PROCESS IIT — A Compiler-Assembler
for No. 1 ESS

By N. A, MARTELLOTTO, H. OEHRING and M. C. PAULL

(Manuseript received January 20, 1964)

A description of a compiler-assembler program named PROCESS [11
is given. This program s used lo (ranslale No. 1 ESS symbolic source
programs to No. 1 ESS binary object programs. Included is a discussion
of the PROCESS language, the Compool and macro facilities of the com-
piler, and some requirements that motivated its design.

I. INTRODUCTION

No. 1 ESS is a stored-program control telephone switching system.!-?:3
The program consists of more than 100,000 instructions, each 44 bitsin
length, made up of 37 information bits and 7 check bits. To write such
a program in binary (or octal) machine language is clearly impractical.
To efficiently produce such large programs, modern techniques include
the use of mnemonies or a symbolic language by the programmer. We
say the programmer writes a source program in some kind of symbolic
language, whereas the central control® executes an object program in its
machine (binary) language.

This article mainly describes the vehicle that translates No. 1 ESS
source programs to No. 1 ESS object programs. Certain other items
explain the progress of a No. 1 ESS program from inception as a source
program to its final state as an object program.

The vehicle developed for translating from No. 1 ESS source pro-
grams to No. 1 ESS object programs is itself a program; this program,
named PROCESS III,* is executed on the IBM 7094 general-purpose
computer. In keeping with the current usage for the words “‘compiler”
and “assembler,” PROCESS III is said to be a “compiler-assembler,”
since it performs both functions, as will be described. Consequently, in
this article the words ““‘compiler’ and “‘assembler’ are used interchange-
ably unless otherwise noted.

* PROCESS is an acronym for PROgram to Compile ESS programs.
2457

2458 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

1.1 Background

A compiler should come early in the development of a stored pro-
gram system. The sooner one can translate to the object program, the
sooner interpretive simulation may be undertaken; in turn, this means
one may begin to feel confident sooner about such things as adequacy of
order structure, and construction and size of the object program.
PROCESS IIT was started early; although there were some definite ideas
initially as to what some of its requirements would be, it was necessary
to build a flexible structure to accommodate the many new require-
ments that would arise as the development of the No. 1 ESS program
progressed.

Early in the development of No. 1 ESS, it was recognized that the
object program would be large, and that it would be written, compiled,
and tested in small sections of 1000 to 5000 instructions. Also known was
the desirability of not having to disturb all parts of this large program
in the semipermanent twistor memory when small sections were being
tested and recompiled. Yet the sections had to communicate with each
other and transfer control to each other. These considerations led to one
basic design criterion for PROCESS III: while still insuring that com-
munication and control among sections remain intact, it must be possi-
ble to recompile and reinsert sections of the total object program with-
out disturbing the whole.

A more fundamental design criterion for the compiler arose from a
lack of knowledge of the precise nature of the source program. It was
known, of course, that the program was to do data processing in con-
nection with telephone calls. Such actions are difficult to deseribe com-
pletely in a simple or mathematical or uniform way. That is to say,
there did not exist a ‘“‘telephone language” that could be used to de-
scribe completely the telephone data processing functions. However,
it was known that some telephone functions are amenable to simple,
mathematical, uniform deseription; furthermore, as learning took place,
it was hoped that the balance of the telephone functions could in time
be described in a straightforward manner. Thus, a fundamental design
eriterion for PROCESS IIT became flexibility: not only must the com-
piler be able to handle known straightforward descriptions of telephone
funetions, but it must also be capable of being used to construct, ac-
cept, and retain new descriptions of telephone functions.

The requirements of independent, compilation, integrity of communi-
cation among sections of object programs, and flexibility have been
met by PROCESS III because it:

(1) normally produces relocatable object programs,

PROCESS IIT 2459

(2) has a communications pool (Compool) facility, and

(3) has a powerful macro facility.

A relocatable object program has each of its instructions assigned an
address relative to zero, the address of its first instruction. The address
field of each No. 1 ESS instruction in a given program section P may
in turn refer to one of four kinds of numbers:

(a) constants; these are said to be absolute numbers, since they will
not be altered by subsequent processing;

(b) a local program point, in which ease the number is a relocatable
address within the range of the object program instruction addresses
of P;

(¢) a global program point, in which case the number is a pseudo-ad-
dress that refers to a program other than P and therefore cannot be
assigned explicity at the time P is compiled; and

(d) fixed call store or program store locations; these numbers are
absolute addresses outside the program P> but within the range of the
two memories.

The total No. 1 ESS object program consists of many relocatable
sections like P. Each section contains various numbers, as deseribed.
An immediate need for proper execution of the total object program by
central control is a loading scheme for inserting this program into the
twistor program store. The scheme is implemented by another IBM
7094 program called a “loader.” The loader accepts as inputs many
object programs generated by PROCESS III and produces as output a
single unified (linked) object program containing only absolute ad-
dresses. Thus, having determined where sections of the object program
will reside in the twistor store, the relocatable program points of (b)
and the pseudo-addresses of (¢) are changed by the loader to ahsolute
addresses. The absolute numbers of (a) and (d) are not altered. The
loader also has the ability to accept a more current version of a section
(or sections) of the object program without disturbing the remaining
sections. This means that fewer twistor cards need to be remagnetized
during the checkout and debugging phases. Finally, the loader will
generate and prefix 7 check bits to each 37-bit instruction. Since the
Hamming code for these bits is a funetion of the 37 information bits
and the absolute address at which the 37 bits reside in the twistor store,
they cannot be generated prior to load time.

The Compool facility of PROCESS II1 enables one to refer conven-
iently to addresses of type (d). A major consideration in the design of
the total object program is the temporary (call store) memory con-
ficuration. Temporary memory must be assigned to the call registers,

2460 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

the network map, various queues, and so on.?* Since there are many
programmers involved in constructing the large No. 1 IESS object pro-
gram, it is efficient to centralize the assignment of temporary memory.
The Compool of PROCESS III provides this centralization. Having
once defined call store areas in the Compool, the many individual pro-
grammers need not concern themselves about such areas except to refer
to them as necessary. In their programs, reference to these areas must
be made symbolically, but there is no need for individual definition of
such areas; the communications problem among programmers using
the same call store areas is thereby substantially reduced by the Com-
pool facility.

The Compool, therefore, is a collection of symbols that are assigned
call store addresses; these symbols correspond to areas set aside in
memory in a particular configuration for the purpose of doing telephone
data processing. Of course, the configuration may change as the de-
velopment of the object program progresses. In this case, PROCESS
IIT is used to update the Compool, and the new configuration is used in
compiling all source programs thereafter. It may be necessary for
source programs to be recompiled, depending on the change in call
store configuration. This too is partially automated: when a Compool
run (ie., a change in call store configuration) is made, PROCESS III
refers to its “bookkeeping file”’ to ascertain which source programs, if
any, need to be recompiled. A list is printed out and the individual
programmers are notified. They need only recompile without concern-
ing themselves as to precisely what call store changes have been made.

It was mentioned that PROCESS III has a powerful macro facility.
In this context, a macro is defined to be a fixed amount of code, in some
language, that will result in a variable amount of object program when
it is properly “called.” Just as basic instructions have variable fields
(e.g., address, index, masking),? so do macros; in the case of macros, the
variable fields are called “parameters.” Since calls oceur in the source
program, the names of the macros, or more simply the macros, are said
to be part of the source language. If one is given the ability to define
his own macros he may thereby extend the source language. A set of
macros which has been incorporated permanently into PROCESS III
constitutes just such an extension. These permanent macros are saved
as a special part of the Compool so that they may be refined and ex-
tended still further as more is learned about telephone data processing
functions. In addition, individual programmers may define and call
their own macros.

The balance of this paper is devoted primarily to three things:

PROCESS III 2461

(1) an explanation of how call store configurations are defined,

(2) a deseription of the source language and some of its extensions,
and

(3) a discussion of the tools available to construct extensions to the
source language.

II. STORAGE ALLOCATION

The design of the compiler was influenced by the real-time and space-
limited nature of the resulting object program on the one hand, and the
demands of an intricate basic machine order structure on the other. An
obvious solution to the space problem was to pack information into
subunits smaller than the natural dimensions of the available memory
units (37 binary bits in the program store and 23 bits in the call store).
Thus it was desirable to provide means in the compiler for naming such
subunits, called “items,” in memory.

The object program organization? itself demanded of the compiler the
ability to define several types of homogeneous blocks of temporary
memory, each composed of several basic memory units. A group of call
registers®4 is essentially a group of similar blocks of memory, where each
word within one block serves the same functions as the corresponding
word in all the other blocks. For example, the high-order bit of the sec-
ond word in each block may indicate whether this call register is con-
trolling a telephone call or not. Memory blocks of this call register type
are called “scatter tables” and are defined in PROCESS III by the
following statement:

1) XX SCATABLE NI1,N2

Beginning at an address called XX, statement (1) reserves space in
memory for N1 tables each containing N2 words.
The statement,

(2) YY TABLE NI1,N2

defines N1 tables each containing N2 words. Memory defined with TA-
BLE differs from that defined with SCATABLE; all the words in any
one of the N1 tables defined with TABLE have the same function, but
the function may vary from table to table. I'or example, with N1 = 2,
the rightmost 17 bits of each word in the first table might be used to store
the line equipment number, while the second table might consist entirely
of trunk equipment numbers in the rightmost 15 bits.

2462 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

It is also convenient to be able to define one continuous block of stor-
age. The compiler accepts statements like:

3) ZZ BLOCK N

This reserves N words of space in memory and names the address of the
first word ZZ.

In order to refer to memory items smaller than the basic word by name,
one must be able to define them. The statements below serve this pur-
pose:

) YY TABLE 10,50
(5) YYO LAYOUT ABB----------o- CCCCCCee
6) IT1 ITEM A
(7) IT2 ITEM B
(8) IT3 ITEM C

Statement (5) lays out all 50 words of the first table in the set of 10
tables defined by (4) in the call store area. The high-order bit is defined
as one item, the next 2 bits as a second item, the dashes indicate bits not
being defined, and the rightmost 8 bits constitute a third item. State-
ments (6), (7), and (8) assign names to the three items.
Thus IT1 is the name assigned to the item indicated by A in the LAYOUT
statement, I'T2 is the name of the B item, and I'T'3 the name of the C iten.
In a similar way items may be defined for SCATABLE and BLOCIK,
The following characteristics of items are useful in manipulating them,
as will become obvious in the following sections.

AJITEM = the address of the item

M.ITEM = the mask of the item; i.e., a 23-bit constant with all ones
in the position of the item and zeroes elsewhere

the displacement of the item from the right

the size of the item; i.e., the number of bits contained in
the item.

D.ITEM
SITEM

The qualifiers A., M., D., and 8. are prefixed to the name of the item to
refer to these characteristics. For example, the items defined in state-
ments (6), (7), and (8) have the following characteristies:

AIT1 = AIT2 = A.IT3 = address named YYO
M.IT1 = 0.20000000*

* PROCESS IIT assumes integers to be deeimal unless qualified by O. to indicate
they are octal.

PROCESS 11T 2463

M.IT2 = 0.14000000
AMLIT3 = 0.377
DIT1 = 22

DIT2 =20

DIT3 =0
SITI =1
SIT2 =2
SIT3 =8

ITI. SOURCE LANGUAGE

3.1 Basic Orders

Some of the storage allocation or storage defining facilities of PROC-
FESS III were tailored for use by the No. 1 I£8S basic orders. Since the
nature and aims of the basic order structure have been discussed in
some detail in an earlier article,? only some of their pertinent character-
istics in connection with the use of item qualifiers are illustrated here.

(9) MIK YYO
This instruetion moves the 23-bit contents of the word named YYO0 into

the K register. The following instruction (10) does exactly the same
thing:

(10) MK AITI

The triplet below [instruction (11)] sets the logie register to the mask of
IT2, moves the contents of the item I'T2 into the KX register, masking
out evervthing but the item by logical produet (PL), and then right
adjusts it in the IX register by using the displacement of the item.

(11) WL MLIT2
MK AIT2,PL
HC D.IT?2

The same actions are accomplished in a different way by the next three
instruections:

(12) WX AIT2
MK MIT2,X,PS
HC D.IT2

Because of the PS option the mask is set up and used in the same order.

2464 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

Given a source program input such as the basic order instructions in
(9), (10), (11), or (12), PROCESS III will produce an object program
as output with the property that for each input instruction there will be
exactly one output instruction. This one-to-one correspondence between
input source program instructions and output object program instruc-
tions defines an assembling process. On the other hand, a compiling
process is defined to be a one-to-many correspondence between input
source program “instructions” and output object program instructions.
For a compiler the input “‘instructions” are called “statements,” and the
set of all statements meaningful to the compiler is called a “language.”
PROCESS III will accept as inputs basic order instructions and state-
ments of its own language, called PROCESS, in any mixture.* The source
language of No. 1 ESS programs, therefore, is nominally PROCESS plus
the basic order instructions. It will be shown that the PROCESS lan-
guage can be extended.

3.2 PROCESS Language

The basic goal of the PROCESS language is to provide the No. 1 ESS
programmer with a means to write his source programs quickly and
efficiently. As with any higher-level programming language, a program
written in PROCESS cannot be better in terms of object program length
than the same program written with basic orders by an expert program-
mer. When used properly, however, the PROCESS language gives object
programs that are no worse than the great majority of those written
with basic orders by average programmers.

The PROCESS language is intended to provide the fundamental
programming tools needed to write telephone programs. The functions
required in any program, including telephone programs, can be classified
into three categories:

(1) moving data from one place to another,
(2) making decisions using these data, and
(3) performing arithmetic or logic operations on these data.

While these requirements were predetermined, there were some addi-
tional telephone-oriented programming problems that evolved as the
programming effort got under way. These problems were solved readily
beeause of the flexible macro facility of PROCESS III and the resulting
ease in extending the source language by defining new procedures.
Essentially, the PROCESS language consists of a set of procedures

* Hence the designation of PROCESS III as a ‘“‘compiler-assembler.”

PROCESS III 2465

that can be called by the programmer with varying input information,
called “parameters.” A description of the allowable parameters and pro-
cedures follows.

The nature of parameters may be discussed on two levels:

(7) On the lower level, parameters can assume the identity of any of
the basic units of data handled by the basic orders. The various possi-
bilities are:

(a) full memory words, indexed or not
(b) items or partial words, indexed or not
(¢) constants

(d) central control registers.

Tor (a) and (b), indexing is specified by enclosing the address and index
in parentheses, as (address, index).

(#7) Parameters can also assume a more general nature that enables a
programmer to nest procedures. In this case a parameter can be repre-
sented by:

OP(aliaﬂs"'la’n)

Here the operator OP of the parameter can be any of the basic procedures
of the language or the character C; the use of C indicates that the body
of the parameter (- --) should be complemented. Each a; again can be
of the form OP(by, -+, b,) or one of the forms defined by (a) through
(d) above.

The general-purpose procedures of the PROCESS language are:

1. Data moving

MOVE OP(x),bed,- -

Funetion: Move the quantity specified by x to the destinations desig-
nated by b, ¢, d, and so on. If OP is a basic procedure, perform this
operation on a before moving the result to b and ¢, ete.

2. Decision making

(a‘) IF OP(I),(Tl,Tg,) ")lop(b),(dladQJ ")

Function: If the quantity x or the result of the operation (if any) per-
formed on x has the relation r; to b or to the result of the operation (if
any) performed on b, then control is transferred to a program location
named d; (7 = 1,2,3). The allowable relations r; and their meanings are:

E = arithmetically equal
NE = arithmetically not equal

2466 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

LE = arithmetically less than or equal to
GE = arithmetically greater than or equal to
L = arithmetically less than
G = arithmetically greater than
XE = logically equal
XU = logically unequal.

(b) COMP OP@), by, bs,y -+, b),
(dl 3 (]2 LI d,,)

Funection: If the quantity a or the result of the operation performed on
2 has the relation r to b;, program control is transferred to d; (7 = 1, 2,

-, m).

(c) IFOR OP(2),i,(by, ba, -+ b,),d

Function: If the quantity x or the result of the operation performed on
x has the relation r to any one of quantitiesb; (7 = 1,--- , n), program
control is transferred to d.

(d) IF x,r,0,0P1(c1), - - - ,OP,(c,),

ELSE(OP,-;+1(CJ1+I), tet ,OPm (cm))

Funection: If « has the relation » to the quantity b, then perform the
procedures OP, , - -+, OP, ; if not, then do OP,4,, ---, OP,, .

(e) IF alrj‘;bgopl(cl) y)OPﬂ (CH)!
ALSO (()P'rl+l{cn+1)7 s ,OPm(Cm))

Function: If x has the relation » to the quantity b then perform the
procedures OP,, --- , OP, ; in any case then do the procedures OP, .,

<o, 0P, .
3. Arithmetic and logic procedures
(a) SUM OP(2),0P(y),b,c,- - -
(b) DIFF OP(x),0P(y),b,ec,- - -
(c) AND OP(2),0P(y),b,c,- - -
(d) OR OP(x),0P(y),b,ec,- -
(e) EXOR OP(z),0P(y),b,c,- - -

Function: Perform the indicated operation on the parameters x and y
after executing the function of the operators on z and y, if any, and put
the result into b, ¢, ete.

PROCESS III 2467

4. Loop control
m Loopr i,f,e

m ENDLOOP

Funetion: These two statements control a loop that begins with the
call of LOOP and ends with the call of ENDLOOP which specifies the
same m (name) in the location field. 7 and f are the initial and final values
of the loop variable. At the end of each pass through the loop, the loop
variable is incremented by ¢. When this new value exceeds f, control
passes to the next instruetion outside the loop; otherwise control is trans-
ferred to the beginning of the loop. » specifies the loop variable to be used.
If » is not specified, the central control register Z will be used as a loop
variable. It is possible to nest loops within loops. If the same loop vari-
able is spocified for more than one loop, the value of that variable is
saved and reset when entering and leaving another loop.

5. Initialization facility

INIT be,---

TFunction: Place ¢ and any following parameters into consecutive loca-
tions starting with the location specified by 0.
6. Unconditional transfer of program control

GOXTO OP(x),(by, ba, -+, by)

Funetion: At execution time, x or the result of the operation performed
on z, if any, specifies a number 7, and program control is transferred to
b; . If b, is not specified, program control is transferred to .

Some typiecal calls for these procedures are:

START LOOP 1,10,1
MOVE (ITEM,X),FULL
IF (ITEM,Y),E,0,DEST
I (0,Y),E,LAMOVE(0,(0,Y)),
ELSE(MOVE(L,(0,Y)))
DEST SUM SUM(1,(ITEM,X)),K,(0,Z)

START ENDLOOP
GOXTO SUM(Y,(ITEM,Z)),(D1,D2,D3)

2468 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

The procedures described constitute the initial general-purpose sub-
set of the PROCESS language. A realistic example showing the use of
many of these procedures is given in Appendix A.1.

As the needs of the No. 1 ESS program became clearer, special tele-
phone-oriented procedures were added to this initial set to extend the
source language. For instance there are procedures to implement a
change in network (CIN), a change in peripheral circuit configuration
(CIC) or signal distributor (SD) actions. These procedures have en-
abled the programmer to implement such functions in a higher-level
and more descriptive language, thereby relieving him of details in-
volved in writing souree programs at the basic order level.

Procedures in the PROCESS language are in fact macro calls. The
corresponding macro definitions for the language are retained by the
compiler in its Compool. To extend the source language, one defines
new macros. The extensions may be global or local. Global extensions
to the source language are macros that have proven to be of widespread
use among the programmers; these are entered into the Compool and
become part of the PROCESS language, capable of being used there-
after by all programmers. Local extensions to the language are macros
that are defined and called by individual programmers in their own
programs. Obviously, there may be many different kinds of local exten-
sions to the source language. Extensions, whether global or local, are
constructed using special macro orders in the macro definitions.

IV. MACRO DEFINITIONS

Each macro definition is associated with a definite name (or set of
names) called a “macro name.” When the compiler encounters a macro
name in the operation field of the source program it looks for the defini-
tion associated with that name. The compiler then executes the orders
in the maero definition, which results generally in No. 1 ESS code be-
ing generated. This code varies, depending on the parameters of the
macro call.

A macro definition has the form:

DEFIN op: dum,; ,dum., - - -, dum,
order,

orders

order;

PROCESS III 2469

ENDEF
EQUAL op, Op2,0Ps, ** , 0Py

Op1, 0Pz, OpPa, *++, op, are all names of this definition. dum, , dum,,
-« -, dum, are dummy parameters. The body of the definition consists of
the series of orders: ordery, order,, - - -, order, . These orders are of
four types: No. 1 ESS instructions, macro calls, macro orders, and pseudo
operations. The macro orders are a special subset of the PROCESS
language useful mainly in writing macro definitions. They instruct the
compiler to take certain actions during compile time. To help distinguish
macro orders from other types of orders, the symbol * is the first char-
acter of each macro order name. The meaning and syntax of the four
order types are discussed more fully in this and suceeeding sections.

The actual notation used by programmers in writing macro definitions
is limited by available keypunch symbols, which leads to awkward nota-
tion in some cases; for these cases a notation more suitable for exposition
is used here. As previously, the remainder of this section uses small letters
for variables, whereas capitals and special symbols such as $ are used
literally. A detailed example of a macro definition, a macro call, and the
operation of the compiler in expanding the definition is given in Appen-
dix A.2.

4.1 Parameter References

Depending on the exact nature of a macro call, different codes are
generated by its macro definition. In order to express this dependence
of the code to be generated on the various parts of the macro call, a
general scheme for referring to these parts is needed. The form of a
macro call is:

loc op P2,P3, "~ ,Dn

A call is composed of a location (also called py), an operation (also
called p,) and a series of parameters. Syntactically, the location and
operation are strings of six or fewer alphanumeries. The parameters, on
the other hand, may have some internal structure. A parameter p, is
either a string of alphanumeries (including the null string) or it has the
form o,(ps., Pso, -, Psm,) in which s is an ordered set of (position)
integers, and o, is any string of alphanumerics. An o, is called the operator
of parameter p,. p, with o, removed is called the body of p,. The strip
of p, is the body of p, with the outside parenthesis removed. The re-
mainder of p, is defined only for s = 2, 3, --- |, n. The remainder of p,

2470 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

iS P, , Pas1, **+, Pu - The location, operation, and the parameter parts,
operator, body, strip, and remainder of any p, may all be referred to
directly within a PROCESS IIT macro definition.

There are two methods to refer to parameters and parameter parts.
The first method is by using “parameter indices.” There are six ‘“parame-
ter indices” named I0,--- ,I5 for use in writing macro definitions. A
parameter index may be set to any parameter by the macro order *SET.
For example:

+SET x,10,s

This order sets parameter index I0 to parameter p, if it exists; otherwise
control jumps forward to location x in the macro definition. There is a
companion macro order *ADV. For example:

*ADV ,10,¢

Assuming ¢ is an integer and I0 is originally set to p., where s = s, 7,
then this order will set 10 to p., .+ if such a parameter exists, and con-
trol passes to the next order; otherwise control jumps forward to loca-
tion 2 in the macro. For example, if 10 is set to p.,1 and ¢ = 1, then
after a suecessful *ADV, 10 is set to pa...

One may refer to the parameter part to which a parameter index is
set as follows: assume Ij is set to p.

“x0"]5” refers to the operator of p, .
“I;” refers to the body of p,

“437¢I5" refers to the strip of p,

“¥R”“Ij” refers to the remainder of p, .

The second method allows one to refer to parameters p;, pa, - pa
and their respective parts directly by referring to the dummy parameters
written on the DEFIN statement. The DEFIN statement has the form:

DEFIN op dums,- - -dumj,- - - ,dum,

dum; may be any string of six or fewer alphanumerics. In writing the
macro definition following a DEFIN statement, one may refer to
parameters and their parts as follows:

“LOC™ refers to po
“ZOP” refers to ;m

“x()“dum;" refers to the operator of p;
“dum;” refers to the body of p;

PROCESS 111 2471

“xS7dum;” refers to the strip of p;
“¥R7‘dum;” refers to the remainder of p; .

If by using an expression available for referring to parameters one
refers to a parameter that does not exist, then that expression refers
to the symbols MSP (missing parameter).

All the above ways of referring to parameters are called parameter
references (pr). Parameter references can be concatenated with each
other and can be concatenated with alphanumeries. (Alphanumerics
exclude special symbols.)

T A concatenated parameter reference (epr) is defined to be of the
form:

x or {(pr) or (epr){cpr)*

in which z is any string of alphanumerics.

T A (pr) refers to a parameter. A string of alphanumeries x refers to .
A concatenation of 2’s and (pr)’s refers to the concatenation of the sym-
bols to which the 2’s and (pr)’s refer (referents). Generally, the con-
catenation of any set of expressions refers to the concatenation of the
referents of the individual expressions.

4.2 Numerical Indexing

There are three “numerical indices,” NO,M1,M2, available for use
in writing maero definitions. These indices refer to numbers, A numerical
index may be set to a number with the macro order *SFI. IFor example:

*SFT r, MO, 0,

This sets index MO to ny with a limit of n., where both n; and n, are
positive integers. If n, < ny, the index will not be set and a jump forward
to & will be executed. There is an associated macro order *AFI. It is
written:

*AF1 x,MO,n

If MO is set to j when this order is encountered, then M0 will be set to
7 + n provided j + n does not exceed the limit established on the last
#*5I'T order that referred to MO, and control jumps back to location x
in the macro; otherwise control passes to the next order.

* This recursive definition states that an r or a (pr) is a (epr) and that any
concatenation of (epr)’s is also a (epr).

T This and any paragraphs similarly marked may be omitted without loss in con-
tinuity by those not interested in the detailed syntax of macro definitions.

2472 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

One may refer to the number to which a numerical index Mj refers
by the expression “Mj”.

t {cnr) is defined to be a concatenation of numerical index references.
A (cmr) is defined to be of the form:

{enr) or {(epr) or {emr){cmr)

{emr) in itself is not significant; it is used as a convenience in a definition
given below.

£.3 Naming Symbol Strings and Parts of Symbol Sirings

A string of alphanumerics may be named and later referred to by this
name. Also, space must be allocated to hold the strings to which the
name refers. One method of naming strings and at the same time allocat-
ing space is accomplished outside all macro definitions with the NAME
statement:

NAME nam siz,strg

nam is the name of the string, siz is the maximum-length string to which
this name refers, and strg is an initial string of symbols to which nam
refers. The name of a string is limited to six characters.

A method of renaming strings is with the macro order *ST. For ex-

ample,
ST 5P

gives the string s the name p previously assigned by a NAME state-
ment. Later the string s may be referred to by writing [p].

t A string reference (sr) is defined to be of the form [(nr)] in which
(nr) is defined to be of the form:

{emr) or {sr) or {cmr){sr) or (sr){cmr)

An (sr) of form [(nr)] refers to the string whose name is the referent of
(nr) as defined by using the NAME or «8T statements. If the referent
of {nr) is not such a name, then [(nr)] refers to UN (undefined name).

4.4 Special Funclions

Sinee it is expected that the parameters of a macro call will in many
instances be the names of temporary storage elements such as items,
registers, full words, and so on, means are provided for referring to
properties of storage elements. These properties are:

(1) Type: [T.(ur)] refers to different characters, depending on what
{(nr) refers to.

PROCESS III 2473

If (nr) refers to: [T. (nr)] refers to:
an item S
a full word F
a number W
a register item P
a register R
none of the above UN

(2) Ttem properties: if (ur) refers to an item, then [S.(ur)], [D.(nr)],
[M.(nr)], refer respectively to the size, displacement and mask of this
item. If (nr) is not an item all three expressions refer to UN.

4.5 Reference Expressions

1 A reference expression is a basic element in writing macro definitions.
Recalling the various allowable bracketed expressions (i.e., [{nr)],
[T.(nr)], [S.(ur)], [D.(nr)], [M.(nr)]), let {(csr) be any concatenation of
these, or null. A reference expression (r) is defined as any concatenation
of (nr)s and (esr)’s. (r) is of the form:

(nr) or (esr) or (r)(r)
t A legitimate reference expression always refers to some string of
symbols. The interpretation of this string of symbols in turn depends
on its position within the macro string.

4.6 Conditional

It has been shown how one can refer to parameters and various func-
tions of parameters. Any such reference has been called a ‘“reference
expression,” and has been symbolized by (r). The problem now is to
produce code that depends upon these parameter functions. To do this
some way of specifying decisions is required. The conditional is provided
for this purpose.

One of the forms of the conditional is:

SC; q1, g2, N1, n2s

Syntactically, ¢, g1, ¢, 1, no are all of the form (r). A legitimate ¢ re-
fers to the letters C, E, G, or L and indicates the type of comparison to
be made. ¢, and ¢ refer either to strings of symbols or numbers that are
to be compared depending on the interpretation of ¢. n, and n, refer to
numbers that indicate how many characters following the conditional
(after the second $) are to be omitted: n, characters if the condition is
met, n, characters if the condition is not met. For the condition indicated

2474 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

by the letter C, the compiler compares the two strings referred to by

qrand ¢ for identity. For the conditions indicated by the letters IS, GG, and

L the compiler compares the two numbers referred to by ¢ and ¢ to

determine if ¢ is respectively equal to, greater than, or less than ¢..
Another conditional is of the form:

$XJ P, M, n"3$

Syntactically, n, and n. are {r)’s, but p must be a parameter reference
(pr). The interpretation of this conditional by the compiler is: if the
parameter referred to by p exists, omit the next n; characters; if not,
omit the next n. characters (after the second §).

Finally there is:

U,n

which means “omit the next n characters.” n is of the form (r).
In general, conditionals may be concatenated with each other and with
reference expressions.

4.7 Form of Orders Used in Writing Macros

A macro definition is composed of a series of orders. The form of
these orders is:

loc op1 P2, D3, ", Dn
or
loc * OP2, P2, Pz, """, Da

loc is an (r) consisting of six or fewer characters; op; is any concatena-
tion of {r)’s and conditionals totaling six or fewer characters in length.
Since six characters do not allow many (r)’s or conditionals for op, , the
second form is available, in which op, is the same as op; except there is
no limit on its length. A parameter p is either a concatenation of (r)’s
and conditionals or of the form op(p,p,--- ,p).

Thus an order used in a macro consists of conditionals which must be
performed, reference expressions which must be interpreted, and opera-
tions which must be performed. The compiler does these things in the
following fixed sequence.

(1) The conditionals are performed in sequence from left to right. A
conditional is performed by:

(a) first interpreting all {r)’s in the conditional (substituting referents
for references) and then,

PROCESS III 2475

(b) certain parts of the order are omitted, depending upon the kind
of conditional and substituted referents.

(2) All {r)’s in that part of the order which remains are now inter-
preted.

(3) The resulting order (called an interpreted order) is performed.
The resulting order is one of four types:

(a) an ESS instruction in the format required of such an instruetion.
If the compiler arrives at one of these in a maero definition, the ESS
instruetion is made part of the compiled object program.

(b) a maero call of the form described in Section 4.1. If the compiler
arrives at one of these it transfers control to the definition of this macro
and begins exeeuting the orders in that definition.

(¢) a maero order. Some of these already have been deseribed,
namely, *SET, *ADV, ST, «SIFI, and *AFI. The remainder of the
macro orders are deseribed below.

(d) a pseudo operation. The compiler exccutes the pseudo operation
just as though it had been part of the input source program (see Section
5.1).

4.8 Additional Macro Orders

The remaining macro orders are all jumps or skips of one sort or
another. Let a be any string of six or fewer alphanumerics, n a number,

*J (]1;) &

. forward
means jump |, o

*JF ouT

) to the location .

means jump out of this macro definition.

*S(g) n

forward
back

forward

means execute the order at location x (back) of this execute order

and then return to the order directly after this execute order.

mean skip () over n orders.

2476 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

In the case of the execute order, the location x must be in the same
definition as the execute order. In the case of the jump or skip orders the
transfer of control can be outside the macro in which the jump or skip
oceurs.

A jump forward to location x in the definition of a macro called MAC
causes the compiler to look for x in MAC, forward of the *JF order. If
x is not found in MAC, the compiler continues to look forward of where
the call for MAC occurred. This process continues until the 2 is found
or the end of the input program is reached. A jump back, *JB, is executed
similarly, except that if PROCESS III gets back to the input source
program without having found an =z, it will not look any further; the
compiler will then process the next order in the source program. The
skip macro orders follow corresponding rules. A detailed example of
how the compiler handles a maecro call is given in Appendix A.2.

V. SOME RELATED DETAILS

There are many features of PROCESS III that have been omitted
for the sake of brevity. However, a few details are mentioned below in
an effort to complete the general facilities of the compiler.

5.1 Pseudo Operations and Outpul Listing

PROCESS III has a variety of pseudo operations. Pseudo operations
are orders to the compiler that cause it either to generate data or to take
some special action. Many of the special actions have to do with print
control of the output listing. Two typical pseudo operations are:

OCT 1000007777777
SPACE 2

The first generates 37 bits of data consisting of the octal number shown;
the second causes two blank lines to be “printed”” on the output listing.
The output listing of the compiler is part of the documentation of the
No. 1 ESS program. The listing contains the symbolic source program
as written by the programmer, and also an octal representation of the
object program. An example is shown in the Appendix, Section A.3.

5.2 Machine Restrictions

An interesting feature of PROCESS IIT is its ability to check for
(and sometimes correct) certain violations in the source program. In
addition to the usual checking performed by an assembler (e.g., unde-

PROCESS III 2477

fined and multidefined symbols), PROCESS III checks for illegal se-
quences of basic order instructions. These sequences, usually couplets or
triplets, are illegal because of timing restrictions of the No. 1 ESS
central control. The compiler either flags the violations or inserts EE
(no operation) instructions to correct the sequence.

5.3 Input and Correction Features

The input to PROCESS III may be either tape or cards; in the case
of cards, two formats are available, symbolic or crunched. Symbolic
card input means that there is a single basic instruction or order or pro-
cedure or pseudo operation per physical card; crunched eard input is
simply a compressed version of the symbolic information, so that more
than one instruction is introduced per physical card. With erunched
input every instruction in the source program is assigned a sequence
number. These sequence numbers may be used by the programmer to
modify his source program conveniently when he needs to recompile.

VI. SUMMARY AND CONCLUSION

A description of PROCESS III, a compiler-assembler for No. 1 ESS,
has been given. The emphasis has been on the factors influencing the
design of the compiler, the built-in PROCESS language and the facili-
ties available for extending the source language.

The approach used in the design of the compiler has proved very
useful, primarily because of the flexibility it has provided. Outstanding
among the merits of this approach is the fact that there now exist several
telephone-oriented procedures in a language understandable to pro-
grammers. This is not to say, however, that PROCESS I1I is the final
answer to a ‘“telephone language.” The authors feel that it is accurate
to say that PROCESS III has laid a solid foundation for a future
PROCESS n.

VII. ACKNOWLEDGMENTS

To acknowledge all contributors to the design and implementation of
a compiler at this late date would be very difficult. The art of designing
compilers has matured considerably in recent years but not so dramat-
ically that one can point to unique clear-cut breakthroughs. A new com-
piler is almost always a few new ideas mixed in with many old ones. So
it is with PROCESS III. Thus the authors single out no specific articles
in the literature — thanks are due to all workers in this field. We should

2478 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

like to mention, however, S. H. Unger, under whose direction a prede-
cessor compiler was built; N. 8. Friedman, who programmed the macro
definition and executive routines; R, E. Archer, who programmed the
Compool and loader facilities; and W. C. Jones, under whose direction
some early work was done on PROCESS II1.

APPENDIX

A.1 Realistic Example of a Telephone Function and Its Program?®-

The example shown in Fig. 1 is a realistic subprogram taken from the
coin charge sequence of No. 1 ESS. It shows the application of the gen-
eral-purpose procedures in programming telephone functions. It also
demonstrates the usefulness of programmer-defined procedures such as
LINK, which links two call registers, and SZREG A, which generates
a program to hunt and reserve an idle call register specified by A. The
accompanying flow chart (see Fig. 2) shows the close correspondence
between the procedures of the PROCESS language and the telephone
functions depicted on the sequence chart.

A.2 Detailed Example of Macro Definition and Macro Call

Definition of a maero named MV:

DEFIN MV ABC Order
*SET ouUT,10,2 1
MK CRST AT 2
XYZ *ADV OUT,I0,1 3
*SF $C,[T.“10”],R,0,2 $ 2,0 4
KM “x8" 107 5
*JB XYZ 6
WweI10” 0,IX 7
*JB XYZ 8
ENDEF
Purpose: to move the contents of A to B to C, --+. A may be an

indexed or unindexed memory location. B may be an indexed or unin-
dexed memory location or a register. Example: assume the macro call is

MV JACK,X,(JILL,Y)

where JACK and JILL are call store locations and X and Y are index
registers.

Upon seeing this call, the compiler goes to the definition of MV. The
steps taken by the compiler in expanding this macro call follow:

PROCESS IIT 2479

\ y

I SAVE RETURN ADDRESST

{

F SEIZE CCR }(F)—-:_'
S, Y y
-) :

INITIALIZE CCR

- — RETURN TO
OVERFLOW

NO " AMA YES

— ~RECORD I T

r | ~ —
SAVE CCR ADDRESS |

; LINK OR CCR [|
' ®_/
F HUNT
GET BIT 2 OF CALL TYPE
(- J NO AMAR \ AMAR /f
AVAILABLE
YES [) -

LINK OR CCR

NO h—l—
. LINK AMAR AFTER ccn
L Z+1 — 2Z

__-I ‘MAF\‘K THE CALL FOR AMA

SAVE BILLING |
F SAVE OR ADDRESS
I OR —ORIGINATING REGISTER
[CCR —COIN CHARGE REGISTER
| CCR ADDRESS —= X I AMA — AUTOMATIC MESSAGE
1 ACCOUNTING
AMAR — AUTOMATIC MESSAGE
rst—:‘r RETURN POINTER ACCOUNTING REGISTER
(F) —FAILURE
(S) —SUCCESS
(SA) — SUCCESS ADDRESS
RETURN
(sA)
Fig. 1 — Subprogram from eoin charge sequence.
(1) it sets I0 to JACK; (order 1)
(2) it produces:
MK JACK (order 2)
(3) it advances 10 to X; (order 3)

(4) it interprets the conditional,
8C,|T.X],R,0,28
of order 4, which results in order 4 being interpreted as

*SF 2

2480 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1964

I PERT €T CAIN CHARGE PR2GRAM

T EXTCRN BREVF2Z, ANSING
9 52X2 MBVE Jy 10
1] SIREG CNC(KY,8REBVFZ
11 XX Lear LeVeS.CNC-14142
12 MBVE e, (T, Ka] B
13 XX ENDL Z20P
T4 TF {RAMA,XTyNE,V.RCCRD NOAMAT
15 MEVE YoTl
16 -0 TAMSING v 00
L7 GOeTI NaAMAL
T8 GEeT o NOAMAL
19 MEVE Tl,Y
20 LINK PRIXT,CCRTY]
21 LINKA AMA[Z),CCRIY)
77 FOVE T, TARAR, YT
23 MAIN AND (CTYP,X),242
24 IF (CICy XV v Es LaPRTZ, L, 21}
25 MBVE IBILL,X), (CHIN,Y)
26 MEVE LT -
27 MEVE YiX
7E SETPT PTT
23 GaeT R {TO,H)
o 30 NEAWAT LINK AR{X), CCRTY]
31 GoeTQ MAIN
0000064 ¥ END -

Fig. 2 — Flow chart for sequence of Fig. 1.

(5) it arrives at order 7, which produces:

WX 0,K
(6) it returns to order 3; (order 8)
(7) it advaneces 10 to (JILL,Y); (order 3)

(8) it interprets the conditional, finding that (JILL,X)
is not a register and skips to order 5;
(9) it produces:

KM JILLY (order 5)

(10) it returns to order 3; (order 6)
(11) it cannot advance I0 any further and therefore

jumps out of the macro definition. (order 3)

A.3 Example of an Output Listing

Fig. 3 is a typical output listing.

Starting on the extreme left, the interpretations of the columns are:

(1) relocatable locations assigned to the object program

(2) a three-character console code corresponding to the operation
part of the instruction

(3) the 37-bit octal representation of the instruction

(4) sequence numbers: each statement in the source program has
such a number

PROCESS III 2481

PART &F Ce¢IN CHARGE PRPGR2M
]

EXTERN BREVF2, AMSIND
7 S2K2 FEVE 7,70
o ococooco 52x2 SYN X
0000000 120 000500 COLS5621) JH TO
8 SIREG CNCIUK), PRAVF2
0000001 010 04004C 00COGCA4 T YASCNCq4J
00€0002 010 CO0040 C000COL T PRCVF2
00C0CG3 75C C3364 0NO0OD000 WK 0, Y
_) 9 XX Leep LeVeS.CNC=14142
0C000014 IF0 SET V.S.CNC-1
oancocol 310 SET 1
0000004 730 00354 0C00OCOT Wi 1
0C0N000S XX SYN Xa
10 NEVE 0, (LKA)
00000C5 042 12021G COC0001 EZEM 1,KA
) T xx ENDL BEP -
0000006 730 03754 00000CO1 Wl V.910,2
© 0000007 43C 07614 000CO0L4 T CWR V.9F0,Z -
000001C 037 000L&66 COCCOOS TCLE xx
¥ IF TRAMA , X) 4 HE 4V RECRD,NBAMA [
0000011 720 00350 0C0GOQIC WL M.RAMA
0000012 350 025642 COCOCIE o MK A RAMA, X, PL
0000013 742 04361 0C0CO0LC ChK V.V.RECRD#E.3
0000014 033 §00146 CO0QCAD TCAU NEAMAL
13 MEVE Yall
UTO00IS 130 00054C 0015622 Ll TI
14 GBeTP {AMSINZ 4 J)
0000014 CIC C40C40 COGCOG2 L AMSING, 5 J
15 Gesle NEAMAL
~ 0000DOLT OL0 G0C040 COCO0040 T NPAMAL —
16 cReT? NEAMAL
UO00020 OIC 000040 U0CO060 T NCARAL
17 MEVE Tl
0000021 300 001400 COI15622 ¥y 1
18 LINK BRIX)4CCRIY)
4T04 T EL] Quco4 -
0000023 005 04G022 0000003 ENTJ COLINK
% 0T000000 WK T, ¥
EXTERN CELINK
13 LINKE KMETTT, CCRUYT o
0000025 202 03501C 00C0COC MB AY4L1,2
Q000024 100 C3440 &C1 T - LW HY4UT, IL,ES
0C00027 720 00350 37777777 WL M.Y4LINK
TO00030 350 C3T1642 COGUTTY L3 K.Y4LINK, Y, PL
0000C31L 132 0306552 005302 M ALY4LINK, Y, EL
~ 0000037 T1Z U34452 COUOC0Z KM K. Y4LTNK, 7, EC
20 MEVE 1s [AMAR, Y]
~TOUU0033 750 U03&% | — WK V.IEL20
0000034 T20 GO350 0400000C WL M. AMAR

Tig. 3 — Typical output listing.

(5) source and object program symbolic statements: the indented
statements were generated by the compiler and were not part of the
source program,

REFERENCES

1. Keister, W., Ketchledge, R. W., and Vaughan, H. E., No. 1 ESS System Or-
ganization and Objectives, B.S.T.J, this issue, p. 1831.
. Harr, J. A., Taylor, F. F., and Ulrich, W., Logical Organization of No. 1 ESS
Central Processor, B.8.T.J., this issue, p. 1845.
3. Harr, J. A., Hoover, Mrs. E. 8., and Smith, R. B., Organization of the No. 1
ESS Stored Program, B.S.T.J., this issue, p. 1923.
4. Carbaugh, D. H., Drew, G. G., Ghiron, H., and Hoover, Mrs. E. 8., No. 1 ESS
Call Processing, B.3.T.J., this issue, p. 2483,

8]

