circuits designed into the hard-
ware to assure dependable operations within the system at all times.
Whenever it fails to do so, the result may be improper handling of calls
and a general degradation of service. For example, failure to detect
digital signals may result in directing a call to a wrong number, or
failure to outpulse digits to another office promptly will cause the other
office to return overflow tone to the calling customer. Therefore it is
necessary to establish a hierarchy of program tasks. Some tasks must be
performed on a strict schedule; others may be delayed without signifi-
cant adverse effects.

2.1 Interrupt System

The eentral processor has an interrupt mechanism?® within it which
seizes control of the system momentarily when a manual, trouble de-
teetor, or cloek signal is received. The interrupt circuit eauses the system
to stop its present program task, store the program address at which it
was interrupted, and then transfer to the appropriate fault-recognition
program or clock-controlled input-output program. When the interrupt
programs are completed, control is returned to the program that was
interrupted.

Fig. 1 illustrates this over-all program plan. The interrupt sources and
their associated programs are arranged in a hierarchy of nine interrupt
levels; from highest to lowest, these levels are designated A, B, C, D,
E, T, GG, H, J. An interrupt source assigned to a particular level can
interrupt programs of lower levels only. The majority of the programs
are subject to interruption by any of the nine levels, and are therefore
called base-level programs.

The highest interrupt source is the A level, initiated from the master
control center, which allows manual selection of operating modes.
Interrupt levels B through G are activated by system trouble detectors.
These fault-recognition programs are discussed in the article describing
maintenance* appearing in this issue.
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Every 5 milliseconds a system clock activates interrupt level J, which
in turn gives control to input-output programs. Level H is used to
interrupt the level-J input-output program when tasks being performed
exceed 5 milliseconds. The level-J programs are normally in eontrol for
about 0.2 to 2 milliseconds, according to the size and traffic of the office.

2.2 Inpul-Output Buffering

In order to go to the next task reasonably promptly, the individual
tasks must not take too long. In particular, it is necessary to limit the
amount of processing performed by interrupt-level programs. Ior ex-
ample, the scan of the lead on a TOUCH-TONE receiver that indicates
that a digit is present ends by reading the ferrods associated with the
individual frequencies and placing the result in an area of call store
known as a “hopper.” It would be possible to carry the processing of
the call further. The area in call store where the other digits dialed on
this call are stored could be interrogated to determine whether dialing
is finished, and if so, the network path hunt and ensuing actions re-
quired to set up ringing could be carried out. However, all this work
would consume several milliseconds of continuous processing for a
single call. Since the scan for a signal present on a TOUCH-TONE
receiver must be performed every 10 milliseconds, an excursion of
several milliseconds each time a digit is detected would frequently ex-
ceed tolerances. Hence, work on the call is terminated by buffering the
digit in a hopper, from which a base-level program will later unload it
and carry out the processing just described.

I'ig. 2 is a schematic representation of the program control and flow
which carries out the sequence of actions needed to process calls, de-
seribed elsewhere in this issue.?

The input-output programs are shown in the upper part of this figure.
The input programs are confined to scanning for and recognizing input
signals and storing this information in a call store hopper. The hopper
stores the input information until the base-level programs inspect it for
data. When data are present, appropriate base-level programs, as shown
at the bottom of Fig. 2, start or continue the processing of the call.
Likewise, call store buffers are provided for the base-level programs to
load with output data. At an appropriate time, these data are unloaded
by an output program which delivers them to the peripheral equipment.
Some examples of the hoppers and buffers used in the system are shown
in the middle of Fig. 2. For example, the peripheral order buffer (POB)
is used to store address and control data for network controllers and
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signal distributors. These buffers provide the means for communication
between the scheduled input-output programs and the base-level call
processing programs.

ITIT. PROGRAMS PERFORMED ON THE CLOCK INTERRUPT LEVEL

The 5.5-mierosecond elock pulses in the central control are counted,
and every 5 (actually 5.005) milliseconds the counting circuit generates
an output signal which interrupts the base-level program being per-
formed. The interrupt circuit makes the central processor transfer to
the J-level input-output main program. Some input-output tasks are
performed every 5 milliseconds; others are performed at multiples of 5
milliseconds up to 120 milliseconds. The input-output programs are
classified into high-priority and low-priority tasks, according to the
frequency and accuracy with which they must be performed.

The low-priority tasks ean be delayed for a few milliseconds without
adverse effect on the operation of the system. This indeed will be the
case when the coincidence of input work under a peak traffic load
causes the system to take more than 5 milliseconds to complete the
high- and low-priority tasks. In this event the H-level interrupt will
oceur and the low-priority work will be interrupted. The acecumulated
high-priority work will again be performed before returning to the low-
priority program that was interrupted.

Accordingly, each input-output program is assigned to either the
high- or low-priority timetable. A list of high-priority tasks, the fre-
quency at which they must be exccuted, and the call store memory
words needed for carrying out these tasks are shown in Table I. A similar
list of low-priority tasks is shown in Table II.

3.1 Input-Output Main Program

To assist in understanding the design of the input-output main pro-
gram, a description of some additional program attributes is needed.

TasLe I — Higu-PrioriTy InruT-OvTrpur TASKS

Task ‘ Frequency Call Store Memory
(1) Dial pulse and digit | 10 ms | junior originating registers, remove dial
sean tone and digit hoppers
(2) Abandon and inter- 120 ms junior originating registers, digit and per-
digital timeout manent signal partial dial hoppers
(3) Twistor card writing 5 ms twistor word storage register
(4) Call charge magnetic 5 ms message storage registers

tape output
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TasLE II — Low-Priority InpuT-OuTpuT TASKS

Task Frequency Call Store Memory
(1) Teletypewriter scan 25 ms | teletypewriter buffer
(2) Peripheral order 25 ms | peripheral order buffer (POB), POB exe-
cution hopper
(3) Power cross test scan * POB execution hopper
(4) Ringing current test t POB execution hopper
scan
(5) Detection of out- 100 ms | outpulsing junior register, next-digit re-
going trunk wink request hopper
(6) Multifrequency out- 25 ms | outpulsing junior register, next-digit re-
pulsing quest hopper
(7) Disconnect scans 10 ms | timed-scan junior registers, trunk and
junctor disconnect hopper
(8) Interrupt sanity test 100 ms | emergency-action register
(9) Interject timing 100 ms | interjected ordered bits buffer

* This task is performed on three consecutive 5-ms intervals after a power cross
scan order is encountered during a POB execution.

t This task is performed on the first and third of the five 5-ms intervals after
a ringing current test sean order is encountered during a POB execution.

3.1.1 Characteristics of the Input-Output Main Program

Since this program must be executed every 5 milliseconds, the time
required by the central control to cycle through all of the input-output
task programs is held to a minimum, even at the expense of a small
increase in the total number of program words. For example, it is ex-
pedient in some cases to have a number of program blocks that perform
nearly equal tasks instead of a common program capable of performing
all of the tasks, since the common program would in general involve
more machine operations to accommodate the small variations in each
of the individual tasks.

The program plan is sufficiently flexible that the same program can
provide service after changes in the system due to growth. Also, the
same program must operate during and after certain changes in the
features offered by an office. For example, a feature included in the
generic program may require a type of trunk ecircuit which is not pro-
vided in all offices. These circuits may be introduced into any office
without changing the program. To meet this growth requirement, the
information relating to size, traffic, and features for an office is not
embedded in the data field of program instructions, but instead is pro-
vided in parameter tables within the program store. In cases where the
real time of the system is quite sensitive to the access time for retrieving
a particular parameter, it is also stored in the call store, from which it
can be read more quickly than from the program store. In particular,
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two parameters of this type are the number of input-output tasks and
the frequency with which they are performed.

3.1.2 Organization of the Inpul-Output Main Program

A block diagram of the input-output main program is shown in Fig. 3.
When the J-level interrupt oceurs, control is transferred to the input-
output main program, which operates as follows:

(1) It saves the contents of the central control index registers to
allow resumption of the base-level program at the point of interruption
and sets the H-level inhibit flip-flop.

(2) It updates the time counter and activates, one at a time, all
input-output programs that require action according to the high-

5-MILLISECOND
CLOCK

—t

INTERRUPT
CIRCUIT

SAVE CONTENTS
OF

CENTRAL CONTROL
REGISTERS

ACTIVATE TASKS INPUT-QUTPUT
ACCORDING TO HIGH—-PRIORITY
HIGH-PRIORITY TASK PROGRAMS

TIMETABLE

ACTIVATE TASKS 5
ACCORDING TO FNF'UI QUTPUT
LOW-PRIORITY

LOW - PRIORITY TASK PROGRAMS
TIMETABLE

RESTORE
CENTRAL CONTROL
REGISTERS

RETURN TO BASE
LEVEL PROGRAM

Fig. 3 — Input-output main program.
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priority timetable. When all high-priority tasks are completed, it unin-
hibits the H-level interrupt by resetting the control flip-flop.

(3) Tt activates, one at a time, all input-output programs that re-
quire action aceording to the low-priority timetable.

(4) It then refills the central control index registers with the informa-
tion saved in (1) and returns control to the interrupted base-level
program.

The principal parts of the input-output main program are the high-
and low-priority timetable programs. Since both programs are identical
in structure, it is necessary to examine only one of them to understand
the operation of the input-output main program.

3.1.3 High-Priority Timetable Program

Figs. 4 and 5 show the layout of the call store used to support the
high-priority timetable program. The transfer table of Fig. 4 consists of
23 consecutive words. Here and in the following descriptions, symbolic
designations will be used —in this case, PO to P22— instead of

P of DIAL PULSE AND DIGIT SCAN PROGRAM ADDRESS 1
I

| 1| DIAL PULSE AND DIGIT SCAN PROGRAM ADDRESS 2
| 2

‘\

I 3

| a

]

i 5

1

| 6| ABANDON INTERDIGITAL TIMING SCAN PROGRAM ADDRESS
1

= 7

: 8

| 9| CALL CHARGE PROGRAM ADDRESS

[

I 10

|

= 11

2

|

|13

L1

! 15[ TWISTOR CARD WRITING PROGRAM ADDRESS
i

116

|

117

|

|18

l

I g

| 20

I

1

]

P

22| ZERO CNT PROGRAM ADDRESS

Fig. 4 — Call store transfer table for high-priority timetable program.
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STR| STORE TIMETABLE WORD ]

enT | COUNT OF 5MS INTERVALS (0-23) |

s LTI I T T T T T T T

‘II' 0 1 1 1
: 1 1 1 1
I 2 1 | 1
! 3| | 1 1 1
: 4 1 1 1
I s i 1 1
} s | | 1 1 1
Lol ] IR T T T i
: a_— N 1 ] 1 i
il 1 1 1
Dol 1 1 !
: n|l | 1 1 1
: 2| | 1 1 1
: 13 1 | 1 1
Ioia 1 1 1
Loas| || 1 Hl 1 1
" 16 1 1 1 1
L 1 | 1 1
[T} 1 1 1
e v | :
| 20 1 IE )
i 21 1 7__ 1 1
: 22 1 11 1 1
T 23f1 1 1 [ 1

22212019 1817 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
Fig. 5 — Call store timetable for high-priority timetable program.

numerical call store addresses. Each of the 23 words is used to store the
starting address of an input-output program assigned to the high-
priority timetable. For instance, words PO and P1 contain the program
store addresses of the dial pulse and digit secan programs.

The timetable of Fig. 5 consists of 24 consecutive words designated
TO to T23. Each word is associated with a particular 5-millisecond
interval within a 120-millisecond cycle. A count kept in the CNT word
is used to identify the 5-millisecond interval and the associated T word
in the timetable.

Within each T word, bits 0 to 22 are associated with the input-output
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programs whose starting addresses are stored in the corresponding words
PO through P22. Thus each column of the timetable is associated with
an input-output program. Each column has an activity bit which is
part of the ACT word. If the activity bit of a column is equal to 1, the
I’s marked within the column designate the 5-millisecond intervals
during which the associated input-output program is due for execution.
The table shows that program PO is activated on all even 5-millisecond
intervals and that program P1 is activated on all odd 5-millisecond
intervals. Program P15, when active, is due every 5 milliseconds.
Program P22 is activated only once every 120 milliseconds. This program
recycles the count in CNT from 23 to 0.

The word STR is used to store the pattern of 1’s and 0’s that indicate
which input-output programs are due for execution during an interval.
As these programs are executed, one at a time, the corresponding flag
bits are reset to 0 until all the programs have been executed.

A step-by-step description of the program shown in Fig. 6 is given in
Table ITI. Assume that the count of 5-millisecond intervals that is kept
in CNT is initially 0.

As shown in Fig. 6, to activate the first input-output program re-
quires eight program steps and subsequent ones only five. Note that
only six of the possible 23 flag columns are presently used in this high-

LOCATION | OPERATION ADDRESS OR DATA, REGISTER AND OPTION FIELDS

ENTER MX CNT

MK TO, XA

XM CNT

PMK ACT

TZRFZ | LP
KM STR
MY PO, F
T 0, Y —= TO INPUT-OUTPUT TASK PROGRAM — -»—-

LOOP MK STR «— FROM COMPLETED TASK ——————— -4-'ﬁ|

TZRFZ LP —» TO LOW PRIORITY TIMETABLE PROGRAM

N

KM STR
MY PO, F
T 0, Y —= TO INPUT-OUTPUT TASK PROGRAM —=—

Fig. 6 — High-priority timetable program.
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TasrLe IIT — StEp-By-STEP DEscriprion oF HicH-PRIORITY

TIMETABLE PROGRAM

1

(2)

(3)
)

(6)
)

(8)

(9)
(10)

(1)
(12)

(13)

MX  CNT
MK  To0,XA
XM  CNT
PMK ACT

TZRFZ LP

KM  STR
MY  PO,F
T 0,Y
MK  STR
TZRFZ LP
KM  STR
MY  Po,F
T 0,Y

The content of CN'T is read into central control (CC) regis-
ter X. (This value of the interval count is used as a
pointer to select one of the 24 timetable entries.)

The address T0 is indexed with the value of the X register
to obtain the address of the timetable entry to be read
into CC register K. Then the content of X is increased by
1. (In successive interrupts, this instruetion results in
reading the timetable entry at address T0+0, T0+1,
T0+2, and so on up to T0423.)

The new value of the interval count is stored in CNT,

The timetable entry contained in K is ANDed with the
activity bits in ACT; the resulting word is placed in
register I{. This word contains a 1 in every position in
which both the timetable entry and the ACT word con-
tain a 1. Thus, each position marked by a 1 designates a
program that is active and due for execution. For in-
stance, when TO is read, three bits are equal to 1 in
columns 0, 9, and 15.

If all the bits in K are 0 (if no programs need to be acted
on), the program transfers to address LP where the low-
priority timetable program starts. If one or more bits of
K are equal to 1, the position of the rightmost 1 is stored
in register F. The rightmost 1 itself is set to 0, and the
program advances to the next step. Clearing the right-
most 1 allows the next 1, if any, to be recognized later as
the new rightmost bit of the word in K.

The new binary word in register K, modified by the re-
moval of the rightmost 1, 18 stored in STR.

The address PO is indexed with the value in register F to
obtain the transfer table entry to be read into register
Y. This is the address of the input-output program cor-
responding to the rightmost 1, originally in register K.

The program transfers unconditionally to the address
stored in register Y as the result of step (7). When the
input-output program has been completed, a transfer is
made bfwﬁ to step (9).

The word stored in STR is read into register K.

If all the bits of the word in K are 0, the program transfers
to the low-priority timetable program. If one or more
bits are equal to 1, the position of the new rightmost 1 is
stored in register I, that 1 is erased, and the program ad-
vances to the next step.

This step performs the same funetion as step (6); it stores
any remaining flag bits in STR.

This step performs the same function as step (7); it obtains
the address of the next input-output program to be exe-
cuted and stores it in Y.

A transfer is made to the address in register Y.

When the input-output program has been completed, a
transfer is made to step (9). Steps (9) to (13) are used over
and over until, one by one, the flag bits are removed. The
TZRFZ instruction of step (10) will then lead to the low-
priority timetable program.
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priority timetable. Therefore ample space for future input-output
programs is provided. All that has to be done to add programs is to
place appropriate time flag bits in any one of the unused columns,
mark the column activity bit to 1, and place the corresponding entry
address of the new input-output program in the transfer table.

This flexibility has been gained at the cost of only 17 additional call
store words in the transfer table. By writing appropriate data into the
call store (and a copy in the program store for reliability), an input-
output program included within the generic program can be added to an
office, and changes can be made in the order and frequency of execution
of any input-output program. Furthermore, the input-output main
program need not be changed even if a new issue of a generic program
requires the addition of new programs.

An example of a specific input-output high-priority task program is
given in Section 3.2.

3.2 Dial Pulse and Digit Scan Program

This program is used to scan the signal-present leads of dial pulse,
multifrequency, and TOUCH-TONE receivers for signals every 10
milliseconds. It is activated during every 5-millisecond interval by the
high-priority timetable program. However, only half the receivers are
scanned in each of the 5-millisecond intervals in order to even out the
work load. The functions of this program are as follows:

(1) For dial pulse receivers this program detects pulses by observing
a change in the scanner reading from 0 to 1 (off-hook to on-hook condi-
tion of the handset). When such a change is found, the program adds
one to the pulse count, which is located in a call store area called a
“junior register” associated with each receiver. If this is the first pulse
received, the address of the originating register in which digits are to be
accumulated for this call is read out of the junior register and loaded
into the remove dial tone hopper. In case the pulse count overflows
(becomes equal to 16) the program stops incrementing the pulse count
s0 that the permanent signal partial dial program will detect a timeout
and make an entry in the permanent signal partial dial hopper.

(2) For TOUCH-TONE receivers this program detects that TOUCH-
TONE signals are present by observing a change in the signal-present
scan point reading from 0 to 1. Upon finding a change, the tone fre-
quency scan points are read and their values together with the address
of the originating register serving the call are stored in a TOUCH-TONE
digit hopper.
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(3) For multifrequency receivers this program detects the presence
of multifrequency signals by observing a change in the signal-present
scan point value from 0 to 1. The scanner leads associated with each
frequency are read, and their values together with the address of the
originating register serving the call are stored in the multifrequency
digit hopper.

Observe the similarity of the program actions required to detect and
report inputs from the three types of receivers. This design permits
flexibility in the assignment of scan points for all three types of receiver,
since the input program scans a row of scanner points for a change in
reading from 0 to 1 without regard to the type of receiver being interro-
gated.

It is beyond the scope of this paper to discuss the complete dial pulse
and digit scan program. However, a description of the core of this
program reveals its basic design.

I'ig. 7 shows the call store memory layout used by the core prograni.
Each word in the scanner address table (SCA) contains a trunk scanner
number of a row of digit receivers. This number addresses a word of 16
scanner outputs, among which at least one is assigned to a receiver.

SCA LL CH
o SCANNER o PREVIOUS o RECORD OF
ROW ADDRESS POINT VALUES MISMATCHES
n n n
19 19 19
15 0 15 0
ACT RSPA
o ACTIVE DIGIT ol _RETURN TO scan abRI| ENTRY ADDRESS
RECEIVERS PROGRAM ADDRESS RO - R9
ENTRY ADDRESS
ADR 2 par i)
SET UP FOR X
n n SCN1 ON SCAN 2
19 19
5 0

Fig. 7 — Call store memory layout for core of scan program.
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The last look table (LL) stores the previous scanner outputs of the row
in a memory location corresponding to the location of the row address
in the scanner address table.

The change status table (CH) is used to record a mismatch between
the present and previous scanner readings when detected. The corre-
sponding change status bit for the seanner is set equal to 1. The abandon
and interdigital timing scan uses this information to determine inter-
digital timeout or abandonment of the call by a customer.

The activity table (ACT) specifies the active receivers within each
scanner row and is used by the dial pulse or digit present program to
determine the active receivers reporting a change in state from 0 to 1.

The return to scan program address table (RSPA) contains the ap-
propriate return address for use by the dial pulse or digit present pro-
gram to return control to the core program after the pulse counter(s) is
(are) incremented and/or the appropriate hopper(s) is (are) loaded.

Observe that all of the tables described above are blocks of 20 words
each. This design was made to accommodate the maximum number of
receivers required in a wide range of offices. The symbolic name of the
call store address of the first word of each table is SCA, LL, CH, ACT
or RSPA, respectively. The binary addresses corresponding to these
names will be defined by the compiler-assembler® in the fixed area of the
call store. That is, these tables have been assigned a fixed location in
call store in all central office programs. However, for small offices only a
small number of rows in each table will be used to accommodate the
receivers for the office. Therefore, the core program is designed to scan
only the number of rows required in a given office. Since approximately
half the number of rows are to be scanned in each of the 5-millisecond
intervals, three other control words are needed by the core program.

At a call store location with the symbolic name ADRI is stored one
of the entry addresses RO through R9 according to the number of rows
to be scanned during the even 5-millisecond intervals. Likewise, at
address ADR2 is stored the appropriate entry address for the number
of rows scanned during the odd 5-millisecond intervals. At address
SCNT1 is stored a number one less than the number of rows scanned in
the even interval. This number is used in the odd interval scans to set
an index register to the proper value for controlling the row words
read and stored in memory.

The functions performed by the core program shown in Table IV are:

(1) Initialize central control registers according to whether the scan
occurs in an even or odd interval.

(2) Read the row of 16 scan points represented by the first scanner



TaBLE IV — Di1arn PurLskE axp DiciT Scan CoreE PROGRAM

Location

Operation

Variable Fields

Comments

SCAN1

SCAN2

RO

WX

MSF

WZ

MK
T

MX

MSF
WZ
MK
T

UMKMJ

LM
KM

JEKMSF

TAUMK

-1

SCA+1,X

DPDP

CH+1,X

ADR1,M

SCN1

SCA+1X
DPDP
CH+1,X
ADR2M

LL+1,X

LL+1,X
CH+1,XA

SCA+1,X,PL

CH+1,X

This is the entry point on even 5-ms in-
tervals. Set index register X to —1.
Send scanner address in first word of
SCA table to scanners. Present state of
16 sean points returns to eentral control
register L.

Store in central control register Z the
address (DPDP) of entry point to dial
pulse or digit present program.

Move content of first CH word into cen-
tral control register K.

Transfer program control to the address
in call store location ADR1; this will be
one of the addresses R0 to R9, depending
on the number of rows to be scanned in
this office.

This is the entry point on odd 5-ms in-
tervals. Set index register to one less
the number of rows scanned in the even
interval.

(Same as SCAN1+1)

(Same as SCAN1+2)

(Same as SCAN1+3)

(Same as SCAN1+44, except that ecall
store address ADR2 is used instead of
ADRI1.)

RO is the entry point from SCAN1+44 or
SCAN2-+4 if ten rows are to be scanned.
Match (exclusive-OR) present scan
point values in register L with previous
scan point values read from correspond-
ing word in LL table. Store in central
control register J the 16-bit mismatch
word (1’s at bit positions of mismatch),
and OR it with the CH word in register
K, storing the result in K.

Move present scan point values from
register L into the LL table.

Move into table CH from K the new CH
word, which now contains 1's in bit posi-
tions corresponding to scan points whose
state changed since the last abandon-
interdigital scan. Also add one to register

AND the mismatch word in J with the
present scan point word in L and store in
K this logical product, which now con-
tains 1’s only in the bit positions where a
0-to-1 change oceurred in the correspond-
ing scan points. Set a decision-control flip-
flop, to be used by the following order,
according to whether the product in K
is zero or not. Also read the next scanner
address from the SCA table and send it
to the scanners. The scan point values
will return to L in two machine cycles.
If the product in K is nonzero, transfer
program control to the address in central
control register Z. If zero, move into K
t-hebl contents of the next word in CH
table.

The next 45 steps essentially repeat the preceding five instructions nine more
times to take care of a possible ten rows of sean points to be examined. The last
few instructions in the tenth set of five are modified slightly because it is not
necessary to prepare for a next row in that case. A econcluding instruction transfers
control back to address LOOP in the high-priority timetable program (Fig. 6).

1941
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row address in the SCA table if it lies in the even interval, or secanner
row address one greater than the number stored in SCN1 if it lies in the
odd interval.

(3) Match the 16 new scan point values with the previous scan point
values stored in the corresponding row of 16 LL bits.

(4) Update the corresponding row of 16 CH bits. That is, write 1’s
into the CH word wherever a mismateh (change in scan point state)
oceurred.

(5) Update the row of LL bits. That is, read present scan point
values to the corresponding row in the LL table.

(6) Determine those scan points whose value changed from 0 to 1.

(7) Transfer to the dial pulse or digit-present program if there is at
least one change from 0 to 1.

(8) Repeat steps (2) through (7) for the remaining scanner rows to be
examined during this 5-millisecond interval.

(9) Return program control to the high-priority timetable program.

Because of the frequency of use of this core program, an economic
balance clearly required an emphasis on machine cycle minimization at
some cost in total memory. Two means were used to achieve this real
time efficiency. First, three special instructions (UMKMJ, JKMSF, and
TAUMK) were designed, each of which accomplishes functions that
would require two or three general instructions. Second, the five-word
core program is repeated ten times in the program store to avoid the ad-
ditional time for executing loop control orders and transferring. The
program is generie, in that it is designed to handle traffic over the range
of office sizes without appreciable loss of efficiency. This flexibility is
attained in exchange for a moderate increase in the total call store and
program store words used.

1V. BASE-LEVEL PROGRAMS

The bulk of No. 1 ESS programs, both call processing and main-
tenance, are executed on the base level — that is, with none of the
interrupts A through J in effect. An appreciable amount of time is
spent in the J level, as deseribed above, looking for inputs and disposing
of outputs, but this time is consumed in repeated execution of a rela-
tively small number of fairly short programs. The complex work called
for by the enormous variety of call situations and equipment configura-
tions and possible malfunctions is carried out by a correspondingly
large number of programs. These are executed as required, when time
permits, and while no interrupts are in effect. All base-level programs
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can be deferred to some extent, but the amount of delay they can
tolerate varies widely. It is for this reason that a preference system
and a program organization to implement it are required within the base
level.

4.1 Main Program

This plan and its associated programs are referred to as the base-level
main program, or simply the “main program.” The question of pre-
cisely which associated programs should be considered a part of the
main program is a rather arbitrary matter of classification. The fact is
that the entire collection of base-level programs becomes in a real sense
a single program, though subdivisions are useful for various purposes
such as functional design and explanation, assignment of work to in-
dividual programmers, convenience of assembly and testing, and so
forth.

Maintenance programs on the base level, as well as call processing
programs, receive control from the same main program. They follow the
same general rules and share many devices and techniques that are
discussed below. However, since the structure of the maintenance
programs is described in detail elsewhere,* details and examples in this
paper are drawn primarily from the processing of telephone traffic.

Just as the bulk of No. 1 ESS programs are hase-level, so the bulk of
base-level programs are “task” programs. These are simply the programs
at the end of the line of control that perform the ultimate work of the
office. Most do a particular kind of work on a single call at a time;
others perform various administrative functions, such as interpreting a
teletypewriter input message. They differ, too, in the manner in which
they receive control from the main program. Some receive it directly
from a single dispenser program, while others require a series of dis-
pensers, each triggering the next.

Within the main program complex are distinguished several kinds of
“dispenser”” programs. These form the links between the basic schedule
of the main program and the task programs. One of the principal jobs
of the dispenser programs is unpacking the input data that the H and J
interrupt-level programs have buffered and distributing them to the task
programs for analysis and use. Another important dispenser function is
providing timed entries to programs requiring them.

All base-level work is divided into six classes. The highest priority
class, called “interject,” is deseribed below. The other five are the
classes A, B, C, D, and E, in descending order of frequency of examina-
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tion. Specifically, the main program delivers control to these classes
according to the pattern

ABACABADABACABAEABACABADABACAB

repeated endlessly. Thus class A is examined most frequently, and tasks
assigned to that class will suffer shorter delays on the average than
those in B, and so on. But if, for example, class E work is about to be
done, the existence of waiting class A work cannot change the scheduled
order of execution.

Each class consists simply of a number of dispenser programs that are

executed in a fixed order, so that if a;,a., -+, a; represent the five
dispenser programs in class A, by, b, -+ -, by the five in class B, and
€1, ¢, -+, ¢ the six in class C, the sequence of execution stated above

can be expanded to:

1@ 230400 501D 2Dabyb 1@ 2304501000300 506N Ay - - -

4.2 Dispenser Programs

As an illustration, class B consists of the dispenser programs that
administer work from the following five buffers:

class B ordered bits buffer

ring trip hopper

remove dial tone hopper

dial pulse and abandon hopper

trunk and junctor disconnect hopper.

“Buffer” is used as the general term for any memory used to store or
record work to be carried further at a later time; a “hopper” is a buffer
used to accumulate inputs from peripheral equipment.

The ring trip and remove dial tone hoppers are typical single-purpose
hoppers. The nature of the input, in each case, is known automatically
by the interrupt-level program that detects it, so it is just as easy for it
to be loaded into its own hopper, and more efficient for the unloading
dispenser program. The remove dial tone hopper is shown in Fig. 8.
The “pointer block” of four words contains both a loading and an
unloading address, so that first-in, first-out service can be given. Also,
it contains the addresses of the beginning and end of the actual hopper,
so that the loading and unloading programs are completely independent
of the hopper’s size and location. The information that is entered in this
hopper requires only one word, and consists merely of the call store
address of the originating register whose call is ready to have dial tone
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(POINTER
BLOCK UNLOADING ADDRESS —
ADDRESS) LOADING ADDRESS —

ADDRESS OF FIRST WORD OF HOPPER
ADDRESS OF LAST WORD OF HOPPER

ORIGINATING REGISTER ADDRESS
ORIGINATING REGISTER ADDRESS
ORIGINATING REGISTER ADDRESS
(ALL ZEROS) f—r
(ALL ZEROS)
(ALL ZEROS)
(ALL ZEROS)
(ALL ZEROS)
ORIGINATING REGISTER ADDRESS ————/
— ORIGINATING REGISTER ADDRESS

Fig. 8 — Release dial tone hopper.

removed. (A request to remove dial tone is made after detection of the
first pulse, so that it will actually be removed by the time the first
digit is dialed.) Many hoppers are of this same form, except for different
kinds and quantities of information in each entry; some require two
words per entry.

Once a dispenser program receives control, it empties its buffer of all
work it finds there. Thus, if the remove dial tone dispenser finds the five
entries shown in I'ig. 8, it will pass control five times to the same task
program, each time with central control index register X containing
one of the originating register call store addresses unloaded from the
hopper.

The dial pulse digit and abandon hopper (whose entry format is
shown in Fig. 9) has a dual purpose. An interrupt sean program detects
both types of input by the same timing; the only difference between

- PULSE COUNT

¥
l ORIGINATING REGISTER ADDRESS —I
L1 T S S S T S S T W SR
LY
\\
T~LINE STATE
INDICATOR

1 = ABANDON
0= INTERDIGITAL TIMEOUT

Fig. 9 — Format of entry in dial pulse digit and abandon hopper.
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them is that the line is off-hook if a digit has been completed, but on-
hook if the call has been abandoned. It is more efficient, therefore, for
the interrupt-level program to put both types into the same hopper,
with one bit of the entry indicating on-hook or off-hook, than to make
the decision itself and place them in separate hoppers.

Each priority class has an ordered bits buffer; the one for class B is
shown in Fig. 10. Such a buffer consists of a call store word, each bit
of which serves as a flag for its associated program. The address of this
program is in an accompanying table in a position corresponding to the
flag’s bit position in the word. Thus, in Fig. 10, the word BOBB con-
tains two 1’s. The rightmost 1, in bit position 3 (starting with 0 on the
right), indicates there is work to be done by the program whose address
is in word number 3 of the table BPO. This program, as seen from the

sosel [ [ [ [ [[]] [TTTTTTIT

BSTR (STORES BOBB FLAGS WHILE BEING SERVED)
BPO
BP I QUEUE FOR REGULAR RINGING REGISTER

BP2 QUEUE FOR SPECIAL RINGING REGISTER

BP3 QUEUE FOR COIN CONTROL CIRCUIT REGISTER
BP4 QUEUE FOR COIN ZONE OPERATOR TRUNK
BPS QUEUE FOR CLASS OF SERVICE TONE

BPS6
BP7 ASSEMBLY OF PROGRAM STORE CHANGES

EMERGENCY ACTION CLASS B TEST

BP19 200MS5S GENERAL PURPOSE TIMING
BP20
BP21
BP22

Fig. 10 — Class B ordered bits bulfer.
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figure, serves the coin control circuit register queue, so the flag would
have been set to 1 by some program that needed such a call store
register but found none available. At the same time, it would have left
waiting on the corresponding queue whatever call register (perhaps an
originating register) was already associated with the call. The program
triggered by this flag from the ordered bits buffer will check to see if
any coin control eireuit registers have become available; if so, the one
or more calls represented by registers on the queue will be served.

The other 1 in word BOBB of the ordered bits buffer, in bit 7, indi-
cates that there are program store changes to be assembled preparatory
to writing new ecards for the translation area of the program store. This
does not oceur for days or weeks at a time, and the flag would have been
set to 1 by a special teletypewriter message requesting this action.

The ordered bits buffer dispenser program begins by copying the
contents of BOBB into the following word BSTR and zeroing BOBB.
Then new flags can be set in BOBB even by interrupt-level programs
while the 1’s in BSTR are being served and erased from right to left,
using the special TZRFZ instruction. (See Table III, step 5.)

1.3 Interject Work

The sixth class of base-level work is the interject class; it is not
regularly scheduled at all in the ABACA - - - sequence. It has the highest
priority of all, however, for a check is made after each task program in
each of the other five classes for the existence of interject work, and if
found it is done immediately. It is initiated by interrupt-level programs
when they encounter work that cannot tolerate the delay it might
suffer if put even in a class A buffer, but which should not be done in
the interrupt program itself. The latter constraint might be that it is
too lengthy for an interrupt level; or that it might interact harmfully
with the interrupted base-level program, if both should try to change
the contents of the same call store location. Therefore, it is scheduled
to be done at the first natural break, by being interjected between task
programs. The check for the presence of interject work is accomplished
automatically as each task program returns control to the proper dis-
penser program by transferring to the standard program address “RI-
TURN.” At this point, the pair of instructions

MIK RETN (move contents of “RETN”
to index register IX)

TP 0, K (if K’s sign bit is positive,
transfer to address in rest
of K)
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oceur. “RETN" is the symbolic address of a call store word containing
the dispenser program address to which control should be returned by
each of its task programs; the first thing a task dispenser program does
upon gaining control initially is to place this address in RETN. The
sign bit of RETN is normally positive, but is made negative as a flag by
any interrupt-level program wishing to interject a job. Thus the first
two instructions of the program at RETURN read this call store word
RETN and transfer to the address it contains, unless the sign bit has
been made negative. In that case, program control passes to the suc-
ceeding orders, which form the interject control program. This program
has certain special bookkeeping functions to perform, but essentially it
transfers control to the one or more interjected jobs and then returns
control to the dispenser address that was in RETN.

The interject priority class consists of a single dispenser program,
the interject ordered bits buffer. At present only three kinds of jobs are
definitely planned for this buffer, though more can be added if future
requirements dictate. One is an emergency-action interject test, and
another is the unloading of the hopper containing highest-priority
reports from the network execution program. The third is the updating
and distribution of information from the 100-millisecond timetable.
For the first two, flags are set in the interject ordered bits buffer (and
the master flag in RETN) when the relevant interrupt-level programs
encounter the need either for the emergency test or the highest-priority
network report. The flag for the 100-millisecond timetable is set by the
5-millisecond input-output low-priority timetable every twentieth
entry.

The interject 100-millisecond timetable is central to all base-level
timing. It is shown in Fig. 11, and will be described only briefly, be-
cause it is similar to the high-priority timetable for the H and J interrupt
levels which has already been discussed in some detail in Section 3.1.3.

The supervisory line scan should be made every 100 milliseconds,
nominally. There is no advantage in seanning excessively often, even in
slack periods; routine maintenance checks and various administrative
programs can usually make better use of the time. To prevent excessive
scanning the line scanning program receives control from the class D
ordered bits buffer when its flag bit is found to be 1. That flag is set
once every 100 milliseconds from the interject 100-millisecond time-
table. On the other hand, an extension of the 100-millisecond period,
even if long enough to be noticeable, carries no serious penalty; in fact,
since line scanning does take an appreciable amount of the processor’s
time, it is desirable that during overload proportionately less time be
expended looking for work and more spent on work already in progress.
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KCNT | (COUNT OF 100 MS INTERVALS, 0 -9)
KSTR| (STORES LOGICAL PRODUCT OF KT WORD AND KACT WORD)
KACT | 1 ] EERERE
KT O | BERE |
] |
| - N
1 ar |

KT9 | 1 1 |

KPO
KP1
KP2

KPI1B| SET FLAG IN CLASS D FOR 100MS LINE SCAN
KP19 | SET FLAG IN CLASS--B FOR 200MS GENERAL PURPOSE TIMING
KP20| SET FLAG IN CLASS C FOR 500MS GENERAL PURPOSE TIMING
KP21 [ 500MS PERIODIC TIMING i

KP22| RECYCLE AND ONE SECOND PROGRAM

Fig. 11 — Interject 100-millisecond timetable.

The periods between executions of class D programs may exceed 100
milliseconds during periods of heavy traffic, and when they do the class
D supervisory line scan flag will be set to 1 more often than it is served
and made 0.

In column 19, 1’s alternate with 0’s, so the program whose address is
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in row 19 of table IKP0O will be entered every 200 milliseconds. All this
program does is set a flag in the class B ordered bits buffer for 200-
millisecond general-purpose timing, which will be discussed later.

All the programs entered from this table IKP0 are, of course, executed
as interject jobs, and as such must be kept short lest they themselves
delay other interject work. The program whose address is in row 21,
entered every 500 milliseconds, updates another timetable which con-
tains 24 rows and thus is eyeled through completely every 12 seconds.
This timetable, however, has no associated table of transfer addresses;
instead, after sclecting the current row and ANDing it with the activity
bit word, it ORs the result into the class C ordered bits buffer. (This
divides the latter’s bit positions into two kinds: those set by the 500-
millisecond interject timetable; and those set by other means, like
those of the class B ordered bits buffer already discussed. The ones set
by other means render the corresponding columns of the 500-millisecond
timetable useless, of course.)

4.4 Timing

As explained in earlier sections, the detection and discrimination of
input signals is assigned to interrupt-level programs, and the resultant
work of processing them to the base level. Somewhat analogously,
time — in the form of a signal every 100 milliseconds — is an input to
the base level, where it is detected and analyzed by interject programs,
and the work that is found due is passed on to the lower base-level
classes. When the intervals being timed become so long that the delays
in performing base-level work are negligible by comparison, some of the
timekeeping itself can be removed from the interject level. Thus class
C has a 3-second timetable, and class E, 15-second and 15-minute
timetables.

There remains an assortment of timing requirements not fulfilled by
the timetables. Typically, certain kinds of call register programs may
reach a point where a delay of a few hundred milliseconds or a number
of seconds is required. One example is a TOUCH-TONE test trunk
program, which must send out a failure signal 15 seconds after initiation
of the test if a correct sequence of signals has not been keyed in by
that time. General-purpose timing for such uses is provided by timing
linked lists.

A hypothetical one-way 200-millisecond linked list is shown in use in
Fig. 12. The only call store memory required for this list when not
being used is the single word TIM200, sometimes called the “head cell”
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TIM 200 22226

33444 RI I } PT
zol 0

ORIGINATING

22226| RI l 4‘:1. REGISTER

RINGING
REGISTER
30003 RI I | T
1| 33444
TEST
REGISTER

Fig. 12 — One-way 200-millisecond linked list for general-purpose timing.

of the linked list. When not in use, this word contains zero. In the figure,
the ringing register was the last to be added of the three registers under-
going timing. The program which added it to the list found TTMZ200
containing 30003, the address of the test register. The ringing register
was inserted in the list by having the “30003" stored in its second word,
along with the “5” which specifies the number of 200-millisecond units
of timing that are desired. Its own address, 22226, becomes the new
contents of TIM200. The timing for whatever registers have been put
on the list is administered by a task dispenser program given control
every 200 milliseconds from the class B ordered bits buffer (Fig. 10).
This program goes through the list, subtracting one from the count in
the left part of the second word of each register. When the count is
reduced to zero (as it will be next time for the test register, whose count
is shown as “1”), the register is removed from the list (by replacing
30003 in the ringing register by 33444) and control is given to the
appropriate task register program. The procedure by which this ap-
propriate program is determined is used not only here, but in other
situations in which a general program reports to a variety of other
programs through their associated registers. Instead of a full program
store address being stored in the call register, the RI and PT items in
the register’s first word are used. The RI (‘“register identification”)
selects a table of transfer addresses associated with the type of register,
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and the PT (“program tag”) is used to select from this table the address
of the proper task program. (In this case, of course, that will be what-
ever program has been designed to take appropriate action when the
test register times out.) This selection from the table, however, is made
by altering the PT number slightly before using it as an index. This
same alteration is performed by all programs reporting a certain class
of information — including timing notification — to any call register.
The report by some other program of a different class of information
— e.g., a scan point change — would not make this alteration, and
therefore could use the same PT number to select from the same table
a different program. This means of distinguishing inputs eliminates
many decisions within the task programs.

Note that to remove a register from a one-way linked list at an ar-
bitrary time between scheduled inspections requires tracing through the
list from the beginning. Since this could consume considerable time for
a long list, two-way timing linked lists are also provided. Their use is
quite similar, but each register must supply two words for the linking,
one pointing forward to the next linked register and the other pointing
back to the preceding. This means that any register in the chain ecan be
directly dropped out, since it contains enough information for the linkage
to be mended.

Most programs requiring general-purpose timing have an associated
register to link; for those that do not, a common pool of timing registers
is provided.

4.5 Task Programs

The variety of task programs precludes a comprehensive treatment
within this paper, but at least some of this variety may be indicated.
The word “program,” when used to designate a subdivision of some
larger program, is a static term referring to a set of instructions capable
of performing a certain action or group of related actions when some or
all of these instructions are executed in sequence. When control is given
to such a program at one of its entry points, however, the sequential
exccution that follows typically runs through only part of the orders
in that particular program, and then on into parts of other programs.
It is this dynamic unit, consisting of the complete set of instructions
executed in unbroken sequence, that is most significant in understanding
the flow of control governed by the main program. “Task program” is
often used in this dynamie sense, but “task execution” might be a less
ambiguous term for the complete sequence of order executions from the
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time a dispenser relinquishes control until control is returned to that
dispenser. Thus, during a task execution only task programs are exe-
cuted (apart from possible insertions of interrupt programs), but many
and varied task programs may contribute to a single task execution.

There can be no “real-time gaps’’ within a task execution; such a gap
necessarily signals the end of a task execution, and the suspended call
or other function can regain control only through the main program
mechanism. Task executions differ greatly in length, of course, depend-
ing on the amount of continuous work it is possible and desirable to do.
As explained in carlier sections of this paper and in the paper on call
processing,® the work that is done for one call at one time tends to be
small, due to circuit limitations and timing requirements as well as the
natural fragmentation of customer actions.

Task executions vary also in the number of different “static” task
programs they involve. One well known but important programming
technique that tends to use many programs in one task execution is the
use of subroutines. In the No. 1 ISS program these range from short
programs performing simple conversions of equipment addresses from
one form to another, to complex network and translation routines
which themselves use several levels of subroutines internally.

A subroutine, as the term is generally used, returns control to its
client program when it has completed its work. Often, however, two or
more task programs arrive at a point where the remaining work to be
done in both or all cases is identical, and they can be joined at that
point. There is no need to preserve the identity of the source merely in
order to return control properly at the end of the task execution, be-
cause the standard transfer to RETURN, explained earlier, solves that
problem.

The supervisory line scan is an example of a self-contained task pro-
gram. It could be considered, of course, as two programs: one that
repetitively compares the line scanner points with the line state bits,
and another program or subroutine to which control is transferred when
a proper match of these readings occurs that makes the entries in the
service request hopper. If these two closely related programs are com-
bined, however, they become a self-suflicient whole.

A contrasting example is provided by the task execution that begins
with a digit just unloaded from a digit hopper. The initial task program
is a part of the general call processing functional subdivision called
“digit analysis, lines.” It begins with the assumption that the K register
contains the new digit in bits 21 through 18 (with the digit ““0” registered
in binary as “1010,” corresponding to the ten pulses generated by a dial
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telephone), and that the X register contains the address of the originating
register associated with the call. This task program could have received
control from either of two task dispenser programs, depending on
whether the digit was produced by a dial or TOUCH-TONE telephone
set. In handling the digit up to this point, the actions of the two task
dispensers differ. The dialed digit task dispenser distinguishes the digit
entry from the abandoned call entry it may also find in its hopper;
the TOUCH-TONE digit task dispenser converts its hopper entry from
a code indieating two active tone generators into a binary digit. From
this point on, however, the distinction vanishes, and subsequent pro-
grams treat the digit in the same way regardless of its original form.
The initial decisions depend on the contents of the originating register
whose address is in the X register. This register is a block of 16 con-
secutive call store words, assigned to a call as soon as the originating
line is connected to a receiver and given dial tone, and retaining in-
formation for that eall until a ringing connection is set up (for a local
call) or until outpulsing is completed (for an outgoing call). The initial
arrangement of information in the register is shown in simplified form
in Fig. 13. (The type of information stored in some words or parts of
words varies with the type of call, and can change as the call progresses.)
The program first checks the single bit END in word 6 to see if dialing
has already been interpreted as completed; if so (an unlikely event)
the extra digit is ignored and control is immediately returned to the
dispenser program by a transfer to RETURN. Assuming that dialing
has not been previously completed, the program adds one to the digit
counter (item DC in word 12), stores the new digit in its proper digit
slot (DS1-DS10) as determined by the new value of the digit counter,
and then checks to see whether that new value matches the number in
item DCA in word 6. This number has been put there at some earlier
point in the call to tell the present program whether additional decisions
must now be made or whether nothing is required beyond the digit
storage that has just been accomplished. If DC is not equal to DCA,
control is returned to the dispenser program. If DC equals DCA, control
is given to the program determined by item AADD in word 6. (The
common program device used here to reduce item AADD from a
full 18-bit call store address size is to transfer into a fixed table of trans-
fer instructions, using the value of AADD to select the point in the
table to which control is transferred.) The program receiving control
could be any one of about thirty. (Since AADD is eight bits, the maxi-
mum table size is 256, of course.) For example, it might be the program
analyzing the first digit, in which case DCA would have been set to



STORED PROGRAM ORGANIZATION 1955

0 RI PT
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2 LINK WORD
3 SCAN WORD
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AADD = ACTION ADDRESS
DCA = DIGIT COUNT LIMIT
DS! = DIGIT SLOT 1‘ (FIRST DIGIT)
[
1 i
DS:O = DIGIT SLOT IIO (TENTH DIGIT)
DC = DIGIT COUNTER

Fig. 13 — Simplified layout of originating register.

“1" by the program that connceted the line to a receiver and dial tone.
The analysis of the first digit involves checking to see whether it is a
“17,40” or the eleventh button on a TOUCI-TONE set, since any of
these can have special significance. In an office without the “0" prefix
option, an initial “0”” necessarily completes dialing and requires a con-
nection to an operator. In this case the task execution continues through
subroutines in the translation and network area, transferring to RI-
TURN only when it has made its first request for network action by
placing proper entries in a peripheral output buffer. The foregoing
assumes that no difficulties are encountered. If all operator trunks are
busy, a request for a connection to overflow tone will be made in-
stead; or, if no peripheral output buffer is available, the originating reg-
ister will be left waiting in the corresponding queue before control is
relinquished.

Referring again to the possible actions following a match of DC and
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DCA, the program to which index AADD points might be one involved
in providing a special service such as temporary transfer to a customer.
The temporary transfer program would be controlling the call in this
case, and would have seized an originating register to serve as a digit
collector, placing the desired number of digits in DCA and a number in
AADD that would lead to the appropriate temporary transfer task
program.

Thus this digit analysis task execution may complete its work in a few
order cycles, or it may branch into a multitude of different task pro-
grams before its sequence of instructions finally reaches a transfer to
RETURN.

V. THE GENERIC PROGRAM

One of the important basic requirements stated earlier for the No. 1
ESS program is that it be generic — that is, that a single program be
able to serve many offices with different features and characteristics,
and during continuing growth. If the program does not change, then
data to which it refers must change to take account of the different
features, numbers of lines and trunks, types of signaling, and other
variables. I'rom a theoretic viewpoint, this coneentration of all change-
able information into one place instead of seattering it through the data
and address fields of many instructions may seem a trifling difterence.
However, when a large number of offices are involved such an arrange-
ment has substantial economic advantages in compiling programs,
adding features, and making changes.

The constraint this places on the program design can be stated quite
simply as the inability of the program to know anything that can change.
Any quantity or address or option that can vary, as an office grows or
from one office to another, must be looked up by the program in a con-
centrated data area of the program store. The call store may be used
where faster reference is needed, but this may be considered an indirect
reference to the program store, which must back up all long-term call
store information. (In particular, when the office is first put into opera-
tion, the call store must be written to its proper initial state from program
store data.)

The effect the generic program requirement has on memory allocation
is essentially that, apart from the generic program itself, program store
and eall store are each divided into two parts. One area is of fixed size
and fixed layout (though not fixed contents, of course), and the other
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can be expanded and rearranged. A good call store example is provided
by the hopper shown in Fig. 8. The four-word pointer block must be in
the fixed layout part of eall store, so the loading and unloading programs
can refer to PBA, PBA41, ete., in the address fields of their instructions.
The hopper itself, however, could not be included in this area unless it
were made big enough for the largest one needed in any office; but it is
economical to reduce its size in smaller offices. The storage in the pointer
block of the beginning and end addresses of the hopper itself allows the
latter to grow or shrink as required in the expandable part of call store.

Similarly, call registers such as the originating and ringing registers
are assigned in expandable call store, and while idle are chained together
in linked lists, one for each register type. Only the two-word “head cell”
of each linked list, containing the addresses of the first and last registers,
is assigned in the fixed layout part of call store.

Nearly all call processing programs use such linked lists as their sole
reference in seizing and releasing registers as needed. In program store,
however, there must be a record in some form of the absolute addresses
of all registers of each type. The call store initialization program, used
when the office is turned on initially, must have such information; a few
other programs also find it useful. This information is packed quite
compactly, since reference to it is made only infrequently. Even so, the
amount of program store space required for recording the locations of all
registers in the biggest office is more than can be afforded in a small
office. Henee the same division into fixed layout and expandable memory
is made within the program store data area. A single word for each call
register type is assigned at a certain address in the fixed layout portion.
This word contains the address in the expandable part of program store
of a variable-size block containing the locations of all registers of that

type.

VI. SUMMARY

The reliable and prompt switching functions required of No. 1 ESS
put stringent requirements on the program organization. The types of
equipment with which the program must work and the services that
must be provided are large in number. I'or a wide range of office sizes
and traffic volumes, economy must be stressed, both for the initial
installation and for growth. The program organization outlined was
chosen because it satisfies these requirements. Certainly other means of
implementation are possible.
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The interrupt system helps to guarantee prompt attention to tasks
that require it. To satisfy the input-output tolerances, it is also neces-
sary to limit the time during which a given task is continuously proc-
essed. Most call programs have natural break points, and others must
be created to be compatible with the equipment. Lengthy maintenance
and administration programs are arbitrarily divided into segments whose
execution time does not exceed a suitable limit.

This fragmentation of work, in turn, requires a system of call store
registers and buffers in which to store data until processing can be
resumed. These and other memory units are designed for ease of growth
and economy throughout the range of office sizes.

Both the input-output and base level main programs follow simple
schedules which check for work to be done according to its urgency,
without consuming an inordinate amount of time.

To increase the efficiency of the very frequently executed input-
output programs, special orders were devised, and certain groups of
these orders are repeated in program store to avoid the extra transfer
time that program loops would cost. For the greater part of the program,
however, a very general order structure is used, which should be equally
well suited to functions not yet conceived. IFor this majority of pro-
grams, furthermore, subroutines are heavily used to reduce program
storage space, This organization also makes it easier to add new fea-
tures to the program, since use can be made of existing program blocks
and subroutines.

However, a major aim has been to minimize the causes that require
an addition or any other change to the program itself. This is done by
cffecting a separation of the program proper from the parameters asso-
ciated with the features of a particular office and the variables of
growth.
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