A Two-Gyro, Gravity-Gradient Satellite
Attitude Control System

By J. A. LEWIS and E. E. ZAJAC
(Manuseript received April 24, 1964)

This article gives the resulls of an analytical and numerical study of a
two-gyro, gravity-oriented communicalions satellite. The principal purpose
of the study was to uncover and solve the analytical problems arising in the
design of passive gravily-gradient attitude control systems. Although the
study was directed al satellite orientation, it 1is felt that many of the tech-
niques developed have general use in the investigation of dynamieal systems.

We consider both small and large motions about the desired earth-pointing
orientation. In the small-motion study, the goal is simultaneous optimization
of the transient response and the forced response to perturbations caused by
orbital eccentricily, magnetic lorques, solar torques, thermal rod bending, and
micrometeorite impact. I'n the large-motion study, we enumerate all possible
equilibrivm positions of the satellite and then consider initial despin after
ingection inlo orbit, inversion of the salellite from ome stable equilibrium
posilion to another by swilching of gyro bias torques, and the decay of transi-
ent motions resulting from large inilial angular rates.

As a specific numerical example, we have treated a 300-1b salellile in a
6000-nm orbit, stabilized by a 60-ft extensible rod with a 20-Ib tip mass,
and by two single-degree-of-freedom gyros, each with an angular momentum
of 10% cgs units. Without a detailed discussion of hardware, it is concluded
that such a system, having a total weight of 50 to 75 pounds including power
supply, will provide a seltling time for small disturbances of less than one
orbit and will hold the antenna pointing error within a few degrees.
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I. INTRODUCTION

It has been known for over two hundred years that the variation in the
gravitational field over the length of an earth satellite generates torques
which tend to keep the axis of minimum inertia of the satellite pointing
toward the earth. In particular, this mechanism keeps one face of the
moon earth-pointing.

Such gravity-gradient orientation of communications satellites is very
attractive because the simplicity of the effect leads to the possibility of
simple attitude control and hence high reliability and long life. On the
other hand, the tiny size of the gravity-gradient torques means formida-
ble mechanization problems, and although Pierce suggested its use as
early as 1955,! gravity-gradient stabilization has been widely held to be
impractical.

However, several recent analytical and hardware studies have resulted
in proposals for practical, gravity-gradient controlled satellites. All the
proposed schemes work on the same principle. Steady-state perturba-
tions, due, for example, to magnetic and solar torques, are kept within
tolerable limits by making the satellite inertia sufficiently large, usually
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with some sort of extensible rod-tip mass combination. Damping of
transient perturbations is provided by connecting the satellite through a
dissipative joint to an “anchor,” that is, to some object that will allow
energy dissipation by virtue of relative motion between itself and the
satellite proper. The anchor may be one or more gyros, as in the schemes
discussed by Ogletree, et al.,>** by Burt,’ and by Scott;® a second rigid
hody, either hinged to the satellite, as proposed by Kamm,” by Paul,
West, Yu, et al.;®-? or a second rigid body at the end of a compliant dumb-
hell as discussed by Paul,!® by Newton,!! and by Fischell and Mobley;!?
or a second, fluid body, as considered by Lewis.'?

In this article we examine a gravity-gradient system anchored by two
gyros. A schematic of the system is shown in Fig. 1, where also is indi-
cated the standard nomenclature for axes: the pitch axis is normal to the
orbit plane, the yaw axis is along the local vertical, and the roll axis is
along the orbital track. Each gyro rotor is contained in a gimbal can (not
shown in the schematic), mounted on bearings, and immersed in a fluid
hath. Thus, fluid shear produces the required energy dissipation. The
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Fig. 1 — Schematic of two-gyro, roll-vee configuration.
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gyros are single-axis gyros: that is, the spin vectors are constrained by
the gimbal bearings to lie in a single plane within the satellite. In the
position shown, this is the pitch-yaw plane.

Because of the small physical dimensions of the gyro “anchor,” this
system has the virtue that the dissipative joints can be sealed within
the satellite; the joints are not exposed to the space environment when
the satellite is operating. Also, the required inertia augmentation is
particularly simple: only a single extended rod-tip mass.

A simple explanation of how single-axis gyros damp out an arbitrary
motion can be given in terms of the rate or torque-seeking property of
gyros. A torque applied to a gyro will cause it to precess. By conservation
of angular momentum, the precession will try to line up the gyro spin
vector with the applied torque or angular rate vector.

Bearing this in mind, assume that the satellite is in orbit in its earth-
pointing orientation. It then is rotating at the rate of one revolution per
orbit about the piteh axis. If the gyro gimbals were free, this pitch rate
would cause the spin veetors to align themselves in the direction of the
piteh axis. However, in order to obtain three-axis damping, the spin
veetors are held in a vee position by equal and opposite constant torques
(see Fig. 1), applied to the gimbals.

Now, if the satellite is disturbed about the pitch axis, both gyros seek
the disturbance, resulting in a scissoring motion of the gimbals relative
to the satellite, damping out the piteh disturbance. A yaw disturbance
causes an in-phase motion of the gyros and again energy is dissipated.
Since the gyro spin vectors are constrained to move in the pitch-yaw
plane, they are constrained from moving toward a disturbance about the
roll axis. However, the roll and yaw motions are coupled. Hence in this
case the gyros again try to line up with the yaw axis. Thus three-axis
damping is obtained.

Our work continues a study carried out by the Instrumentation Lab-
oratory®® of the Massachusetts Institute of Technology, under the
sponsorship of Bell Telephone Laboratories, in which the particular two-
gyro configuration studied here was shown to be the most promising of
several possible gyro-anchored systems. Our primary objective, however,
was not to design a specific attitude control system, which in any case
would have to be integrated with the design of a specific satellite, but
rather to develop general guiding prineiples and analytical and numerical
techniques useful in such a design problem. Thus, we consider only the
broad hardware questions that affect the analysis — for example, the
design of extensible rods necessary to augment satellite inertias — but
we do not go into the detail of specific gyro hardware, as would be re-
quired in a complete design.
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The organization of the article is as follows. Section II, for the general
reader, summarizes the results of our study in some detail in nonmathe-
matical terms. Following some general remarks about inertia levels, ap-
plicable to all gravity-gradient systems, we more fully describe the two-
gyro system studied. We then summarize the system’s small-angle per-
formance, stressing, in particular, the performance obtained when the
inertia of the satellite is augmented by the erection of a single rod. Next
we discuss the effects of the main small-angle perturbations: orbital ec-
centricity, magnetic torques, solar radiation pressure, micrometeorite
bombardment and thermal rod bending. Finally, we consider large-angle
motions, starting with initial despin upon orbital injection by a combina-
tion of rod erection and uncaging of the gyros. In the discussions of large-
angle motions, we indicate that there may exist equilibrium positions
far removed from the desired, earth-pointing position; we also show how
these may be avoided.

Gravity-gradient systems are bistable: that is, associated with a sta-
ble, earth-pointing orientation is a second, equally stable orientation
obtained by a 180° rotation about the pitch axis. In the concluding sec-
tion of Section II we describe how the satellite can be flipped from one
stable orientation to the other by means of a torque pulse applied to the
gimbals.

The results pertaining to the two-gyro system given in Section 11 serve
as an outline of the analysis required for the design of any gravity-gradi-
ent attitude control system. They also serve as an introduction to the
theory in Sections 11T and IV. In these parts we present several results
and methods that we feel apply generally to the design of many-parame-
ter, linear dynamical systems (see Section IIT) and to large-angle mo-
tions of a satellite (see Section IV).

Specifically, in Section 11T we develop various bounds on system set-
tling time, and then show how series expansions in terms of system
parameters can be used to explore the behavior of a linear system as a
function of its parameters. We next describe a computer program based
on the Routh criteria, which allows very rapid computation of system
response as a funetion of system parameters. By these means, we are able
to survey system behavior over the entire range of six system parameters.

In Section IV, we develop the equations of large-angle motion, includ-
ing the case of variable inertia, oceurring during rod erection. Here we
stress the superiority of direction cosines or Euler parameters as com-
pared to Tuler angles in satellite kinematies, both from the point of view
of computing speed and of ease in visualizing satellite motions. We then
give the analysis of equilibrium positions, despin, and flipping or in-
version.
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II. SYSTEM DESCRIPTION AND SUMMARY OF RESULTS

2.1 Gravity-Gradient Attitude Control Systems

All gravity-gradient systems have one feature in common, namely the
low magnitude of the gravity-gradient restoring torque, of the order of
I, where [ is a typical satellite moment of inertia and @ is the orbital
rate. The level of this torque is the main factor determining the steady-
state response to constant and periodic disturbing torques. In particular,
in the case of a typical communications satellite at an altitude of 6000
nm, the magnitude of the torque exerted by the geomagnetic field on the
residual magnetic moment of the satellite is such that the satellite inertia
must be increased by a factor of about forty to reduce the steady-state
response to an acceptable level.

The low level of the gravity-gradient restoring torque also implies
low system natural frequencies, of the order of the orbital rate Q. Corre-
sponding to this low natural frequency is a minimum 1/e settling time
of the order of a fraction of an orbit. Zajac!* has shown that all the sys-
tems mentioned above have pitch settling times no less than about one
tenth of an orbit. This, of course, is & lower bound on minimum settling
time for three-axis motion.

Based on these simple considerations, we would expect that all well
designed gravity-gradient attitude control systems would have about the
same transient and steady-state performance, that they would all have
settling times of a fraction of an orbit, and that they would all require
some form of inertia augmentation to obtain acceptable steady-state
response. Thus the choice of a particular gravity-gradient attitude con-
trol system should be based mainly on ease of mechanization and long-
time reliability, rather than system performance.

In the present case, at least, requirements on the large-angle per-
formance of the system (despin, satellite inversion, ete.) preclude choos-
ing the system parameters to give minimum settling time, although the
settling time is not greatly increased by meeting the other requirements.
It is likely that such a compromise would be necessary for optimum over-
all performance of any gravity-gradient system, so that the minimum
settling time is of academic interest only. Of more importance is the
variation of system performance with variation in system parameters.
We have thus taken the view that a broad survey of performance as a
funetion of system parameters is of more interest than an optimization
based on a single measure of system performance, e.g., settling time.

In the following sections we deseribe the configuration and perform-
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ance of the two-gyro system in detail. The interested reader may find the
corresponding theoretical analyses in Sections III and IV.

2.2 System Descriplion

Fig. 2 shows the more important features of the typical single-axis
gyro indicated schematically in Fig. 1. The basic element of the gyro is
a rotor which spins rapidly about the spin axis and generates a certain
angular momentum vector.

The spinning rotor element is enclosed in a sealed gimbal can, mounted
on bearings so that it can rotate about a single axis, the gimbal or output
axis. A fluid-filled gap between gimbal can and gyro case provides damp-
ing as the gimbal rotates.

In the system considered, the two gyros have their gimbal axes along
the satellite roll axis. The gyro spin axes are disposed in a vee configura-
tion around the satellite pitch axis, which is also the axis about which the
satellite rotates to remain aligned with the local vertical as it traverses its
orbit. To distinguish this arrangement from other possible two-gyro con-
figurations > it will be called a ‘“‘roll-vee” configuration.

In the vee arrangement, torques must be supplied constantly to change
the direction of the gyro angular momentum vectors, as the satellite
traverses its orbit. These torques, constant in magnitude and exerted
ahout the gimbal axes, are provided by a constant electrical signal into
electromechanical torquers on the gimbal axes.

It is also possible to inject a signal into the torquers on ground com-

—_—

GIMBAL
AXIS

|
TORQUER

PICKOFF

Tig. 2 — Single-axis gyro.
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mand. This can be used to invert the satellite if it should get into an un-
desirable equilibrium position. This possibility is discussed in the sequel.

In order to spin the gyro motor, current must be brought into the gim-
bal can. This is done by means of highly compliant flex leads. In the pres-
ent application, the flex-lead spring constants, exerting a small restoring
torque around the gimbal axis, can be neglected. However, for a typical
communications satellite without inertia augmentation, the flex-lead
torques can be of the same order as the gravity-gradient torques.

In any case the gimbal excursions must be limited by suitably placed
stops. The location and nature of these stops is an important design con-
sideration. In the first place, undesired equilibrium positions, with the
gyro gimbals against the stops, may occur if the stop positions are not
carefully chosen. In the second place, large tumbling rates may force the
gimbals against the stops, where they are capable of only limited relative
motion, depending on the stop elasticity. In both cases the available
damping may be greatly reduced. The equilibrium positions may be
dealt with analytically, while the large motion may be studied numeri-
cally with the stops simulated by hardening springs.

2.2.1 Weight and Power Requirements

For the attitude control of a typical communications satellite in a
6000-nm altitude orbit, we require two single-axis gyros, each with a
rotor angular momentum of about 10° egs units, weighing about 10
pounds and requiring from 7 to 10 watts power to drive the rotor motor.
In addition we require some sort of inertia augmentation which we shall
assume is supplied by a single extensible 60-foot rod of the STEM
(self-storing tubular extensible member) type, designed and developed
by DeHavilland Aircraft of Canada, Ltd., and described in detail in
Ref. 8, together with a 20-pound tip mass, which also serves as the tape
storage drum. We then have the attitude control system weight break-
down given below:

2 10° cm-gm-sec gyros 20 lbs
1 tip mass 20 1lbs
1 extensible rod 4 1Ibs
gyro power supply
(2 1bs of solar cells/watt) 40 lbs
total 84 Ibs

We have assumed that the satellite proper is a four-foot diameter sphere,
weighing 300 pounds, with a moment of inertia of 20 slug-ft*.

It is believed that the above estimates are quite conservative and sub-
ject to considerable reduction. The power is used to maintain the gyro
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rotor speed constant mainly against bearing drag. In a zero-g environ-
ment the bearing drag might be substantially reduced. In any case there
is probably a trade-off between gyro life, requiring heavily lubricated
bearings, and minimum rotor power, requiring light lubrication.

The rod length is chosen to increase the satellite pitch and roll inertias
from 20 to 2000 slug-ft2. This inertia augmentation sufficiently despins
the satellite from currently estimated injection rates of 0.5-1.0 rpm to
cause capture by the gravity-gradient field. The required inertia aug-
mentation varies roughly linearly with initial injection rates (see Section
2.4.1). With a sufficiently small injection rate, the augmented inertia
could be reduced to the 700 slug-ft? level required to counter magnetic
torques (see Section 2.3.4.1). Such a reduection in inertia would mean
smaller gyros, and, again, less power.

2.3 Small-Angle Performance

In order to study the small-angle transient and steady-state response
of the roll-vee gyro attitude control system, extensive tables giving decay
rates, response to orbital eccentricity, and response to periodic torques
at zero, one, and two times orbital frequency @ as functions of the system
parameters were produced by an IBM 7090 computer in a running time
of 0.04 hour by a procedure outlined in Section III. T'igs. 3 through 15
summarize this broad survey. For each pair of inertia ratios, B/A4, C/A4,

/Ts =10RBIT
10357 0.58 0.65 0.59 0.63 0.78 ]' 1.02 1.16 270 6.4
: b
7/
0.350 7/
. 4
ool 0.51 0.50 0.73 0.78 0.99 1.34 1.61 2.53
. Vil
V4
//
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e
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0.5 1 1 1 1 1 | | |
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Fig. 3 — Asymptotic settling time in orbits (reduction of 1/e).
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where A,B,C, are the satellite pitch, roll, and yaw moments of inertia,
satisfying the inequalities

A2B=2C, B+CzA4,

values of gyro parameters were chosen from these tables to minimize the
asymptotic settling time, i.e., the time in which the most lightly damped
mode of motion is reduced by 1/e. Fig. 3 shows the corresponding
settling times, while Figs. 4 and 5 give the gyro dimensionless parame-
ters

h = (H/AQ) cos a, W= (H/Cp) cos e,

where « is the vee half-opening angle, H the gyro angular momentum,
and C'p the gyro damping constant for both gyros. Since the small roll-
yaw motion depends only on H in the form H cos «, the above is a con-
venient choice of parameterization. In all cases, except those indicated,
the best value of @ was 60° at least over the relatively coarse grid of
Ah = 0.25, AR’ = 0.25 and Aa = 20° used in the tables.

Figs. 6 through 15 give the steady-state response to an orbit eccen-
tricity ¢ = 0.01 and to periodic torques of amplitude 0.01 A’ for the
same values of gyro parameters. Note that the eccentricity response when
¢ = 0.01 is of the order of 1° over the entire range of inertia ratios, hav-
ing a maximum value of less than 3°. Both the pitch offset, due to a con-
stant pitch torque, and the roll amplitude, due to a periodic roll torque
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Fig. 4 — Gyro parameter = H cosa/AQ.
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Iig. 5 — Gyro parameter A' = H cos «/Cp .

at orbital frequency, depend only on the satellite inertias, being given in
radians by the simple relations

lgelo= M/3(B — (WY, || = M/3(A — O,

for a torque of amplitude M. Similarly, for torques at frequency w >> Q,
the pitch, roll, and yaw amplitudes tend to the values M/Aw*, M/Bd’,
M /(' again independent of the gyro parameters.
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Fig. 6 — Pitch amplitude (degrees) for eccentricity e = 0.01 at orbital frequency.
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2.3.1 The Minimum Settling Time

Fig. 7 — Piteh offset (degrees) for constant pitch torque 0.01A0%

These plots do not show the values of inertia ratios and gyro parame-
ters which yield the smallest settling time. A search over a finer grid of
parameter values gives a minimum value of settling time of 0.332 orbits,
attained for B/A = 0.925,C/A = 0.175, h = 0.260, b’ = 0.688, o = (4°.
To attain this value, a slightly negative gimbal spring K = —0.15 HQ
cos & must be used. A negative spring constant may be realized by a sim-
ple feedback circuit between gimbal pickoff and gimbal torquer. This
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Fig. 8 — Roll offset (degrees) for constant roll torque 0.01AQ2,
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Fig. 9 — Yaw offset (degrees) for constant yaw torque 0.01AQ%

minimum settling time is useful as a lower bound, but of more practical
interest is the broad range of system parameters over which settling
times of less than one orbit can be obtained.

2.3.2 The Spindle

The figures also do not give performance values for a “dumbbell” or
“gpindle,” i.e., a body for which A = B > C. This case is of particular

1.0 0.40 0.38 0.38 0.40 0.39 0.37 0.45 0.41 0.63 0.51
0.9k 0.51 0.63 0.39 0.37 0.34 0.31 0.37 0.65
0.8l 0.75 0.79 0.34 0.31 0.37 0.65
<L S
@
s 5 .62 X
0.7 0.72 0.59 0.6 0.65
o6l 062|049
0.5 1 ! 1 1 1 I ] 1
o 04 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C/A

Fig. 10 — Pitch amplitude (degrees) for piteh torque amplitude 0.01AQ* at
orbital frequency.
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Fig. 11 — Roll amplitude (degrees) for roll torque amplitude 0.01AQ?* at orbital
frequency.

interest, since it may be realized by the erection of a single rod-tip mass
combination. To deseribe the spindle, as well as to give a sample of the
tables made by the computer, we reproduce the computer output for
B/A =1,C/A = 0.01 in Table I. Since the IBM printer has only a
limited range of symbols, the following replacements were used:

BB =b=B/A, CC=c=C/A,
KAPPA = « = 1 + [K/(HQ cos a)),

where K is the gimbal spring constant, so that x = 1 means zero gimbal
spring constant,

HH =&, HP =V,
ALPHA = a.

The remaining quantities give the transient and steady-state responses.
In particular, PO, P1, P2, R0, R1, R2, YO, Y1, Y2 are the pitch, roll,
and yaw amplitudes in degrees for pitch, roll, and yaw torques of ampli-
tude 0.01 A at zero, one, and two times orbital frequeney. Note that
PO and R1 are constant, since they depend only on b and ¢, while R0,YO
are fixed for fixed values of h. The quantity E is the pitch amplitude in
degrees at orbital frequency for an orbit eccentricity e = 0.01. Finally
the quantities labeled “QUINT” and “C” give the real parts of smallest
magnitude of the characteristic roots of the roll-yaw quintic and the
pitch cubic in terms of the orbital rate Q. The smallest of these values
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1.0 0.75 1.04 112 115 .24 1.31 1.55 1.66 2.1 3.31
rd
e
o9k 1.61 1.93 .08 1.19 1.28 1.36 1.67 1.87
o8l 1.63 1.95 1.12 1.23 1.39 1.61
<
~
1]
0.7k 1.66 1.99 231 1.30
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Fig. 12— Yaw amplitude (degrees) for yaw torque amplitude 0.01A0Q? at
orbital frequency.

D (say) determines the asymptotic settling time T, = 1/(2 xD). Inspec-
tion of the table reveals that, for h = 0.750, #' = 1.25, « = 40°, we have
the smallest settling time, for QUINT = —0.340(2), —0.657(2), i.e., two
roots with real parts —0.340 and two roots with real part —0.657, and
one negative real root (not listed ) of larger magnitude. Similarly, in this
case (' = —0.279(2), i.e., two roots of the cubic with real part —0.279
and one unlisted negative real root of larger magnitude. The asymptotic

1 0020 0.09  0.09 0.11 0.11 0.10 0.13 0.2 0.5 0.4
.
ool -~ o9 0.7 0.1 0.10 040 0.09 |o.11 0.45
S/

ol 0.16 0.15 0.10 0.09 0.11 0.145
<
~
@ 0.14 0.43 0.14 0.5

0.7}

\\
.14 13
0.6l 0.1 o}
0.5 i ] 1 ! | 1 1 1
0 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c/A

Fig. 13 — Pitch amplitude (degrees) for pitech torque amplitude 0.01AQ? at
twice orbital frequency.
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1.0 0.27 0.35 0.38 0.35 0.38 0.36 0.35 0.29 0.26 0.22
o8l 0.45 0.67 0.31 0.38 0.41 0.38 0.36 0.29
0.8k 043 0.78 0.33 0.42 0.49 0.46
3
.47 . B 0.43
o7k 0. 0.92 1.38
o6l 0.41 0.95
0.5 1 1 1 I 1 1 ]
Q [sN] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C/A

Fig. 14 — Roll amplitude (degrees) for roll torque amplitude 0.01AQ? at twice

orbital frequency.

settling time is then given by 1/[(27) (0.279)] = 0.57 orbits. Despite
the coarseness of the table, this is very close to the minimum value of
0.50 orbits for a spindle, attained for h = 0.77, b’ = 1.29, a = 38°. This
minimum value may be caleculated by an asymptotic expansion in the
large quantity h/c = (H cos a)/CS.

Let us now attempt a specific “design.” This design must be regarded

1.0 Q.12 0.12 0.09 0.4 0.18 0.21 0.28 0.24 0.25 0.21
0.0 0.32 0.14 0.07 0.1 017 0.20 0.25 0.22
o.8l- 0.27 0.13 0.07 0.10 0.20 0.24
P d
o
0.7 0.24 0.13 0.34 0.09
0.8}~ 0.2 0.10
0.5 | 1 | | | | 1 I
0 [sR] 0.2 0.3 0.4 0.5 0.6 0.7 (o] 0.9 1.0
Cc/A

Fig. 15 — Yaw amplitude (degrees) for yaw torque amplitude 0.01A0? at twice

orbital frequency.
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as illustrative, rather than definitive, since a real design must take into
account the fine details of gyro hardware as well as requirements imposed
by the use of the satellite in an actual communiecations system. For ex-
ample, it is not at all clear what limits on maximum settling time would
he imposed by system requirements. We have tentatively set this maxi-
mum settling time at one orbit.

2.3.3 Transient Response for a Spindle.

Tig. 16 shows the asymptotie settling time in orbits as a function of
the dimensionless gyro angular momentum H/AQ for o = 40°) &' = 1.25
and for @« = 60° A’ = 1.00. The former gives a minimum settling time
very near the optimum value for a spindle for H/AQ nearly unity, but
varies more rapidly with H/AQ than does the other system. Also, we are
particularly interested in large values of H/AQ—i.e., H/AQ > 2—since
we propose to use the gyros as inertia wheels in the initial despin of the
satellite after injection into orbit. In this case the second system gives a
considerably smaller settling time (0.85 orbits, compared with 1 orbit,
at H/AQ = 2). We may actually increase H/AQ to about 2.4 in this case
and stay within the maximum settling time of 1 orbit. Undoubtedly, by
trimming the values of « and &', we may increase H/AQ even more, but,
sinee this is intended to be an illustrative design, we do not consider
these questions further here; mnstead, we simply take as our ‘“design”
a = G6G0°% A =h =100 (H/AQ = 2.00). In the illustrative examples of
the sequel, these parameter values will be assumed. From the table, they
yield

QUINT = —0.189(2), —1.318(2),
= —0.190(2).

Giiven the real parts of 4 roots of the roll-yaw quintic and 2 roots of
the pitch cubie, it is a simple matter to ecalculate all the characteristic
roots completely, especially for a spindle. In the present case we find
solutions of the form

_ sin i _
e 0.190¢ (0.6452[), e ﬁ.ﬁzﬂl,
cos

for the pitech motion, and

—o.0 SiD —1.320¢ SN
¢ (L40Q0), ot

. (0.5391), )
cos o
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Fig. 16 — Asymptotic settling time in orbits versus gyro angular momentum.

for the roll-yaw motion. Note that the period of the oscillatory solutions
is comparable to the orbital period, as we would expect, and that both
motions have rapidly damped exponential solutions. The latter feature,
typical of spindle-shaped bodies, causes difficulties in numeriecal integra-
tion of the differential equations, both for small and large motion, for
it implies that derivatives may be very much larger than the dependent
variable itself.

2.3.3.1 Micromeleorite Impact. One source of transient disturbance is
the angular momentum imparted by micrometeorite impact. It was
estimated in Ref. 8 that for a satellite of comparable inertia level, im-
pacts producing offsets greater than 5° would occur every two years and
impacts large enough to tumble the satellite every 23 years, on the aver-
age. A more recent Studyz‘i of the present two-gyro system indicates
similar times if Whipple’s 1958 micrometeorite data are used. For
Whipple’s 1963 data, the corresponding 5° and tumbling times are 40
years and 1000 years. From a systems point of view, the low frequency
of occurrence of these disturbances suggests that a settling time of 1
orbit is quite adequate.
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2.3.4 Sleady-State Response

Disturbances producing constant or periodie pointing errors may be
classified as either kinematic or dynamie. The response to the former, of
which orbit eccentricity is a typical example, is essentially independent
of satellite inertia; the response to the latter type of disturbance may
be reduced simply by increasing the level of satellite inertia to a suitable
value. The kinematic response limits the minimum attainable pointing
error; the dynamic response to given disturbing torques sets the level
of satellite inertia.

In the case of the spindle, the table yields an eccentricity response
amplitude at orbital frequency of £ = 1.81° for an orbit eccentricity
e = 0.01. We also find the steady-state response amplitudes due to
torque amplitudes of 0.0149° given by

PO = 0.19°, Pl = 0.187, P2 = 0.05°

RO = 0.14°, R1 = 0.19°, R2 = 0.17°,
Y0 = 0.29°, Y1 = 0.56° Y2 = 0.09°

We are particularly interested in the pitch offset PO, due to a constant
pitch torque, and the roll amplitude R1, due to a roll torque at orbital
frequency. Both of these are independent of gyro parameters and equal
in the case of a spindle. Together with a given disturbing torque, they
serve to set the satellite inertia level.

2.3.4.1 Magnetic Torque — Satellite Inertia Level. In the case of a
communications satellite, one of the principal disturbing torques is the
torque exerted by the geomagnetic field on the residual magnetic mo-
ment of the satellite. It has been estimated in Ref. 8 that this torque
might be as large as 5 X 107° ft-1b for a satellite like the Telstar satellite
at an altitude of G000 nm. At this altitude @ = 2.73 X 107" rad/sec
(~1 rad/hr). Because of the steady rotation of the earth-pointing
satellite, this torque does not have a constant pitch eomponent, but it
will have a roll component at orbital frequency. Thus R1 is the response
amplitude of interest. To make R1 equal to the eccentricity response of
1.81° requires a satellite pitech moment of inertia A such that AQ” is ten
times the above torque, yielding 4 = 670 slug-ft°. Since a typical
moment of inertia for a satellite somewhat larger than the Telstar
satellite is 20 slug-ft*, this calculation indicates that some sort of inertia
augmentation is required. We shall assume that the satellite proper has
equal moments of inertia Ay = By = 'y = 20 slug-ft’ and that the pitch
and roll moments of inertia are increased to 2000 slug-ft* by the erection
of a single 60-ft extensible rod and a tip mass of 20 pounds. As indicated
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in Section 2.2.1, we make the inertia somewhat larger than the minimum
required to counter magnetic torque in order that rod erection may be
used for satellite despin.

2.3.4.2 Solar Radiation Pressure. When rods are erected to augment the
satellite inertia, the perturbing torque due to incident solar radiation is
in general increased, but not at the same rate as the inertia, if a thin rod
and a dense tip mass are used. To give some idea of the order of mag-
nitude of this torque, let us consider a 2-foot radius, 300-pound satellite,
joined to a 0.2-foot radius, 20-pound tip mass by a 58-foot-long, 0.04-
foot diameter rod. This yields a maximum solar torque of about 2 X 10-°
ft-1b (0.0075 A2 for A = 2000 slug-ft*) around the center of mass of the
system, which lies about 4 feet from the center of the satellite proper.
This low torque is the result of a partial balance between the resultant
force on the satellite and the resultant force on the rod, both yielding
torques of the order of 5 X 10~° ft-1b (0.019 AQ*). Even using this figure,
the deflection due to solar pressure will be no larger than that due to
magnetic torque. Thus such a satellite need not be especially designed to
balance out solar torques.

2.3.4.3 Bending Due to Solar Heating. In Ref. 8 the bending of an ex-
tensible rod of the STEM type, due to differential solar heating, was
analyzed. Further unpublished work by P. Hrycak and by J. G. Eng-
strom at Bell Telephone Laboratories leads to the formula

d/L = (L/4r)raT/[« + 4 4 168/3],

for the deflection d of a rod of length L, radius », and expansion coeffi-
cient «, where

Ty = (aDS/"reDU’)t?
wkhTo/r°a0S, B = efen,

with a; and e the rod external absorptivity and emissivity, e; the rod
internal emissivity, ¢ the Stefan-Boltzmann constant, S the flux of
solar radiation through unit area in unit time, & the rod thermal con-
ductivity, and h the rod wall thickness. The dimensionless quantity «
gives the ratio between heat transferred by conduction and by ra-
diation. Typieal values of the above quantities are:

= 60 ft, r=0021ft, h=2xX10"ft,
442 Btu/ft*hr, o = 171 X 107" Btu/ft>hr-(°R)*,
- = 65 Btu/ft-hr-°F,  a = 107°/°F,

ay = 0.67, Cop = €; = 0.33,

K

Il

L
S
k
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the last five values being appropriate for beryllium copper. In this case
Ty = 635°R, x = 219, 8 = 1, and d/L = 0.0656. Note that in this case
& 3> 1, so that conduection effects dominate. Unless 8 >> 1, i.e., the out-
side of the rod is highly reflecting and the inside “black,” we may use
the simpler formula

d/L = (L/4r)(ar'aoS/kh),

obtained by neglecting the remaining terms in the denominator of the
previous formula in comparison with «. In the present case this yields
d/L = 0.0684, compared with the more exact value of 0.0656.

The above displacement d is the displacement of the tip mass at the
end of the rod and hence produces a corresponding rotation of the yaw
principal axis of inertia through an angle of order d/L = 0.0656 = 3.7°
and an antenna pointing error of the same size. Note that this angle
increases linearly with L, so that thermal bending sets an upper limit
on the length of a given type of rod which may be used for inertia aug-
mentation. In observations of the Applied Physiecs Laboratory 1963
22A satellite,'” thermal bending manifested itself apparently as a high-
frequency oscillation of the satellite’s attitude, attributed to the rapid
heating of an extensible rod on passage from shadow into sunlight,

2.4 Large-Angle Motion

We shall discuss various large-angle motions of the gravity-oriented,
gyro-stabilized satellite in order of their oceurrence. First we consider the
injection, despin, and capture of the satellite in orbit and the equilibrium
positions into which it may settle. Next we discuss the use of the gyros
to flip the satellite in case it settles into the inverted equilibrium position.
Finally we report the results of computer studies of various large motions.

2.4.1 Salellite Despin

We assume that the satellite is injected into a nearly eireular, G000-nm
orbit with an initial spin rate of less than 1 rpm around an arbitrary axis.
After injection, erection of a single 60-foot rod with a 20-pound tip mass
then inereases the moment of inertia around axes normal to the rod from
20 slug-ft* to 2000 slug-ft* and decreases the spin rate around these axes
by a eorresponding factor, e.g., from 250 rpo (revolutions per orbit) to 2
rpo. The eomponent of spin around the rod axis is, of course, unaffected
by rod erection. This component of spin is removed by uncaging the
gyros from their nominal equilibrium position, in which they have a
zero net component of angular momentum around the rod axis (the
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body yaw axis) and allowing them to precess toward the spin rate vector.
The net change of yaw angular momentum due to this precession is of
the order of the gyro angular momentum H = 2 AQ, where A is the final
moment of inertia (2000 slug-ft2) around the body pitch and roll axes
normal to the rod, and the angular momentum due to the initial spin
around the rod axis is 250 €2 = 250 AQ = 2.5 AQ, of the same order of
magnitude. Note that this latter despin is in proportion to the difference
of angular momenta, rather than their ratio, so that we might expect
difficulties with the small differences of large numbers, leaving us with a
sizeable angular velocity around the body yaw axis. However, the yaw
component of angular velocity rapidly settles out; it is the yaw angular
momentum, rather than the yaw angular velocity, which is of impor-
tance.

This is shown in Iligs. 17-18 where, for the design of Section 2.3.2,
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Fig. 17 — Despin during boom erection.
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Fig. 18 — Despin to capture following boom erection.

yaw, pitch, and roll rate, obtained by a digital computer, are plotted
against time. At { = 0, the satellite was assumed injected into the de-
sired orientation, with gyros at the null position, and with a yaw rate of
250 rpo (approximately 4 rpm). The elapsed time of Fig. 17 is two min-
utes, corresponding to boom erection. In this time, the yaw rate de-
ereases to 20 rpo, while pitch and roll first peak at —12 rpo and —6 rpo
respectively and then decay to —2.5 rpo at the end of boom erection.
Subsequently, as shown in Fig. 18, all three rates decrease to less than 1
rpo at the end of 1 orbit.

2.4.2 Fquilibrium Positions

Four equilibrium positions, in which the satellite is stationary with re-
spect to the rotating local vertical, may be found by inspection. Two of
these, shown schematically in Fig. 19, are the stable roll-vee positions
with the gyro angular momentum vectors making a symmetrical vee
with the orbit pitch axis (normal to the orbit plane), the gyro gimbal
axes along the orbit roll axis (tangent to the orbit track), and the rod
along the local vertical. The satellite antenna in this case is either di-
rected toward the earth or away from the earth. We diseuss the inversion
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Fig. 19 — Equilibrium positions, stable roll-vee.

of the satellite from the latter position in the sequel. Two other equi-
librium positions are yaw-vee positions, Fig. 20, with the gimbal axes
along the orbit yaw axis, i.e., the local vertical, and the gyro angular
momentum vectors again making a symmetrical vee with the orbit pitch
axis, and the rod along the orbit roll axis. These two positions are un-
stable, however, just as they would be without the gyros.

Other equilibrium positions occur because of the presence of the gyro
gimbal stops. Suppose, for example, that the satellite is rotated around
the local vertical through 180° from its normal operating position. The
gyro gimbal torquers which normally hold the gyro vee open against
the 1 rpo steady precession of the satellite in orbit, now act with the
precession to force the gyro gimbals against stops located near the body
yaw axis. The resulting symmetrical reverse vee configuration (see Fig.
21a) is a possible satellite equilibrium position. Although the satellite
antenna is still directed toward the earth in this position, it is an unde-
sirable equilibrium position, because, when the gyro gimbals are against
stops, their damping capability is severely reduced. This reversed equi-
librium position can be made unstable by moving the gimbal stops in
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\

Fig. 20 — Equilibrium positions, unstable yaw-vee.

(a) (b)

Fig. 21 — Equilibrium positions, reverse-vee and skewed.
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from the yaw axis and by choosing the gyro angular momentum to have
a suitable value, as discussed in Section I'V. The inversion of the position
shown in Fig. 21(a) and the corresponding reversed yaw-vee positions
are unstable as before.

Finally we note the possibility of skewed equilibrium positions, in
which the body principal axes do not coincide with the orbit axes and
both gyro gimbals are against stops (see Fig. 21b). Examples are dis-
cussed in Seection 4.3. Such unsymmetrical equilibrium positions may
be easily eliminated by appropriate choices of stop positions and gyro
angular momentum, but their occurrence suggests the necessity of a
thorough investigation of equilibrium positions for any attitude control
system, especially one in which constraints due to stops are present.
The investigation of equilibrium positions also may serve as a guide in
singling out lightly damped modes of large motion.

2.4.3 Satellite Inversion

As we have already noted, the satellite may be captured, after injec-
tion into orbit, in inverted position with its antenna pointing away from
the earth. With sufficiently large gyros it may be flipped from this posi-
tion by changing the net gyro angular momentum by means of a simple
signal injeeted by ground command into the gyro gimbal torquers. We
simply reverse the polarity of the bias signals into the gyro torquers for
a preset short time interval. The resulting change in angular momentum
is just enough to cause the satellite to tumble, so that it is captured
again in its normal operating position. Fig. 22 shows the result of such
an inversion procedure, where the polarity is switched for § orbit. Here,
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_ Fig. 22 — Error angle versus time during satellite inversion. Torquer polarities
interchanged for 1/2 orbit.
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we have plotted the cosine of the error angle, i.e., the angle between the
body yaw axis and the local vertical.

2.4.4 Computer Runs for Large-Angle Motions

Since only a limited amount of energy may be imparted by initial
displacement of the satellite, computer studies were directed at the ef-
fects of high initial angular velocities. In Figs. 23-26 are shown some
sample results of computer runs for the response of the satellite design
of Section 2.3.2 to high initial rates, applied to the satellite in the stable
roll-vee orientation. These may be regarded as responses to micro-
meteorite impacts, or as representative of initial transients following
inadequate despin.

To save space, we again plot, as a function of time, only the cosine
of the error angle between the yaw axis and the local vertical. However,
the orientation of the satellite and of the gyro spin veetors are shown
every half orbit in computer-made perspective drawings of a rectangular
parallelepiped representing the satellite. The view is along the orbital
track in the rotating, earth-pointing reference frame, so that the local
vertical and normal to the orbital plane are in the plane of the paper.
Plus signs are placed on the faces of the parallelepiped to avoid optical
illusions. The gyro stops are indicated by dots. The reader may find
more details about these drawings, as well as a description of computer-
made movies showing large motions of the two-gyro satellite, in Ref. 15.

As is seen from Tligs. 23-26, rates of the order of 4 rpo about piteh
and roll damp out in about 10 orbits, whereas yaw rates of even 100 rpo
settle out in about 5 orbits. In roll and yaw, the settling time and motion
are similar if negative rather than positive rates are applied. The re-
sponses to positive and negative pitch rates are, however, different in
character. A high positive pitch rate collapses the gyros toward the
pitch axes, and a slowly decaying, essentially single-axis spin ensues. A
high negative pitch rate opens up the gyros and drives them against the
yaw stops. This sends the satellite into a complicated tumbling which
eventually settles out.

If a micrometeorite of linear momentum m strikes the satellite at a
lever arm L from a principal axis with moment of inertia 7, the angular
velocity w imparted around that axis will be w = mL/[. This velocity
varies direetly with L and inversely with 7. For the design of Section
2.3.2, the yaw and pitch or roll lever arms are in the ratio 2/60, while the
inertias are in the ratio 2000/20. A micrometeorite which imparts a pitch
or roll rate of 4Q will impart a vaw rate of (2/60)-(2000/20)-4Q =
13.3Q. Therefore we see from Figs. 23-26 that the two-gyro spindle satel-
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ORBITS

Fig. 23 — Response to +5 rpo roll rate.
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Fig. 26 — Response to 100 rpo yaw rate.

lite is considerably more resistive to micrometeorite impact about yaw
than about pitch and roll.

It is well known that gravity-gradient satellites will tumble if placed
in a sufficiently cccentric orbit. Computer experiments showed that for
the design of Section 2.3.2 this occurred at an eccentricity of about 0.2.
Computer results for e = 0.225 are shown in Fig. 27.

I1I. SMALL-ANGLE MOTION

3.1 Satellite Configuration

To settle the vexing questions of nomenclature and sign convention
once for all, we commence with a brief deseription of the quantities char-
acterizing a gravity-oriented satellite moving in a circular orbit (in-
cluding the effect of small eccentricity later on) at the orbital angular
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veloeity €. A convenient number to remember, to fix the magnitude of
Q, is that an orbit at an altitude of about 6800 statute miles corresponds
to an orbital rate © = 1 radian/hr and an orbital period of 2x or about
6 hours, 15 minutes.

For our purposes the satellite is described by its principal moments
A = B = ( about principal axes 2’,y,#', along which the principal unit
vectors i',j’ k' lie. These principal axes form the body piteh, roll, and
yaw axes, respectively.

When the satellite is in a position of stable equilibrium, the a',y’,2'
body axes coincide with orbit piteh, roll, and yaw axes x,y,z as in Fig,
19, with corresponding unit veetors i,j,k, normal to the orbital plane,
along the orbit track, and along the local vertical toward the center of
the earth. These orbit reference axes rotate at the orbital rate @ (1 rpo)
about the orbit pitch axis. It should be noted that, although a spindle-
shaped body, formed by the extension of a single rod and tip mass, is
shown, for which B =~ A and (' <« B, the small-angle analysis which
follows covers the whole range of inertias, given by the inequalities

4>B>C,
required for stability, and
B+C>A,

imposed by rigid-body geometry.

For small perturbations from equilibrium the satellite orientation is
specified by the small pitch, roll, and yaw angles ., ¢, , ¢:, through
which the body axes 2,)',2" are rotated from the orbit axes x,y,z, as in
Fig. 28. The corresponding satellite angular velocity vector o, with
respect to inertial space, is given hy

w, = 12+ ¢.) + jou + ke:,
with respect to orbit axes, or
w; = 1’(9 + @) + j’( — Q. + ﬂbtr) + k’(ﬂﬁpy + 'ﬁ:),

with respect to body axes.

3.2 Roll-Vee System Equations for Small Motion

By neglecting second-order terms in the dynamical equations of Sec-
tion 1V, as indicated in Section 4.2.2, we obtain the satellite equations
of motion
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Ys Ay

D¢z

z
Fig. 28 — Definition of small pitch, roll, and yaw angles.

Ag: + 3(B — O). + 2H, = 0,
Bé, + [4(4 — )9 + 2H Qlg,
+ [(A = B — )2+ 2H . + 2HQp, = 0, (1)
Cé. + (4 — B + 2H Al
— (4 — B —0C)2+ 2H)¢, — 2H.p, = 0,
for the satellite pitch, roll, and yaw angles ¢., ¢y, ¢.. The sum ¢, =

3 (es, + ¢4.) and difference ¥, = 3(p;, — ¢,.) of the two gimbal angles
satisfy the equations

Cody + (K + HQ)W, — Hyp. = 0,
Cppy + (K + HQ)g, + HQp, + Hp. = 0.

Here H, = H cos @ and H, = I sin «. This is an eighth-order linear
system of equations for ¢., ¢, , ¢, ¥, ¢s, Which splits immediately
into a cubie piteh system for ¢, and ¢, and a quintic roll-yaw system
for ¢, , -, ¢, , since the pitch motion depends only on the out-of-phase,
or ‘“scissoring,” motion of the gyro gimbals, given by the difference
angle ¥, , and the roll-yaw motion depends only on the in-phase gimbal
motion, given by the sum angle ¢, .
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These equations can be reduced to dimensionless form by setting
p = (1/Q)d/dl, b= B/A, c=(/A, h = (H/AQ) cos a,
W = (H/Cp) cos a, k = 1 + [K/(HQ cos a)],
yielding the two sets of equations:
Pitch:
[p* + 3(b — ¢)]e: + (2h tan a)py, = 0,
— (W tan a)pe: + (p + &' )Y, = 0,

Roll-Y aw:
(bp" + 4(1 — ¢) + 2hlo, + (1 — b — ¢ + 2h)po. + 2hg, =
—(1 =D — ¢+ 2h)pg, + [ep’ + (1 — b) + 2hle. — 2hpe, = 0,
Koy + h'pe. + (p + «h')p, = 0.

I
e

If we insert appropriate terms on the right-hand sides of these equations
to include the effect of given initial conditions and perturbing torques,
we may regard the above systems as the Laplace transforms of the origi-
nal set of differential equations, with transform variable p. The solution
is then found by solving this set of linear, algebraic equations for ¢, , ¢, ,
ete., now interpreted as Laplace transforms, and calculating the residues
at the poles of these functions of p. The transient response is entirely
determined by the location of these poles and by the specific initial
conditions. The steady-state response to a periodie perturbing torque
at frequency NQ may be determined by inserting constant right-hand
sides, in general complex, setting p = 7N, and solving for the amplitudes
Lo |, | ¥0 |, ete.

3.3 Transient Response

For given initial conditions and zero perturbing torques, the trans-
forms are rational funetions of p, with the characteristic pitch and
roll-yaw polynomials as denominators, given by

Pitch Cubic:
fap) = p' + e’ + ep + e, (2)
Roll-Yaw Quintic:
fu(p) = P + ap' + ap’ + ap® + ap + @, (3)
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where

er = Wk + 2h tan® @), e = 3(b— ¢), es = 3(b — ¢)xh/,

and
a = Kh’ + %,
c
_ _ I 2
a2=1 b+2h+-}(1 c)—|—2h+(1 b c+2h)’
c b be
@ = kh'ay + 2hh' (2 4+ 2b — 3¢ — 2h),
be

(1 — b+ 2h)(4 — 4¢ + 2h)

ay = ,
be
(1 — 2

a4 = wh'as — 2hR' (1 — b + 2h) '

be

For stability, it is necessary that all the roots of the above polynomials
have negative real parts. In particular, the magnitude of the real part
of the root nearest the imaginary axis determines the rate of decay of the
most lightly damped mode of motion. If this real part is —D, we can
define a 1/e asymptotic settling time T, = 1/2xD (in orbit periods) and
use T\, as a measure of transient response, particularly suited for use with
a digital computer. In Section 3.6 we discuss the determination of D as
a funetion of b, ¢, a, h, k', and «. Once it is reduced to a suitably small
value by some choice of system parameters, the short-time transient
response can be determined by solution of the differential equations with
specific initial conditions and the system parameters readjusted, if
necessary. Actually systems chosen on the basis of minimum asymptotic
settling time seem to have quite adequate short-time, as well as steady-

state, response.

3.4 Steady-State Response

The steady-state response to periodic perturbing torques at frequency
NQ, determined as previously outlined, is given in various cases by the
following relations:

Pitch amplitude for pitch torque AQ’:
loc| = (N* 4 &R™)Y/| fulaN)], (4)
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Roll amplitude for roll torque AQ’:

1—b+4+ 20 2\
|‘Pu| = [(—CL_ kh —alN')

1 —b+2h ik )
+ (4C_‘N — Ns):l /|f5(iN) l,
Yaw amplitude for yaw torque AQ:
— 4e 1+ 2 ohh' A
le: | = [(———4 de + 2h wh = 2hh - _ xh'N‘)
b b
(6)

(P2 WY fenam

Roll amplitude for yaw torque AL and yaw amplitude for roll torque AQ’:

2

— 2 :
lew| = le:| = N[(%—t;hh‘hr—Gh)

+( b;””h) /MMWH

where, by (2) and (3),
| /GNP = (e — elN*)' + (N — NP,
| fs(N) P = (a5 — asN* + aiN')* + (asN — aN' + N°)°.

In particular, a constant pitch torque AQ'(N = 0) gives the constant
pitch offset

leelo = 1/B(b — o)),
while, for a roll torque of amplitude AQ” at the orbital frequency (N = 1)

Loy 1 = 1/[3(1 — ¢)].

These amplitudes, independent of the gyro parameters, limit the mini-
mum permissible satellite inertias for given perturbing torques.

Finally, an elliptic orbit of small eccentricity e induces forced pitch
vibrations at the orbital frequency @ with amplitude

loo | = 2e(1 + e/ (es — e)* + (e — DL (8)

By straightforward differentiation, it is easily shown that the eccentricity
response | ¢, | has a single maximum as a function of the gyro opening
angle a. For « larger than the value at which the maximum is attained,
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the eccentricity response decreases monotonically, approaching 2¢ as a
approaches 90°,

3.5 Bounds on the Asymptotic Damping Rate D

As mentioned in Section 3.3, a convenient single measure of transient
response is the parameter D, the distance from the imaginary axis of the
right-most root of the characteristic equations. One would like to know
D as a function of the system parameters, D = D(b,¢,e,h,h’,x). In gen-
eral, this function is impossible to determine analytically and must be
computed numerically. In order to limit such computations to ranges of
the parameters b,c,a,h,h’,k that give reasonable values of D, it is con-
venient to have bounds on D,

One set of bounds is given by the following theorem:"

If the coefficients qo, ¢, -+, of a polynomial P(p) are positive,

P(p) =qp" +ap"" + - + @
then D 1s bounded by

We note that in both fi(p) and f5(p), in (2) and (3), go = 1. Hence by
the above theorem with [ = (0, if the system parameters are such that
any of the coefficients ¢y, ¢2, 3,01, * -+ , @5 1s small, then D will be small.
Likewise, if any coefficient in fi(p) or f;(p) is large compared to a
subsequent coefficient, then the theorem tells us that D will again be
small.
We note also that b — ¢ < 1, so that the theorem applied to ¢, gives,

in pitch,

i.e., the asymptotic settling time 7', in pitch for the roll-vee system is
bounded by T, = 1/27 = 0.159 orbit. (This is slightly larger than the
corresponding bound 7T, = 5!/24/37 = 0.137 orbit obtained in Ref. 17
for a two-body satellite.)

From these bounds we conclude immediately that at best D can be
of order unity, and to get a D of this order of magnitude the coefficients
and ratios of coefficients in fi(p) and f;(p) must be at least of order
unity.
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Another useful bound is obtained by shifting the origin in the p plane
to p = —D and applying the Routh eriteria (see Section 3.7), to the
shifted f;(p) polynomial. It is then found that one of the terms in the
Routh array is

r = —2D2 + [8D* + 3(b — ¢)Ja — 8D" — 6(b — ¢)D — 3(b — ¢)«l,
where
= kb + 2hh tan® a.

To have all roots to the left of the line Re p = — D, » must be positive.
But it is easily verified that » > 0 only if

3(b—¢)
< _
D=S «h'

which gives an additional bound on D.

3.6 Determination of D by Series Expansions

When the coefficients in f3(p) or f;(p) are either large or small, D
can sometimes be expanded in a power series around a known root.
This again restricts the parameter ranges over which D) must be deter-
mined numerically. Tor example, suppose k' is small. The roots of f3(p)
ath' = Oare p = 0, p = +i/3(b — ¢). However, it is well known"
that each of the three branches of the triple-valued function p = p(h')
is analytic in #’. Expanding around &’ = 0, say for p(0) = i4/3(b — ¢),
we have

=
Il

V3 —e) + 4 (S%) +
L/ h=0
= iv3(b — ¢) — Khtan® a 4 - -,

with similar expressions easily obtained for the other two branches of
p = ph)).

A particular case of interest is that of a spindle-shaped body. In
this case, ¢ — 0, b — 1, and the coefficients a1, - - -, as of f5(p) all be-
come large. One can then consider the equation cfs(p), in which the
leading coefficient is small. However at ¢ = 0, this equation is singular
because it is reduced in degree from a quintic to a quartic. The quar-
tic, with coefficients ca,caz, - - -, cas, gives only four of the limiting
roots as ¢ — 0. The fifth limiting root is however easily found by setting
p = o/e, yielding fs*(¢) = ¢’fs(o/c). Application of the expansion the-
orem to f3*(o) then yields the fifth limiting root p — —2hh'/c as ¢ — 0.
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This root gives a highly damped mode, and has a real part far in the
left half-plane. The roots of interest in finding D are thus those of
the limiting quartic:

f(p) = p' + Bu/h)p’ + Bp® + (Bs/h)p + Bs = 0,

where

B = 2h + 1, B = x(2h + 1) + 4 — 2h,
B2 = 2h + 4, By = x(2h + 4) — 2h.

The limiting quartic fi(p) is a function of the three parameters «h,h’,
whereas, in this limiting case, the cubic fs(p) is a function of «, k, h’, and
@. It turns out that D = D(h,#,x,@) can be obtained graphically. Fur-
ther, D,, , the maximum D for all possible h,#’,x,, can be found and has
the value D,, = 0.317, attained at the values

0.77 < h < 0.78, R = 1.29, k= 0.92, a = 38°
(The value D,, corresponds to an asymptotic settling time
T, = 1/2xD, = 0.502

orbits.) However, the description of the graphical technique and the
derivation of D,, are too lengthy for inclusion here.

3.7 Computation of the Over-All Small-Angle Response

The over-all small-angle performance of the satellite attitude control
system is characterized by its steady-state response to constant and
periodic disturbances (solar torques, magnetic torques, orbital eccen-
tricity) and by its transient response to sporadic disturbances (initial
injection, micrometeorite impact). In proper design, one wants to
diminish the response to all disturbances to below a suitably small level.

The steady disturbances have their main eomponents at zero, orbital,
and twice orbital frequency. As indicated earlier, their amplitudes may
be diminished by inertia augmentation with extensible rods. Fortunately,
it is easy to write down the formulas, (4)-(8), for satellite response to
steady disturbanees, and also easy to program these formulas for digital
computation. '

The computation of the transient response is not so straightforward,
even in terms of the single measure D. An interesting theoretical problem
is to find the maximum D as a function of all system parameters. Gradi-
ent or steepest descent methods, which first come to mind for the
solution to this problem, seem to be difficult to apply, since the maxi-
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num D usually occurs in the neighborhood of multiple roots where the
function D = D(b,e,h,i k,a) is singular.

However, although this is a theoretically interesting problem, its solu-
tion is not of great practical importance, as indicated in Section 2.1. It
is more important to have a cheap method of computing D. A method
that we have found useful involves the Routh criteria as follows:

Write the polynomial f(p) as

J(p) = ap" + ap” '+ - F+ap" "+ -+ a =0,
and form the Routh array

Ao, Oy, Qg -,
bn,bg,b4, Tty

Co,CoyCayoor s
(1|:,[l'2,(]4, Tty
where
bo=a,bs=ag, -, bu=aupn, -,
and
Coi = Qaipr — (Daigatto/by),
doi = baigs — (Caipoln/cy), cte, ¢ =0,1,2,---

Then the number of sign changes in the sequence ay, bo, o, do, ete.
(providing no term is zero) is the number of roots in the right-half plane.
Because of its recurrence structure, this scheme is easily programmed on a
digital computer.

To determine the real parts of the roots of f(p), one applies the scheme
to a succession of translated half-planes as tollo“ s. If p=—D 4, then

(=D + )

["(— D)t S (=D)"

=0
n!

J(=D) + 1'(— D)+ + o+

@ o =0
where it is easily verified that

S (=D)

n!

(n—1)
D
"= -7‘” £ 1)3) = —naD + a,

Go =,
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(n—2)
f (=D) n 5 n—1
s = ——— " = apD)” — oD + a
L= T oy T \2)® p jubt+a,

_J"(=D)
O = T — 1!

= () at=0t + (T ) al=D 4 4

The Routh array applied to the coefficients qu, ¢1, -+, ¢g. then indi-
cates the number of roots to the right of the line Rep = —D (Re{ = 0).
In order to locate the real parts of the roots to an arbitrary degree of
accuracy, one applies this array on a sequence of nested intervals. For
example, start with some large D = D such that the Routh array ap-
plied on Re p = —D” indicates roots to its right. Take as the initial
interval —D* < Re p < 0. In a stable system there will be roots between
the right boundary (Re p = 0), and the left boundary (Re p = — D).
Next apply the Routh eriteria on Re p = —D*/2. There are two possi-
hilites: (a) if there are no roots to the right of Re p = —D*/2, make
this the new right boundary; the interval —D* < Re p < —D*/2 now
has the same properties as the initial interval, (b) if there are roots to
the right of Re p = —D*/2, make this line the left boundary of the new
interval —D*/2 < Re p < 0, which again has the same properties as
the initial interval. By applying this process n times, one ends up with
an interval of width D*/2", which contains roots but has no roots to its
right. The accuracy of the location of the real parts of the roots closest
to the imaginary axis can be set by prescribing the width of the final
interval, Since the widths of the successive intervals go down as 1/27,
the process converges rapidly.

After the real parts of the roots closest to the imaginary axis are found
within some interval of desired width, say Interval 1, the same procedure
can be used to find the next closest roots to the imaginary axis. One
starts again at some sufficiently large D, such that some roots fall to
the right of Re p = —D" and to the left of Re p = —D,;, the left
boundary of Interval 1. One makes these the left and right boundaries
respectively, of an initial Interval 2, and applies the nested interval
iteration again. The right boundary of Interval 2 in each iteration is
characterized by having m roots to its right, where m is the number of
roots contained in Interval 1.

The starting value D* can be chosen in various ways. If one is inter-
ested only in the roots closest to the imaginary axis, he can pick D* as
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/G
@y,
D* = min| L N ,
n
Lam—l/ (?n _ 1)

for then (see Section 3.5) there will be at least one root to the right of
Re p = —D* If it is desired to find the real parts of all the roots, D*

can be chosen as
afﬂ
D* = max | - ’*),
(L1

since it is well known' that this value of D* is a bound on the modulus
of the maximum root and hence all the roots will be to the right of
Rep = —D*

We remark that this procedure may be easily extended to a method
for finding both the real and imaginary parts of the roots of a real
polynomial. It is only necessary to use well-known relations between the
imaginary parts of the roots and certain members of the Routh array.

The above scheme goes rapidly on the IBM 7090 computer. For ex-
ample, if the widths of Interval 1, Interval 2, ete. are set at 0.005, the
running time is about 1000 cases a minute to find the real parts of all
the roots of both the quintie, f5(p), and the cubie, f3(p). Tables calcu-
lated by this process were used in making the parameter survey whose
results are summarized in Section 2.3.

1V. LARGE-ANGLE MOTION

4.1 Introduction

The large-angle motion of the satellite is of course governed by non-
linear differential equations, which in general must be integrated numer-
ically. Nevertheless, a few analytical and intuitive insights are available.
These are pointed out in the sections which follow.

We begin with a discussion of the pertinent dynamical and kinematic
equations, including the effect of variable inertia, due to rod erection.
Then we enumerate the equilibrium positions of the satellite, in which it
is at rest with respect to the orbiting reference frame in a circular orbit,
and show that certain restrictions must be placed on gyro angular mo-
mentum to eliminate undesired positions. This is followed by a discus-
sion of satellite despin by the erection of a single rod and tip mass.
Finally we show how the satellite may be inverted by ground command
to the gyro torquers.
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4.2 Large-Angle Equalions of Motion

In the following, we make an explicit distinetion between dynamical
equations, valid in any coordinate system when written in proper vector
form, and kinematic relations between various specific coordinate sys-
tems. This allows us to introduce a minimum number of different co-
ordinate systems and to avoid a good deal of irrelevant algebraic com-
plexity.

4.2.1 Dynamical Equations

The rate of change of angular momentum L about the satellite center
of mass, with respect to a reference frame rotating at the satellite angular
velocity o, , is governed by the equation

L+ o XL=DM, (9)

where M is the resultant torque around the center of mass, the sum of
the gravity-gradient torque Mg, the total gyro precession torque My,
and the external disturbing torque Mg . For a rigid body

L=1Iuw (10)

where I is the inertia dyadie, given in terms of the principal moments of
inertia A > B > (' and corresponding principal vectors i',j’,k’, by

I = Ai'i' + Bj'j’ + CK'K'. (11)
If w is the satellite angular veloeity relative to orbit reference axes,
w, = i + o, (12)

where i is a unit vector normal to the orbit plane and y(¢) is the polar
angle of the satellite center of mass, measured from orbit perigee in
earth-centered coordinates and satisfying the orbit equation

¥ = Q1 + ecosy)’/(1 — €)3, (13)

where e is the orbit eccentricity and @ = 2x/T,, Ty being the orbit
period. The gravity-gradient torque Mg is given by

M, = 3Q0°(1 + ecos )’k X (Ik)]/(1 — €)%, (14)

where k is a unit vector directed along the local vertical toward the
center of the earth. Here and in the following, we consider only what
Beletskii”’ calls the “restricted problem” for which the motion of the
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center of mass is given by (13) and is unaffected by the motion around
the center of mass. Finally the resultant gyro torque for a two-gyro,
roll-vee configuration is

MH:Hlxwrij+H2Xmggr (lr..))

where H/'s are the gyro angular momenta, of fixed magnitude 77, and
the ,’s are the gyro gimbal angular velocities. In terms of the gimbal
angles ¢,, and the nominal roll-vee half-opening angle «, we have

Wy, = @+ j",bm ) (16)
Hl = Ij[i’ cos ((1 - ﬁolll.) + k' sin (e — qa,“}] (17)
H, = H[i' cos (@ + ¢,,) — k' sin (a 4 ¢4, )] (18)

The set of dynamical equations is completed by the gimbal equations of
motion. If the gyro gimbals are not against stops, these are

Cogy; + Koy, = My, + 7 (Hi X wy,), (19)
where (', is the gyro damping constant, K the gimbal spring constant,
and the constant bias torques M, are given by M,, = —M, = HQsina.

When the gimbals are against stops, the reaction torques from the
stops on the gimbals must be added to (19).

4.2.2 Kinematic Relations

The orientation of the satellite body axes a’,5',2', or the corresponding
unit veetors i',j’ k', with respect to the orbit axes x,y,z or corresponding
unit veetors i,jk,* may be specified in a number of ways. In eclassical
dynamics, Euler angles have heen traditionally used. They specify a
rigid body’s orientation with a minimum set of three numbers, and, in
some of the soluble problems of rigid body dynamics, lead to straight-
forward analytical manipulations.

I'rom a computing point of view, Euler angles, however, have three
serious disadvantages: (1) they involve trigonometrie functions, which
are expensive to compute, (2) they are singular when the nutation
angle is zero, and (3) they are difficult to use in the visualization of
complicated motions. We have chosen to use the so-called Euler parame-
ters, rather than the Touler angles. A set of variables, perhaps even more
suitable for the matrix algebra typieal of modern computer programming,
might be the direction cosines «,8,y, cte., satisfying the relations

* Sge Section 3.1.



2752 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964
i =i+ jo + Ko
j=1i8+7i8 + Kp", (20)
k =iy +jv + Ky

These «’s should not be confused with the nominal vee opening angle,

which we shall distinguish from the direction cosines, whenever they
are used together, with a subscript. By using identities of the form

k+ o X k=0, (21)

satisfied by i, j, and k, we may obtain 9 equations giving the rates of
change of the direction cosines in terms of the direction cosines and the
components of . We would then have 15 equations, including 3 satel-
lite equations of angular motion, 1 equation of motion for the satellite’s
mass center, 2 gimbal equations of motion, and 9 equations for the
direction cosine rates, yielding the 3 components of o, the satellite polar
angle ¢, the 2 gimbal angles, and the 9 direction cosines. The identities

o + 52 + 72 =a + " - o = 1, ete.,
af + B + o"B" = ad’ + B8 +vv' = 0, ete,

which must be satisfied initially, would then serve as checks on the
numerical solution. Incidentally, it should be noted that the cosine of
the antenna pointing error angle is given by the direction cosine v”,
hetween the local vertical and the body yaw axis.

We shall use the direction cosines to study equilibrium positions, but
Euler parameters in the study of general satellite motion, since they are
simply related to the deflection angles for small motion. If we assume
that the (2',3',2')-axes are formed by rotation of the (x,y,z)-axes through
the angle # around an axis with direction cosines m, , m, , m., the Euler
parameters £, , £, £, x arc defined by the relations

(&, 8, &) = (me, my, m.) sin (8/2), x = cos (6/2).
We now have”
=18 — 8 — &+ ) + 258 — xt) + 2K (EE + xb),
jo=20(kk 4+ xE) + T (& +E -+

+ 2K’ (£ — xt.), (22)
k = 20 (£8 — x&) + 2§ (5E + xé)

+K(-& —& +E+ ),
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[ R}
=1
[}
e

giving the direction cosines, and

28 = xwo + B — Euyr,
2, = xwy + Ewp — Ewu,
2k = xws + Ly — B,
—2% = Lawr + By + Lo,

completing a set of 10 equations for the three components of angular
velocity @, two gimbal angles, four Euler parameters, and the polar
angle ¢. Just as in the case of the direction cosines, the single identity

EE e+ =1

serves as a check on the numerical solution. Also note that, for small
rotation 8, 2& ~ @z, 28, ~ ¢y, 26 ~ @, x ~ 1, wo ~ @uy ay ~ @y,
ws ~ ¢, , and

(23)

i~i = e + Koy,
j~ie +§ — Koo,
k ~ —i'gy + j'o. + K,

where ¢. , ¢, , ¢ are the small pitch, roll, and yaw angles. If these rela-
tions are inserted into the dynamical equations and seeond-order terms
neglected, the linear equations for the small motion, (1), are obtained.

In coding the differential equations for the digital computer, it was
found convenient to define cross-produet and dot-product subroutines:

AXB=(—A:B:+ 4.8y, A:By — ABy, —4.B, 4+ ABy),
A-B = “11B1 + AEBE + 41;5-8:; .

This allowed the coding to follow closely the vector form of (9)-(11),
which was useful from the standpoint of both coding simplicity and
debugging.

Tor nondumbbell satellite shapes, say b = 0.9, ¢ = 0.5, the five-point
predictor-corrector with £ rule as given by Hamming ( Ref. 22, Chapter
15) was used. However, in the spindle case, b = 1.0, ¢ = 0.01, the dif-
ferential equations hecome singular because the small number ¢ multi-
plies a derivative, and the five-point, § rule scheme was found to be
very slow. Following a suggestion of R. W. Hamming, a simple three-
point predictor-corrector scheme (Ref. 22, p. 186) was then tried. It
turned out to be three to four times faster than the five-point scheme
and to give about the same accuracy.
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In the computer runs, the gyro stops were simulated by hardening
springs. For example, for ¢,, > 3, the normal spring restoring torque of
Ky, was replaced by

I{Wm + B(Sam - .B) +

2

B_ﬁi’m

where B, C, 3, and ¢ are constants, to simulate the pitch stop of the first
gyro. The same expression but with different constants was used for the
yaw stop. Specifically, in all the computer runs for the spindle-shaped
satellite reported here, K = 0 and the pitch-stop values for Gyro 1 were

B = 504, € = 0014, 8 = 58°, 6§ = 60°

For the yaw stop, 8 and 6 above were replaced by 3 = —20° and 4 =
—30°. Corresponding, symmetrical stop constants were used for
Gyro 2.

4.2.3 The Rale of Change of Energy

Tor a circular orbit we can easily obtain a useful expression for the
rate of change of kinetic and potential energy, relative to orbit axes.
We take the scalar product of the satellite equation of motion (9) with
the relative angular velocity w and combine it with the two gyro equa-
tions, (11), multiplied by ¢,, . After some routine algebra, we obtain
the relation

(d/d) (T + V + @) = —Coles’ + ¢0,)),

where the relative kinetic energy

T=30Tl0
the potential energy

V = 30°3k-T-k — i-I-i),

and the gyro energy

G =0+ G,
with

G: = 1Ko, + M,0,, — Qi-H,.

This expression is useful in the estimation of various quantities, in par-

ticular the velocity required to tumble the satellite, and conditions
. 23

necessary for capture.
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4.3 Satellite Equilibrivm Positions

When the satellite moves in a eircular orbit in such a way as to remain
stationary with respect to the local vertical, its motion satisfies the
equilibrium equation

@i X (I1) = 30k X (I'k) + 0H X i,

where H is the resultant gyro angular momentum. For a symmetrical
satellite

I =A% +7§5) + (KK
and the above equation yields the relations

(4 —()p"y" =0

Hj=H =(4—-C)0"3", (24)

Hk=H =44 — ()Q"y", (25)
with ¢” = i-K',8” = j-k',v" = k-, as defined by the table of direction
cosines, (20). Thus we have the following general result:

1. The equilibrium positions af any symmetrical, gravity-oriented, gyro-
stabilized body in a civeular orbit must be such that the principal axis of

least inertia and the resultant angular momentum are perpendicular either
to the orbit roll axis (8”7 = H, = 0) or to the orbit yaw axis (v" = H. = 0).

In the case of a roll gyro system, with all gimbal axes parallel to the
body roll axis, the resultant gyro angular momentum must have the
form

H=iH.+KkH.,
so that

H;,' = ﬁH:' + JB”H:’ )

H.=~H, +~"H. .

Thus, 8” = H, = 0 implies 3H.. = 0, and v” = H. = 0 implies vH,. =
0. If we now assume that the motion of the gyro gimbals is restricted by
stops along the body yaw axis, so that H,- > 0, an assumption appropri-
ate for the case of the two-gyro roll-vee, we have the following result:

I1. The equilibrium posilions of any symmelrical, gravity-oriented, roll-
gyro-stabilized body in a circular orbit must be such that the body roll axis
is either parallel to the orbil roll axis (8" = 1) or parallel to the orbit
yaw axis (v = £1).
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So far we have not made use of the gyro gimbal equilibrium equations.
If the gimbals are not against stops, from (19) for the roll-vee, these
take the form

Q- (H; X i) — H2 sin ao — Ko, = 0,
Qj'-(H. X i) + HQ sin ao — Ko, = 0,

where we now denote the nominal gimbal angle by « to avoid confusion
with the direction cosines. If the flex-lead constraint is negligible, i.e.,
K = 0, these two equations imply that

v'H, —'H.- =0

which in either ease in II (8’ = +1, H, = 0 orvy’ = +£1, H. = 0)
implies that H, = H. = 0, so that no torque is exerted on the satellite
by the gyros. We then have:

II1. The equilibrium positions of a symmelrical, gravity-oriented, free
roll-vee-gyro-stabilized body must be such that the resultant gyro lorque
vanishes (i X H = 0) and either the body pitch, roll, and yaw axes are
parallel to the orbit pitch, roll, and yaw axves (i’ = =i, j' = £j, k' =
k) or the body pitch, roll, and yaw axes are parallel to the orbit pitch, yaw,
and roll axes, respectively (i’ = =i, j/ = =k, &' = +j).

The signs of course must be chosen so that the above represents a
proper rotation. Note that the above applies to any roll gyro system for
which the resultant torque around the body roll axis exerted by the
gyros on the satellite vanishes. If ' = 4, the second set of equilibrium
positions gives Fig. 20, with the gyro gimbal axes along the orbit yaw
axis in a yaw-vee configuration. Small pitching motion around these
equilibrium positions is governed by a characteristic equation of the
same form as that for the roll-vee, (1), except that the coefficient
3(B — C)/A > 0is replaced by 3(C — B)/A < 0. Thus these equi-
librium positions are unstable.

The equilibrium position i’ = i, j’ = j, k' = k of the first set is shown
in Fig. 19(a). It corresponds to the normal operating position with the
body yaw axis, on which the antenna is situated, directed toward the
earth. The inverted position (see Fig. 19b) i’ = i,j = —j, k' = —k is
also stable, since it merely corresponds to an interchange of the two
gyros. This bistability is characteristic of gravity-oriented bodies and a
gravity-oriented communications satellite must either use two antennas,
with associated switching, or incorporate some means of flipping the
satellite in response to ground command. The latter possibility is
discussed in some detail in the sequel.
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The reversed roll-vee equilibrium positions Fig. 21(a), with i’ = —i,
remain to be investigated. The corresponding yaw-vee positions are still
unstable. If the gyro gimbals were completely free, satellite precession
and the bias torques, now acting together, would rotate the gyro gim-
bals from the reversed roll-vee until they formed a normal roll-vee
around the orbit pitch axis. But with gimbal stops, making the angles
+a" with the body pitch axis, the gimbals rotate until the stop reaction
torque and the bias torque sustain the 1 rpo steady precession of the
satellite in orbit. The stability of this reversed roll-vee position can be
investigated by using the characteristic equations for the normal roll-vee,
with H cos ao replaced by —I1 cos o and a large spring constant K*,
introduced to take the stop compliance into account. In particular the
coefficient

as = [(A — B)Q + 2H cos ag)[4(A — (')Q + 2H cos ag]/BCY’,
in the roll-yaw characteristic equation, is replaced by
a’ = [(4 — B)2 — 2H cos o*|[4(A — )Q — 2H cos o*]/BCD".
If
(A — B)Q < 2H cos a® < 4(4 — (),

this is negative and the equilibrium position is unstable.

The instability of the reversed roll-vee when o satisfies the above in-
equalities is shown in I'ig. 29. In this case, the system parameters are
the same as those of the sample design in Section 2.3.2 with «* = 80°.
Initially the gyros are against the stops and the satellite has rates of 0.05
rpo about all three axes. It is seen that the satellite turns around the
yaw axis and settles down to rest in the desired orientation in less than
five orbits.

When the gyro gimbals are against stops, the gyros exert a torque on
the body and in general there are other, skewed equilibrium positions.
To investigate these positions without getting involved in the details of
stop compliances, ete., which depend on the specific gyros used, we con-
sider only two idealized cases, the first with stops along the positive and
negative body yaw axes but with no stops along the body-piteh axis, and
the second with stops along the pitch axis as well as along the yaw axis.

In both cases the gyro spin axes may be back-to-back along the yaw
axis, but this is a case of zero net gimbal torque already treated and is
easily eliminated by moving the gimbal stops in slightly. In the first case
both spin axes may lie along the body yaw axis against stops, so that

H, = H. = k'H, H = 2k'H
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Fig. 20 — Instability of reversed roll-vee when gyro stops are suitably dis-
posed.

From (24) and (25) we again have two cases to consider: (a) 8”7 = H, =
0,and (b) ¥” = H. = 0.In case (a) we have
H.=2¢y"H = 4(A — ()Qa"y".

The subease 87 = H, = 0; 4" = 0 is easily shown to be unstable, so
there remains only the position given by

o = H/[2(4 — C)9].

Unless H > 2(A — ()9, this yields an equilibrium position which can
be maintained by the stop reaction torques. These torques are of course
one-sided, since the stop can only “push” and not “pull.” This undesira-
ble skew equilibrium position can be eliminated by making

H>2(4 — ()2
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A similar position for case (b) (¥” = H. = 0) can be eliminated by satis-
fying the less restrictive condition H > (4 — C)Q/2.

The corresponding situation with yaw and pitch stops finds one gyro
against the yaw stop and the other against the pitch stop (see Fig. 21b).
For example, suppose

H, = k'H, H, =1i'H, H = H(i + k).
Now in case (a), 37 = H, = 0, we have
H.=H(y ++") = 4(A — ()Qa"y",
or, in terms of the angle # between the = and 2" axes,
sin 20 = —[H/24(A — )] sin [0 + (7/4)].

The two roots of this equation in the interval —x/4 < 6 < = are ex-
cluded, because they require stops which “pull” on the gimbals. On the
other hand, the two roots in the interval # < 8 < 37/2 yield possible
equilibrium positions. These roots exist only if H < 2'(A — ()2 Again
the case (b) ¥” = H. = 0, yields no equilibrium positions of this type
under the less restrictive condition H > 27%(A — (")(. Since an increase
in gyro angular momentum tends to degrade the transient performance
of the system, we shall assume in the following that the gyro gimbals are
limited in excursion by both yaw and piteh stops, so that only the re-
striction H > 2'(4 — ()2 need be satisfied.

In the case of an unsymmetric satellite, a similar but more complicated
analysis of the equilibrium positions can be carried out.

1.4 Rod Extension and Salellite Despin

We have already indicated the necessity of augmenting the satellite
inertia to inecrease the gravity-gradient restoring torques to required
levels. If this inertia augmentation is done after injection into orbit, it
also reduces the satellite angular velocity to a level where the gravity-
gradient torques may become effective in aligning the satellite with the
local vertieal. One method of inertia augmentation is the extension of so-
called STEM rods described in detail in Ref. 8. These are beryllium
copper tapes which form straight, tubular rods when unwound from a
drum. If they are used together with dense tip masses, the satellite in-
ertia may be increased by several hundredfold without a proportional
inerease in solar torque. In the following sections we first consider the
effect a variable inertia has on the general form of the satellite equation
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of motion and then discuss satellite despin using a single extensible rod
in combination with two gyros.

4.4.1 Equations of Motion for Variable Satellite Inertia

We may derive all of the dynamieal equations for the motion of a
gravity-oriented body by integration of the general equations of motion
for a continuous medium. In fact this is perhaps the most direet way of
calculating the gravity-gradient torque, which is due to the variable
gravitational body force acting on each mass element of the hody. The
resulting equation of motion, (9), applies to rigid and flexible bodies
alike, provided that the angular momentum L is calculated correctly.
L is given in general by the integral

L= j;r X (3r/0t + @5 X r)dm, (26)

where r is the radius vector from the center of mass of the body B to the
mass element dm. For a rigid body, r differs from its initial value ro only
by a rotation and dr/dt = 0, yielding the usual form

L =fr>< (e X 1)dm = I,
B
but in general r depends both on ry and ¢, so that
L=1aw + f r X (ar/ot)dm,
B

where the inertia dyadic I depends on &.

Let us now consider the extension of a single massless rod with tip mass
mq . If a(t) is the radius vector from the center of mass of the satellite
proper to the tip mass, (26) yields

L =1Iw + maXaé,
IX w=ILX o +maX(w Xa),
m = mam,/(m, + m,),

for satellite mass m, , and the inertia dyadic for the satellite around its
center of mass

I, = A" + Bij'j’ 4+ Cok'K.

When the rod is erected parallel to itself, as would normally be the case,
a X d = 0 and the effect of rod extension is entirely taken into account
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by the time-dependent inertia L. If the rod is extended along the axis of
minimum moment of inertia, a = kK'a(?) and

I = (Ao + md)i'i' + (By + ma’)j'j’ + Ck'K.

4.4.2 Satellite Despin

When the moments of inertia of a torque-free spinning body are in-
creased by a factor of N, conservation of angular momentum requires
that the angular velocity of the body decrease by a factor of 1/N. On
the other hand, if the spinning body contains a spinning rotor, an increase
in the angular momentum of the rotor produces a corresponding decrease
in the angular momentum of the body and hence a reduction in the
angular velocity of the body. Both elements exist in the gravity-oriented,
gyro-stabilized satellite. Inertia augmentation is required to obtain
gravity-gradient torques of the proper level; rotation of the gyro gim-
bals provides a change in angular momentum.

A single extensible rod-tip mass combination provides adequate
gravity-gradient torques, if erected along the satellite yaw axis. How-
ever, erection of such a rod reduces only pitch and roll injection angular
velocities; the yaw component is unaffected. This may be removed by
using the gyros as reaction wheels.

Suppose the gyros are caged at their null position during the rod erec-
tion phase. Then, neglecting gravity-gradient and external torques
during the short erection time, we have a freely spinning body. If the
initial components of angular momentum are all of the order of magni-
tude A,NQ, where Ag is the moment of inertia about all three axes, we
may reduce the pitch and roll components of angular velocity to order
Q (1 rpo), with respect to inertial space, by extending a single rod that
increases the pitch and roll moments of inertia from Ay to 4 = NA,.
The yaw angular velocity remains equal to NQ.

The yaw angular momentum, A,NQ, however, is of the order A%, the
same order of magnitude as the angular momentum # of each gyro. The
gyros then are large enough to absorb the residual angular momentum.
If the gyro gimbals are now released, the spin axes will tend to line up
with the residual angular velocity around the yaw axis. One gyro spin
axis rotates until constrained by the yaw axis gimbal stop; the other ro-
tates until constrained by the pitch axis gimbal stop. There is thus a net
change in yaw gyro angular momentum of order H and, furthermore,
heeause of the rate-secking property of the gyro, it always oceurs in the
correet sense to reduce the satellite angular momentum.

This qualitative argument has been supported by computer runs for
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given parameter values and initial rates. In particular one may determine
the gyro size needed to despin from a given initial yaw rate. Actually it
is not necessary to separate the erection and uncaging phases of injec-
tion, so long as the gyros are not uncaged before erection.

The result of such a ecomputer run was given in Figs. 17-18. In one
orbit the angular rates are reduced to less than 1 € and capture occurs.

4.5 Satellite I'nversion

As we have already noted, gravity-oriented bodies are bistable, i.c.,
they are in stable equilibrium with the axis of least inertia, on which the
antenna would be mounted, both directed toward the earth and away
from the earth. In this section we discuss a method of flipping the satellite
by means of a simple ground command injected into the gyro gimbal
torquers.

When the satellite is in either of the above stable equilibrium positions,
its total angular momentum is AQ + 2H cos a around the pitch axis.
If we could somehow rotate the two gyro gimbals instantaneously, so
that both spin axes pointed along the pitch axis, the total angular mo-
mentum would become A(Q 4+ «) + 2H, where w is the piteh angular
veloeity with respect to the orbit frame. Since the gimbal rotation is
assumed instantaneous, the total angular momentum is conserved, i.e.,

AQ + 2H cos ay = A(Q 4+ w) + 2H,
or
w= —2H(1 — cos o) /A.

Thereafter, the single-axis, pitching motion is governed by an equation
of the form

A+ 3(B — C)¥ sing cos ¢ = 0,

where ¢ is the pitch angle around the orbit pitch axis. A first integral of
this equation is

A¢ + 3(B — (HQ sin’ p = A,

since ¢(0) = 0, @(0) = w. In order that ¢ be one-signed, i.e., in order
that tumbling occur, we must have

Ad* > 3(B — O)R
or
(H/AQ)* > 3(B — €)/44(1 — cos a)™. (27)
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For a gyro angular momentum satisfying this condition we can excite a
tumbling motion by collapsing the gyro spin axes toward the pitch axis.
Actually, since we only want to rotate the satellite through a half revolu-
tion, the gyro angular momentum need barely exceed this minimum
value. Furthermore, we may collapse the gyro spin axes toward the
piteh axis by simply reversing the bias torques applied to the gimbals for
a suitable length of time. For a spindle satellite with (B — ()/4 =
0.99, computer runs (see Fig. 22) show that the satellite may be inverted
by applying this reversed bias for about a half orbit. For a satellite with
(B — (')/A = 0.4 it turns out that it is only necessary to remove the
bias torques for a fraction of an orbit. For any satellite a suitable com-
bination of bias torque and time can always be found to flip the satellite
into its desired operating position, providing the relation (27) is satis-
fied.

We remark that bias torques could also be used to rotate the gyro gim-
bals against the yaw stops. A similar, single-axis argument then gives an
expression like (27). However, with the gyros back-to-back against yaw
stops, the satellite has negligible yaw stiffness, and is vulnerable to yaw
disturbances. This possibility of inversion was therefore not pursued.
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APPENDIX

List of Symbols

AB,C principal moments of inertia

h=B/A,¢e=C/A dimensionless principal inertias

'y gyro damping constant

D =1/2xT, damping rate, inversely proportional to set-
tling time

H, , H, angular momentum veetors of gyros 1 and 2

I =|H|=|H| magnitude of gyro angular momentum

H=H, + H. resultant gyro angular momentum vector

H.,H,, . orbital pitch, roll, and yaw components of

total gyro momentum



2764
H.,H,, H,

h = (H/AQ) cos a
K = (H/Cp) cos a
I

ijk

il’,jl’kf

K

L

M,

M,

Mg , Ma

m = mem,/(m, + m,)
14

P=ow

T,

X,z
a2

@
r ”
o, o

B,8',8”

'
€

k=14 [K/(HQcosa)]

Ez ’ Ew ’ Ez y X

Pz Py P:

Py = %(‘Pu; + ¢4.)
v

Yo = 3(es, — @)
Q
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Design of Armorless Ocean Cable, M. W. Bowker, W. G. Nutt
and R. M. Riley, BS.T.J. 43, July, 1964, pp. 1185-1208.
Equation on p. 1197 should read:
/1 1 Ve ,
@ = V] (d\/ WV &Z) log Dja T F/FwV/e.

Analysis of a Tubular Gas Lens, D. Marcuse and 8. E. Miller,
BS.T.J., 43, July, 1964, pp. 1759-1782.

Equation (25), p. 1778, should read:
2 T,
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