Optimum Reception of Binary
Gaussian Signals
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The problem of optimum reception of binary Gaussian signals s to
specify, in terms of the received waveform, a scheme for deciding between
two alternative covariance functions with minimwm error probability.
Although a considerable literature already exists on the problem, an opti-
mum deciston scheme has yel to appear which is both mathematically
rigorous and convenient for physical application. In the context of a general
treatment of the problem, this article presents such a solution. The optimum
decision scheme oblained consists in comparing, with a predetermined
threshold I, a quadratic form (of function space) in the received waveform
x(t), namely,

choose ro(s,t) if ff a(s)h(s,t)x(t) ds dt < F,

choose r(st) if ff a(s)h(s,)x(t) ds dt

v
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b

where ro(s,t) and ri(s,t) are the covariance functions while h(st) is given
as a solution of the integral equation,

ff ro(su)h(up) i (0t) du dv = r(s,t) — ro(s,t).

This may be regarded as a generalization of the “correlation detection’ in
the case of binary sure signals in noise.

Section [ defines the problem, reviews the literature, and, together with
certain pertinent remarks, summarizes principal resulls. A detailed mathe-
matical treatment follows in Section Il and the Appendices.

I. INTRODUCTION AND SUMMARY

1.1 Definition and Natwre of Problem

The problem of optimum reception of binary Gaussian signals arises
as a mathematical idealization of a common communication problem.
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Consider a radio communication link containing a random medium.
The transmitter sends one of two possible signals with known frequency
rates (a priori probabilities), and the receiver decides which one of the
two has been transmitted. Even if the transmitted signals are deter-
ministic, the observable waveforms at the receiver appear to be random
owing to effects of the random medium and the ever-present thermal
noise at the receiver. The task of the so-called optimum (or ideal)
receiver is to decide, upon observation of the received waveform for a
finite time, which one of the two signals has been transmitted in such a
way as to minimize the so-called probability of error. Thus, the problem
of optimum reception amounts to specifying in terms of the received
waveform such an optimum decision scheme for given a priori proba-
bilities.

It is assumed that the values of the received waveforms at arbitrary
instants of time during the observation interval, say 0 = ¢t = 1, are
jointly Gaussian distributed with means zero and a covariance matrix
which is determined by either one of two known covariance functions,
depending upon which one of the two signals is transmitted. Then, the
above problem may be stated as one of testing simple hypotheses as
follows: Suppose there are two ensembles of real functions of time ¢,
0 < ¢ < 1, which are statistically characterized as being Gaussian dis-
tributed with identically vanishing mean functions and two distinet
covariance functions. A sample (function) x(¢) is drawn either from
the first ensemble with probability « (the null hypothesis: Hy) or from
the second with probability 1 — a (the alternative hypothesis: H,).
Determine a “critical region” A, (a subset of a space of real functions
Q) for rejecting Hy (or accepting H,) if z(t) belongs to A, and accepting
H, if 2(t) does not, in such a way that the associated error probability,

P.(Aa) = aPy(As) + (1 — @) Pi(Q — Ad), (1)

is no greater than P.(A) for an arbitrary A C ; where Pq and P, are
two Gaussian (probability) measures defined on (measurable) subsets
of © by the two zero mean functions and two covariance functions.
Thus, the problem of optimum reception amounts to dividing the func-
tion space into two parts in such a way that the weighted probabilities
on them specified by (1) are minimum among all possible divisions.
There are two features worth noting in this formulation. One is the
lack of uniqueness of the optimum division as a consequence of adopting
the minimum error probability as the optimality criterion. Namely, it
is immaterial whether a certain set N (of functions) with both proba-
bilities zero, i.e., Po(N) = 0 = Py(N), should be a part of A, or @ —
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A. , since it does not contribute to the error probability P, . Thus, those
sets upon which P; and P, vanish can effectively be ignored. The other
feature is a stipulation that the division be specified in terms of the
general sample (function), namely, the general element w of the func-
tion space Q, so that each sample (a received waveform) can be classi-
fied as a member of A, or @ — A, . From the probability theoretical
point of view, these features dictate specification of the division (or the
decision scheme) to be made in terms of the “almost all sample fune-
tions” (or “almost surely,” “with probability one,” ete.) proposition.
While this offers flexibility in one sense, it presents a restriction in
another. For example, anticipating the forthcoming results, if the
division of @ is made by means of a certain w function on 2, this function
can be arbitrary or even undefined on the sets of w upon which P and
P; vanish. Yet, if the function is defined as a certain limit (or, obtained
by a limit operation), then the sense of convergence must be at least
“for almost all sample functions,” but not “in quadratic mean (in the
mean),” “in probability,” and “in distribution,”” which are in general
weaker.

The problem of optimum reception of binary Gaussian signals may
be regarded as a generalization of an almost classical problem in com-
munication theory, namely, optimum detection of binary suwre signals
in Giaussian noise. It is well known that such detection consists in com-
paring, with a preassigned threshold, the correlation integral of the
received waveform and a certain funetion determined by the two signals
and noise characteristics. More precisely, let {x,, 0 = t = 1] be a
Gaussian process whose covariance function is r(st), 0 = st = 1, con-
tinuous and positive-definite, and whose mean function is either mo(f)
or my;{{), both continuous, corresponding to the two sure signals. Denote
the sample function of the process by x(¢) and the threshold by ¢ > 0.
Then CGrenander' shows that if the integral equation

fl ris,Dg(s) ds = m(8) — mo(t) (2)

has a square-integrable solution, the optimum decision scheme under the
Neyman-Pearson eriterion is the following:

1
choose mo(8) if fﬂ'(t)g(t) dt < e,
[H
. (3)
choose my (1) if fﬂ:(t)g(t) dt = ¢
(i}

Suppose the two sure signals in the above problem are replaced by two
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stochastic (Gaussian) signals and the additive noise is included in these
signals so that the decision between two sure signals becomes now the
decision between two Gaussian signals. Turthermore, suppose the
optimality criterion is changed from the Neyman-Pearson’s to the
error-probability minimization. Then, the problem becomes optimum
reception of (Gaussian signals under the minimum error-probability
criterion. More precisely, let {x,, 0 = ¢ £ 1} be a Gaussian process
whose mean function is identically zero and whose covariance function
is either ro(s,t) or ri(s,t), continuous and positive-definite, with the
accompanying a priori probabilities & and 1 — « respectively. Then
what are the counterparts of (2) and (3)? That is, under what condi-
tions can the optimum deeision scheme be specified in terms of a corre-
lation integral involving the sample function, and what is the decision
scheme itself?

1.2 Review of Literature

Despite momentous foundations laid by Grenander in 1950, little
progress was made toward rigorous solution of the above problem during
the succeeding decade, due primarily to restrictions of the mathematical
scope to elementary probability theory. The majority of the work is
characterized by two features: (¢) use (and misuse) of the classical
method of likelihood ratio and (7)) attempts to specify the decision
scheme in terms of some integrals involving the sample funetion. In
order to use the classical method, however, the continuous ( parameter)
process must first be “represented” by a (finite) sequence of random
variables. Thus Middleton® and Price * sample {x,,0 < t < 1} to obtain
the representing sequence x,, , -+ -, a,, and form their likelihood ratio
I 2

[”(']-‘l , e }T't,,) — |Ru(n)(R1(n))—l

exp {é > SR - (R)]}

i=1 j=1

1
7

(4)

where B, and R,'” are two alternative covariance matrices of x, ,

-, x4, given respectively by (R'™)i; = ro(ti t;) and (R™)s; =
ri(ti ti); 2,5 = 1, --+, n. Then, as n — = and each sampling interval
hecomes infinitesimal, the decision scheme is specified in terms of the
limits of the exponent and the factor before the exponential in (4),
provided these limits exist. Middleton argues on a formal basis that the
exponent of (4) becomes an integral
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1
f 37:?/: dt,
0

where the new process |y, 0 < ¢ < 1} is given as one of the solutions
of a pair of certain simultaneous “stochastic integral equations.” Price
also formally argues that the exponent converges to an integral

1 1
f f -1}[91(5,() — go(é‘,t)]-l‘: ds (H,

where g, and ¢, are given as solutions of a certain pair of ordinary in-
tegral equations.

Davis," Bello® and Turin,” on the other hand, make orthonormal
expansions of the process and use the Fourier coefficients as the repre-
senting sequence. However, the formulation of Davis and Bello is based
upon a ratio of probability density functions of fwo sequences of Fourier
coefficients corresponding to two separate orthonormal expansions,
which is not a likelihood ratio; while the fundamental notion in Turin’s
formulation is “probability density functions of processes,” which are
unbounded functions in general.

One difficulty common among all the papers is the total absence of
convergence proofs for series of random variables. As mentioned in
Section 1.1, the sense of convergence must be “for almost all sample
functions.” Yet, for example, it is not clear on what ground the ex-
ponent of (4) should eonverge for almost all sample funetions to those
stochastic integrals, nor is the existence of the integrals themselves
shown.

The other common difficulty, of a more fundamental nature, is the
lack of optimality proofs. Considering the process as an ensemble of
“well behaved” functions of time, it is intuitively plausible that such
an ensemble should be “‘adequately” described by the distributions of
the “infinitely densely” sampled values of the member functions or by
the distributions of the Fourier coefficients of some orthogonal expan-
sions in £. (the space of square-integrable functions). Namely, the
continuous (parameter) process should somehow be “‘representable” by
a sequence (infinite in general) of random variables. However, the
optimality of the resultant decision scheme should in general be affected
by selection of the representing sequence. Obviously, there are in-
numerable ways of sampling the process, resulting in innumerable
decision schemes. Similarly, there are as many sequences of Fourier
coefficients to represent the process as orthonormal bases of £ . Yet,
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should all the representing sequences eventually yield the decision
schemes with the same error probability, the minimum? If not, which
sequences are the best representations? Even if the best sequence is
chosen, on what grounds will the error probability remain minimum in
the limit as n — oo, since, after all, the classical method is valid only
for a finite n?

Note that there is no a priori need for the use of either likelihood
ratios or representations, so long as the proposed decision scheme is
shown to have the minimum error probability. In fact, Slepian’ shows
interesting special examples (of the singular case) where minimality
of the error probability is explicitly proved. From a different point of
view, Parzen recently restores Grenander’s basic formulation, where
what is called the Radon-Nikodym derivative plays the role of the
likelihood ratio in the classical theory, and puts the sampling method
on a more rigorous basis.

1.3 Summary of Main Results and Remarks

Solution of the problem of optimum reception stated in Section 1.1
rests on the following two fundamental (measure theoretical) facts:

(a) If Py and P; are two Gaussian (probability) measures, they
must be either (¢) “equivalent,” ie., Py = P, or (#z) “orthogonal”
(or “singular”), i.e., Po L P;.

(b) If Py and P, are equivalent, there exists a certain nonnegative
random variable f(w), called the Radon-Nikodym derivative of P;
with respect to Py, and a set of w points in 2 such that f(w) = «/(1 — «)
can be taken as the desired critical region, denoted by A, in Section 1.1.
On the other hand, if P, and P; are orthogonal, there exists a set H
of w points in Q such that Po(H) = 0 and P;(H) = 1, and the critical
region can be taken to be such a set H. In short, the following set S,
serves as the critical region:

f(w) 2 a/(1 —a)} if Py=P,

S. (5)
H if Pyl P.

Thus, the problem of determining the ecritical region now becomes
the problem of finding such a random variable and a set H.

Next, through the use of theory of martingales, the following facts
can be established:

For almost all sample functions,
(7) if (and only if)
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lim tr [(R™) ™ R™ — 21 — R'™ (R'")7Y] < o, (6)

then
lim {y(x4,, -+, 2,) = f(w) under both hypotheses;* (7)

(#1) if (and only if) (6) is not satisfied, then

) 0 under null hypothesis,
lim Li(xy, -+, %) = . . (8)
n-se « under alternative hypothesis,

provided that the sequence {¢} is dense in the interval 0 < ¢ < 1, where
“tr” stands for “trace’” and the likelihood ratio [,, together with
R and R,"", is previously defined in (4).1
Examination of (7) and (8) in conjunction with (5) immediately
leads to the conelusion that, irrespective of the hypotheses,
Se = (lim Li(xe, - -, x) 2 /(1 — a)}. (9)
Thus, if x(4), -+, «(f,) are the values of the sample function (the
received waveform) x(1), 0 < ¢ < 1, sampled arbitrarily but with the
restriction that each sampling interval becomes infinitesimal as n — <,
then the optimum decision scheme becomes the following:
choose ro(s,t) if lim[e(t), -, x(l)] < /(1 — a),

]

choose i (s,t) il limZ[e(t), -, xe(t)] 2= a/(1 = a).

=]

(10)

Furthermore, according to (1), if the given covariance functions ro(s,)
and r,(s,t) are such that (6) is satisfied by their covariance matrices
R.'™ and R," obtained through sampling, then, regardless of whether
ro(s,t) or ri(s,t) is the true covariance function, the above limit is finite
for almost all sample functions, and the error probability associated
with the decision scheme (10) is minimum. According to (#), on the
other hand, if ro(s,t) and 7y(s,0) are such that R,'" and R, do not
satisfy (6), then for almost all sample functions the limit vanishes
if ro(s,l) is true, while the limit diverges if ri(s,) is true; and, inde-
pendent of the given a priori probabilities, the associated error proba-
bility simply vanishes, resulting in the case of “‘perfect reception.”

* Recall that the null hypothesis is the hypothesis that re(s,t) is the true
covariance function of the process while the alternative is the hypothesis that
ri(s,£) is the true covariance function.

t (6) and (7) are also found in Parzen.®



2774 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

It should be noted, first of all, that the sequence of sampled values is
not used to represent the continuous process but to obtain the crucial
random variable f and set H through formation of the likelihood ratio.
Secondly, under the assumption of the covariance functions being
continuous, it can be proved that, regardless of the sampling manner,
the limit of the likelihood ratio satisfies either (7) or (8), thus yielding
the same error probability, so long as each sampling interval becomes
infinitesimal as n — =.* Lastly, negation of condition (6) can be re-
garded as a necessary and sufficient condition for perfect reception.

Having obtained the optimum decision scheme (10), the question
of possible simplification naturally arises next. Examination of the
form of the likelihood ratio (4) suggests that, if the limits of the ex-
ponent and the factor before the exponential exist separately, decision
scheme (10) may be rewritten in terms of these limits. Such an attempt
already appears in the literature, as mentioned in Section 1.2. However,
the crucial mathematical consideration hinges upon the condition under
which such a procedure can be justified. Here, the following condi-
tion is shown to be necessary and sufficient:

lim tr [(Re'™) "Ry — 1] <

n-»o0

lim tr [Re'™ (B,™) ™ — 1] < =.

n-»00

(11)

Note that this condition implies (6), as it should, and excludes the
case of perfect reception. In fact, condition (11) states not only that
the sum of two traces converge as condition (6) requires, but also that
the two traces converge individually. In conclusion: If condition (11)
is satisfied, then there exist a positive constant 8 and a random vari-
able 6 such that

B = lim | R (R\'")"|, (12)
o =1lim >, 2 [(R'™)™ — (R\'"") i xryy, (13)
n-»w i=l j=1

for almost all sample functions under both hypotheses; and the optimum
decision scheme (10) is reduced to the following:

choose ro(s,t) if 6(x) < log (1/8)[a/(1 — )T,

choose ri(st) if 6(x) = log (1/8)[a/(1 — a)]%,
* This does not imply that two different decision schemes yield the same de-
cision for every sample function; rather, a set N of sample functions, for which

two decisions differ, give no contribution to the error probability, i.e., Po(N) =

0= Py(N).

(14)
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where 6(x) is the value of @ for the sample funetion a(¢), which is ob-
tained by simply replacing x,, and x,; in (13) by x(¢;) and 2({;).

Although the above decision scheme is certainly a step toward sim-
plification compared with (10), it is still inconvenient, if not unfeasible,
for physical application, since it requires limit operations for each
received waveform. Yet, so long as the likelihood ratio is formed in
terms of the sampled values, elimination of the limit operation appears
to be impossible. Recall, however, the problem of optimum detection
of sure signals in noise mentioned in Section 1.1. There, the likelihood
ratio is formed in terms of the IFourier coefficients of the so-called
Karhunen-Loéve expansion of the process instead, thus resulting in the
decision scheme specified in terms of an infegral in place of an nfinite
series, as shown by (3). Needless to say, in the present problem where
there are two covariance functions instead of one, additional mathe-
matical complications should be inevitable. Nevertheless, an optimum
decision scheme which is essentially comparable to (3) can be obtained,
as will now be shown.

Let Ay = A = -+ and yn (1), ¢=(1), - -+ be the eigenvalues and the
orthonormal eigenfunetions associated with the covariance function
ro(s,t), and, similarly, let gy = w = - and ¢i(l), ¢(t), -+ be those
associated with 7 (s,t). Then, it can be shown that, under the assump-
tion of r(s,t) and r(s,t) being continuous and positive-definite, the
integrals

1
= [ awd,  i=1,2 (15)

exist for almost all sample functions under both hypotheses, and are

Gaussian distributed with means zero. Furthermore, the covariance

matrix determining the joint distribution of &, - - - | &, is given by either
(QO(M)U = )\l'a"f) or

- 1 16)
(") = aij = ;} MRS Ui; = [ﬂ ei()y;(1) dt,

depending upon which one of ry(s,¢) and »(s,t) is the true covariance
funetion of the process.

Thus the likelihood ratio of &, - -+, & becomes

7” - |Q0(n)('Q](nl)—l |l exp {% i: i [(Q"(n)‘)*l _ (Ql("})ﬁl]ijsisj} , (17)

<=1 j=1

which corresponds to (4). It turns out that, under the previous assump-
tion on the covariance functions, there is a complete parallel between the



2776 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

two formulations, one based upon z, , -+, x,, and the other based
upon &, -+, £ . Thus, for almost all sample functions,

(7) if (and only if)
lim tr [(Q™)™ @™ — 2T — @™ (@™)7] < =, (18)

00

then
lim L(&, -+, £) = f(w) under both hypotheses; (19)

n-»00

(%) if (and only if) (18) is not satisfied, then

L. 0 under null hypothesis,
lim [u(&, o0, &) = . ) (20)
nsw « under alternative hypothesis.
Then, the optimum decision scheme corresponding to (10) becomes:
choose 7o(st) if lim[E(2), -+, Eal2)] < /(1 — @),
o (21)
choose ri(st) if lim[[E(@), -, &(2)] 2 a/(1 — a),
where £:(x), 7 = 1, -+, n, are the values of the random variables

¢; for the sample function x(¢), namely,
1
b = [ 2090 at

Again, note first the role of {£}, which is not a representing sequence
of the process but a means for obtaining the crucial random variable f
and set H by forming the likelihood ratio. Secondly, it can be shown
that, under the assumption of the two covariance functions being con-
tinuous and positive-definite, {¢:(¢)} can be used in place of {¥.(1)}
to form {£]}, but not any orthonormal basis of £,. Lastly, as before,
negation of (18) can be interpreted as a necessary and sufficient condi-
tion for perfect reception. Completing the parallel, if (and only if)

lim tr [(Q'™) " @' — I < =,

n-—>00

lim tr [Q'™ ('™ = I] < =,

then there exist 3 and 8 such that
B = lim | Q™ (@™)7, (23)

n-»00

(22)
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n n

= lim 2 3 (@)™ — (@) )i £k, (24)
for almost all sample functions under both hypotheses; and decision
scheme (21) is reduced to the following:

choose mo(s,t) if 6(x) < log (1/8)[«/(1 — a)[,
choose n(st) if 6(x) = log (1/8)[a/(1 — o)’
Returning to the original goal of eliminating the limit operation,

exammatlon of (24) immediately suggests the possibility of rewr iting
6 as a quadratic form in 2, . That is, if one defines

(25)

R (st) = Z E R a(s)¥(t), (26)

1=1 ;=1
where
R = Q™)™ — (@),
then, from (15),

= lim f f 2™ (s) 0, ds db, (27)
n-»00
and k" 47 = 1, -+, n, can be given as a solution of the matrix

equation

Qu(n) (hij(”)) Ql(n) — Ql(n) _ Qo(n),

(n)

or, more directly, h
equation

(s,t) can be given as a solution of the integral

1 1
f f 0™ (s)h™ (up)n™ (0,t) dudv = 1™ (s) — 1™ (s2), (28)
0 0

where

" (st) = f;w.-(s‘w.-(r), n"(st) = g aii($)¥5(t). (29)

Then, the following conjecture should be imminent:

1 1
- f 2oh(s0)x, ds di, (30)
0 0

where h(s,t) is a solution of
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.
f f rolsu)h(up)r (o) dudo = ri(st) — ro(s,t), (31)
0 0

which are formally the limits of (27) and (28) respectively. The essen-
tial part of the above conjecture can be shown to be correct. That is,
if (31) has a solution i(s,!) such that

11
f f h*(st) dsdt < =, then
0 0
1 1 n n (32)
f f xh(st)a, dsdi = lim S ki EE
0 0 1

nosw i=1 j=I1

for almost all sample functions under both hypotheses, provided that,

forall?, 7 =1,2, -+,

w a)\—ij — 8ij

ai; < 1, a;; > Z’ | ai; |, — < K, (33)

j=1

! 1— 2 |6 — an|
k=1

where K is a positive constant independent of 7 and j.
Then the optimum decision scheme (25) is immediately reduced to the
following desired form:

1 — a
, (3)

1 opl 1 a :
choose ro(st) if fu fn x(s)h(st)x(t) ds dt < log F (—> J
' 1,1 ‘ 1 o

choose m(st) if fn I; x(s)h(st)a(t) dsdt = log 2 (1 — a) .

Difficulty of the proof lies mainly in the fact that, as n increases, the
coefficients ;" themselves vary with n as well as the number of the
terms of the sum, yet 2" (s,6) must approach h(s,t) in such a way that

1 1 1 1
lim f 2 h™ (s )z, dsdl = [ [ xh(st)x, ds dt
nsw 0 0 Jo <o
for almost all sample functions under both hypotheses. This accounts
for need of the auxiliary conditions (33). The first condition is not a
restriction in physical application since

0 oo 1
Z a;; = Z M = f ri(dt) di
=1 0

i=1

is the average energy of the waveform in the interval 0 £ ¢ < 1, which
can always be normalized to assure a;; < 1. Although the remaining two
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conditions are restrictive, current knowledge of infinite systems of
equations does not seem to allow their removal. Thus this calls for a
future investigation of the degree of restriction imposed by them in
physicial application.

As anticipated, there is an apparent correspondence between the
classical case of sure signals in noise mentioned in Section 1.1 and the
present case of stochastic signals, namely, between (2)—(3) and (31)-(34),
except for the fact that the constituent functions in the latter case are
funetions of two variables instead of one. As the integral of the decision
scheme (3) has a simple physical interpretation (the output of a linear
filter with g(f) as its impulse response), so does the integral in (34).
Namely, it is the output of a quadratic filter whose impulse response is
his,t). The advantage of this scheme over the others — namely, (10,
(14), (21) and (25) — is obvious. Given two covariance functions, the
impulse response of the filter is uniquely determined by the integral
equation (31) if a solution exists, and decision is made by comparing,
with a preassigned threshold, the appropriately sampled output of the
filter with the received waveform as its input, instead of having to per-
form the limit operation for each received waveform.

I'inally, it should be remarked that the optimum decision scheme
above differs formally from those previously obtained by others.* A
further, and more significant, distinetion lies in the assured optimality
of this scheme, inherent in its derivation, while the optimality of the
others has yet to be proved separately.

I1. MATHEMATICAL THEORY

2.1 Gaussian Processes

Let {o,, t € T} be a real Gaussian process with a parameter set
T = 10,1] and a finite dimensional distribution funetion ¥4, ... ,, , which
is determined by given mean function and covariance function where
ly, ++-, t, are an arbitrary finite subset of 7. It is assumed that the
mean function is identically zero on 7 while the covariance function
is positive-definite and continuous on 7 X 7. In the present problem
it is desirable to have an explicit representation of the given process
{xy,t € T} on a function space.f

Let © be a space of real-valued functions of ¢ € T. Let x,(w) be the

* Although their work is briefly reviewed in Seetion 1.2, their decision schemes
are not stated explicitly in this paper.

T This excludes Parzen’s® case where the decision scheme is essentially (10).

T The next paragraph follows elosely Example 2.3 in Supplement, Dooh,* pp.
609-610.
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w function with the value {(s) if w is the function ¢(-), so that z,(w) =
¢(s). If the t function  has values {(t), -+, {(fa) at &y, =--, 1,
the condition

) S pry oo, $(ta) = pa
defines an w set, which is denoted by
{r,(w) Spiy, 1=1,---,n} (35)
where p, * -, p. are arbitrary real numbers. Next, let § be the class
of all w sets obtained in this way for arbitrary n, i, -, t,, and let

®q be the Borel field generated by &, and lastly let P be a probability
measure defined on the sets of ®, whose value is given by

P{xli(w) = pl')i = 1, et !n] = Fh."'.f,. (pls T :pﬂ)' (36)

Then, {2.(w), t € T} is a representation of the given process {x,, t € T}
on the function space @, and (2, &7, P) is the explicit probability meas-
ure space for the representation.”

(Remark) By virtue of the choice of representation space, the general
elements of the space @ coincide with the general sample functions of
the process {x(w), t € T}. Thus, the phrases, “almost everywhere (or
almost surely)” and “for almost all sample functions,” have the same
meaning,.

The assumption of continuous covariance function has the following
significant consequences:

(1) fxi(w), t € T} has an equivalent (with respect to P) separable
and measurable process on the same w space.t Hence, so long as the
almost-everywhere valid properties of a given process are of interest,
as in the case of this paper, the given process may as well be taken
to be separable and measurable. Therefore, the Gaussian process
{@i(w), ¢ € T} is henceforth assumed to be separable and measurable.

(i) {x(w), t € T} is sample (Lebesgue) square-integrable on T
almost everywhere with respect to P.I
This immediately implies that a Lebesgue integral

* Symbolic distinction between the given process and its representation on the
funection space is made by explicitly writing the argument w for the latter.

t Note continuity of the covariance function of a process is equivalent to con-
tinuity in quadratic mean of the process (Loéve,'® p. 470), and hence it implies
continuity in probability of the process. Then, accortfi ng to Theorem 2.6 in Doob,?
pp. 61-62, there exists an equivalent separable and measurable process on the

same space.
1 See Loéve,!? pp. 520-521.
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Ew) = f 2oy () di

exists almost everywhere, in which ¢ (¢) is any continuous funetion on 7.
TFurthermore, since the sample Lebesgue integral of a process coincides
almost everywhere with the Riemann integral in quadratic mean cri-
terion,* and also the Riemann integral in quadratic mean eriterion of a
Gaussian process is a Gaussian (random) variable,t £(w) is a Gaussian
variable.

2.2 Formulation of Problem

Let Fo.,......, and Fi,¢, ..., be two alternative Gaussian finite di-
niensional distribution functions of a real separable and measurable
process {x,(w), { € T}, whose mean functions are identically zero and
whose eovariance functions, denoted respectively by ro(s,t) and r(s,t),
are positive-definite and continuous on T X T. Let Py and P, be the
Gaussian probability measures defined respectively by Fy,,,,...,., and
Fi..,.....;, on the Borel field ®r of subsets of @ as defined previously.
It is well known that P, and P, are either equivalent, P, = P;, or
orthogonal, Py L P..}

Define a set function P, by

PoA) = aPo(A) + (1 — a)Pi(Q — A), A € Br, (37)
where « is a constant, 0 < a < 1.§ Let A, € ®r be such a set that
P.AA)) = P(A) forall A € ®yr. (38)

Then, the problem of interest is to specify such a set A, in terms of
T(w).|]

Now, if Py = P, let f(w) be a Radon-Nikodym derivative of P,
with respect to Py ; while, if Py L Py, let H € ®; be a set such that
Py(H) = 0 and Pi(H) = 1. Then, it can be shown that the following

* Henceforth, the “‘sample Lebesgue integral of a process” will simply be ealled
the ““integral of a process,”” unless otherwise specified. A definition of Riemann
integral in quadratiec mean eriterion is in Loéve,!® pp. 471-474.

1 See Loéve,!® p. 485.

1 See Hajek 1112

§ P, is the so-called error probability. Although 0 £ P, =1 for all A € @&y,
P. is not a probability measure, and its full meaning is given in Section 1.1.

|| Equivalence between this problem and that of “optimum reception of binary
GGaussian processes’ is discussed in detail in Section I.
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set S, satisfies condition (38):*
lf P(] = 1)1 ’ Sa
ifPD_LI)l, SQ=I{.

I

Nlw) = o/(1 — a)},

(39

Thus the above stated problem is reduced to that of finding

(¢}, if Py = P, a funetion of 2 ,(w) equal to f(w) almost everywhere
with respect to Py and P, , and

(i), if Py L Py, some such set H expressible in terms of x(w).

2.3 Solutions — [

2.3.1 General Solution

Let {7 be a sequence of points in 7 = [0,1], which is dense in 7.
Let B, be a Borel field generated by a class of w sets of the form

{.FT‘-((JJ) = Pi i = 1) Ty ”‘}! (40)

and let & be the minimal Borel field containing U &, . Obviously,

n=1
GC®BCCB, C By (41)

Then, since {z¢(w), t € T} is a separable process, continuous in proba-
bility (with respect to P, and P;), and the sequence {r} is dense in 7',
it follows that, for an arbitrary set A € ®r, there exists a set A’ € ®,
such that

Po(AAAN) = 0 = Pi(AAN). (42)t

Now, through the usc of the covariance functions ro(s,t) and ri(s,t)
and the faet that the mean functions are identically zero, the density

functions po and p; of the random variables x; (w), 7 = 1, ---, n,
corresponding to Py and P, respectively, are obtained as follows:
puln, o ym) = (207 R,
X exp {—% g ,Z:; [(R...(H))AI]”V"VJ}, m =0, 1, (43)
where the r; , ¢ = 1, - - - , n, are a finite subset of {7}, and R, m =0,

1, are n X n symmetric, positive-definite matrices defined by

(Rm(n))ij = Tm('r,-, 1‘_1‘); m = O; 17 "")J =1,--,n (4:4)

* Spe Appendix A. The first assertion of (39) follows from Corollary 1 in this
appendix, while the second assertion is self-evident.
t See Doob,® pp. 51-55; in particular, Theorem 2.2 (Z).
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Then define a random variable /,(w) by

X coe 2 ()] n 3
l‘n — pl[["l(“d)l y Ly = | R ( )(R (n) 3
(w) pq[.l‘,l(w), S _1-,n(w)] ‘ ’ ' ) !

n n b (45)
X exp {% Z] z,: [(R™) ™ — (R‘m)—1].',—‘1‘,,-(w).1-,,—(w)}.
i=l j=
Note that
l(w) = 0 foralln. (46)

Furthermore, since K,,'"’, m = 0, 1, are positive-definite, py = 0 when-
ever po = 0 and vice versa. Then, it can be shown that the processes
{l.(w), n = 1} and {1/L.(w), n = 1} are martingales with respect to
P, and P, respectively.”

(i) Po = Py : Let Eo{f(w)| ®.}, n = 1, 2, ---, be a conditional

expectation of f(w), given ®, , with respect to P, . Namely,

f En“l(w) [ (P,l} dPu = [ f(\'.d) dPn fOl' any A E (B,, .
A SA

Then,
Liw) = Effle)| ®),  ae (P),t (47)
and, from (41)1
lim Eolf(w)| G = Eodf(w)| &),  ae. (Po). (48)

n—sx

Yet, from the definition of Ko} f(w«)| .} and (42),

ol f(w)| ®,} = [lw), a.e. (Pg). (49)
Hence,
Iim L (w) = f(w), a.e. (). (50)

Since I’; = P, the above implies

lim l(w) = flw), a.e. (). (51)

N>

Thus, the desired funection, which is equal to f(w), a.e. (Po, Py), is

* See Doob,? pp. 91-93.

t “a.e. (Pn),” m = 0, 1, is used as a shorthand notation of ‘“‘almost everywhere
with respect to P .”" Similarly, “a.e. (Py, P1)” will be used to denote “almost
everywhere with respect to both Peand P, .”

1 See Doob,? p. 331.
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1(w), which is defined by
[ {(w) = lim [,(w). (52)

(i) Po L Py : From (46), lim [,(w) < «, a.e. (Pg).* In fact, it can
be shown that ne

lim /,(w) = 0, a.e. (Py).1 (53)

By using the same argument, it follows that
lim [1/1,(w)] = 0, a.e. (Py). (54)

n—»00
Hence, for an arbitrary constant ¢ > 0,

Pollim 1, (w) = ¢} = 0, Plim I, (w) =2 ¢] = 1.

n—-»w n-—»o0

Thus, the desired set H, with Py(H{) = 0and P1(H) = 1, is
H = {lim l,(w) = a/(1 — a)}. (55)

In summary, upon combination of (52) and (55) in conjunction with
(39), the desired set S, is

Se = {lim [,(w) = /(1 — a)}, (56)

n->:0

irrespective of whether Py = Pyor Py L P .

2.3.2 Special Solutions and Summary

Under certain restrictive conditions, the set S. can be specified in
terms of well defined functions of z.(e). It is the purpose of this sub-
section to obtain such specifications as well as the accompanying con-
ditions in terms of the given covariance functions ro(s,t) and ri(s,t).

(7) If Py = P,, it has already been shown that

Se = (@) = /(1 — a)}.

Thus, it is of interest to obtain a condition for P, = P, .1
Define

(@) = [l(w) — 1] log li(w), n=1,2---. (57)

* See Doob,? p. 319; Theorem 4.1 (i).

1 See Doob,? pp. 345-346.

1 Such conditions are already available (e.g., Parzen,® Shepp"). For more de-
tail, see Yaglom."
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Then, since (p — 1) log p, p > 0, is a real, continuous and convex
function of p and Eol|(l.(w) — 1) log Li(w)|} < =, n = 1,2, -+
{m(w), n = 1} constitute a semi-martingale (with respect to Po).*¥
Hence, E¢{n.(w)}, n = 1, 2, ---, forms a monotone nondecreasing
sequence

Efm(w)} £ Edm(w)} = ---, (58) 1
which must either converge or diverge. Then, according to (53),
if Py L Py, then
lim Eo|n.(w)] = . (59)

Hence, since Py and P; can be either equivalent or orthogonal, it follows
that

Pu = P1 y if
lim Eo{nga(e)} < . (60)

n-—>m

It can be shown that the converse of (59) is also true,{ i.e.,

if lim Eu{ﬂn(w)} = oo, then Pg L Pl - (()'1)
This implies that the condition of (60) is also necessary. Thus, through
substitution of (45) into (57) and application of (43) for expectation
caleulation, §

P, = P, if and only if
lim tr [(Re™) P R — 21 + R™ (R')7] < . (62)]

where R, and R,'™ are defined in terms of 7o(s,t) and ri(s,t) by (44).
(#1) Examination of (45), (50) and (51) indicates that, in addition to
condition (62), if

lim | R (R,'")'| =8, 0<B< =, (63)

n—+x

then

* See Doob,? pp. 205-206, Theorem 1.1 (iii). “E,"" denotes expectation with
respect to Py , namely, an integration over @ with respect to Po.

1 See Doob,? p. 324, Theorem 4.1s.

1 See Hajek;! in particular, Lemma 2.1.

§ For this calculation, use the following equality: Eolni(w)] = Evllog lh(w)} —
Eoflog lui(w)}, n = 1,2, -+ .

| ““tr’’ denotes “‘trace,’” and / is the n. X n identity matrix.
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tim Z_:l ; [(B™) ™ — (R™) 7Ty 2. (w)ar,(w) < o, (64)

a.e. (Po, Pl).
Thus, by defining 6(w) as the above limit, i.e.,
f(w) = lim Z 2 [(R™)™ — (R) ijri(w)ar;(w), (65)
n»w i=1 j=1
the set S, € ®7 can be specified as follows:
Sa = {0(w) = log (1/8)(«/(1 — a)). (66)

It will now be shown that two conditions (62) and (63), required
for the above specification of S,, are equivalent to the following pair
of conditions:

lim tr [(R™) ' R — 1] < =,

and (67)
lim tr [Re'™ (R,"™)™" — 1] < =.
Define
fn( )= _10 IH( )s
w gl (w (68)
E(w) = L(w) logl,(w) n=12 ---.
Thus,
m(w) = (@) + flw), n=12 .. (69)

Again, just as in the case of 7,(w), both {{,(w), n = 1} and {{./(w),
n 2 1} are semi-martingales with respect to Py, and

Elti(w)] £ Elpa(w)} =

(70)
Eolf' ()} = Eoff(w)f = --- .
Furthermore, from (53),
if Py 1 Py, then lim Eyffn(w)} = . (71)

T ->00

However, from (69) and (70), divergence of Eyf{.(w)} implies that of
Ey|m.(w)}. Hence, according to (61), the converse of (71) holds. Then,
again from (70) and the equivalence-or-orthogonality dichotomy of
1)“ ﬂ.]]d 1,] y



RECEPTION OF BINARY GAUSSIAN SIGNALS 2787

Py = P, if and only if lim Eyj.(w)] < . (72)

Thus, upon substitution of (45) into (68) and application of (43)

for expectation calculation, an alternative necessary and sufficient
condition for Py = P, is obtained as follows:

lim {log | (R'™) ™" R\ | 4 tr [R"™ (R\'") ™" — I} < =. (73)

Now, under the condition (63), the above condition implies that

lim tr [Re™ (R,")™ — 1] < w. (74)
Then, upon combination of conditions (62) and (74), condition (67)
immediately follows.
The result of this section may be summarized as follows:
(#) In general,

Se = {lim L) = a/(1 — a)},

-

where {,(w) is defined by (45).
() If Py = P,, which is true if and only if
lim tr [(Re" )7 RS — 2T + R™ (R < =,

n—+*

then lim 1,(w) = f(w), a.e. (P4, P); thus hy defining /_{w) = lim {,(w),

"0 n—>w|

Sa =l (w) 2 a/(1 — a)].

(a22) if
lim tr [(Re'™) ™ R — 1] < oo,
lim tr [R™ (R\")™ — 1] < =,
then

Se = {8(w) = log (1/8)(a/(1 — a))?
where 8(w) and 38 are defined by (65) and (63) respectively.
2.4 Solutions — 11

2.4.1 General and Speeial Solulions

Let &y = Ao = -+ and ¢, (1), ¥u(f), --- be the eigenvalues and the
corresponding orthonormal eigenfunctions associated with the covari-
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ance function ro(s,t).* Similarly, let p; = w; = -+ and @i(2), @(t), - - -
be such eigenvalues and eigenfunctions associated with r(s,t). Then,
according to the discussion in 2.1 (%), continuity on 7' of each ¥;(¢)
implies that the integrals

) = [alw®d, =12 (75)
exist a.e. (Py, P1), and are Gaussian random variables. In fact, it
can be shown that the density functions Py and p; of £(w), -, &u(w)
corresponding to Py and P, are given by
Plva, == o) = (20)” 2 1@ [

(76)

exp {'—" Z Z Qm(u))ﬁl]u Vi ”J} y m = 0: 11

i=1 j=1

where Q,'”, m = 0, 1, are n X n symmetric and positive-definite
matrices defined by

(Q'™)i; = Nbis (") Z MUl 5 (77)
where

Uij = frwi(f)%(t) dt. (78)

Let @&, be a Borel field generated by a class of w sets of the form
(£i(w) S piyi=1,--,n], (79)

and let &_ be the minimal Borel field containing U &, . Obviously,
n=1

@1C@2C"‘C(§mCC§T. (80)

It can be shown that, for an arbitrary A € ®7 , there exists some Ac @,
such that

Py(AAA) = 0. (81)%

Now define a random variable J.(w) by

* More precise definitions of these eigenvalues and eigenfunctions are given
in Appendix B.

t See Appendix C.

1 See Appendix D.
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_ ﬁl[fl(u}), ey fn(w)]

l(w) =L
¢ polEr(w), -+ Ea(w)]

n) g n)y—1 4 1 S - )y —
= |Qu( (") ll’eXD {Z 1‘21 (3 (82)
3= 1=

- (Ql"")”‘]s,-&(w)&(w)} ,

where (76) is substituted for the second equality. Again, note that
l.(w) is nonnegative for all n and also the fact that $» = 0 whenever
Po = 0 and vice versa since Q.'™, m = 0, 1, are positive-definite. Thus,
again the processes {I(w), n = 1} and {1/la(w), n = 1} are martingales
with respect to Py and P, respectively.

By following step-by-step the same procedure as the one in the
preceding section,* the following results are obtained:

() In general,

S. = {lim I,(w) = a/(1 — a)}. (83)

(1) If Py = Py, which is true if and only if
lim tul‘ [(Qoﬂn)')fl Qltn) _ 2[ _|_ Quin) (Ql(n))fll < w, (84]

then
lim L(w) = flw), ae (P, Py); (85)
thus by defining
() = lim L.(w), (86)
Se = {I(w) = a/(1 — a)}. (87)
(2i7) If
lim tr [(Q™) ™ @' — 1] < e,
n—-x (88)
lim tr [Qo(m (Q1(m)‘l — 1] < =,
then there exists a constant 3, 0 < 8 < =, such that
* In effect, it amounts to replacing B, and l,(w), n = 1,2, --- n, by ® and

{.(w) respectively.
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lim | Q™ (@)™ | = §; (89)

n—>oo

and, from (85) and (82), it follows that

lim ZE" (@) — QL") Lti(w)ti(w) < o,

n+w i=1 j=I1 (90)

a.e. (Py, Py);
thus, by defining 4(w) as the above limit,
Sa = {6(w) = log (1/8)(a/(1 — @))*}. (91)
2.4.2 Integral Expression for §(w)

For the purpose of physical application, it is desirable to express the
random variable #(w) as a simpler function of z,(w), in particular, with-
out involving limit operation. Examination of the definition of #(w),
ie.,

b(w) = lim 2 ; (@)™ — (") iki(w)Ei(w), (92)

n—+m 1=1 j=

indicates that #(w) might be expressible as a quadratic form in 2,(w),
ie.,

f-J; 2, (w)h(st) 2 (w) ds dt

if such a square-integrable function h(s,t), (s,t) € T X T, exists and
ean be determined uniquely. It is the purpose of this subsection to make
the above statement more definite and precise.

Define an n X n symmetric matrix H™ by

H(n) — (Qu(n})—l _ (Qltn))“l-
Then,
Qﬂ(n)H(n)Ql(n) — Ql(n) _ Qﬂ(n)
or, through (77), the equation for the -jth element becomes

kEl MNH™) (@) = (@™ — Ny 4, j=1,---,n

In other words, every i¢th row of H'" satisfies the following system of
equations:*

S apha® = b)) j=1,0

* Note that the solution is unique, since the matrix (a;;) is positive-definite.
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where
@i = 2 mallktj s ..
k=1 ] = 1! 2: ] (93)*
bi(7) = (ay/Ni) — bij,
or its standard form
hi'™” = gc,-kh..-k‘"’ +bi(i), j=1,---,n, (94)
where

Cij = 5,'_,' — Q5.

Now, for each 7 = 1, 2, -- -, consider the following infinite system of
equations:

hij = ,,El eipha + bi(1), F=1,2 . (95)
According to the theory of infinite systems of equations,t if (95) has a
solution (i, hy, -+ +) foreach? = 1,2, -+ - such that
2 2 i < (96)
=1 j=1

then (hi , his, -+ ) is unique and

hij = lim h,,-,(“), i=12 -, (97)
for each i = 1,2, ---, where (ha'™, -+, hoa™), 4 = 1, -+, n, is

the solution of (94); provided that (95) satisfies the following condi-
tions: for each i =1, 2, - - - |

2]0,—,-! < 1, (98)
c
and there exists a constant I; > 0, independent of j, such that

[ b;(7)| = (1 — Z [ e |) J=12 .. (99)

On the other hand, if (ki , by, ---) is a solution of (95) for each
i=1,2 -, satisfying (96), then the following integral equation

Yy =

ff ro(su)h(up)r(vt) du dv = r(st) — ro(st) (100)

* Note that (Q,™);; = a5 ;7,5 =1, -
t See Kantorovich and Krylov,” pp. 20~33
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has a square-integrable solution A(s,f),
foT Ri(st) dsdt < =, (101)
such that
h(st) = i > hoi(s)gi(t),  in the mean.* (102)

i=1 j=1

Conversely, if /(s,t) is a square-integrable solution of (100), then (95)

has a unique solution (A, A, ---) for each 7 = 1, 2, -- -, satisfying
3 3> hiff < », such that
i=1 ;=1
fis = [ [ ) iGs09,00) ds det (103)
TV T

Now, extend the definition of hii™,i=1,2, ---,n,t by adding
hif™ =0;  dj=n+ln42 . (104)
Then, (90) and (92) can be rewritten as

o0

lim Z Zhu(mf(w)f_,(m) < =, ae. (Py, P1), (105)

n+wo 1=1 ;=1

and

; hiit™ Edw)Ej(w). (106)

= lim

n=w 1

-

According to the theory of coordinate and projective limits in sequence
spaces,§ (97) and (105) imply that

Bo) = 3 3 hiti@(w),  ae (Po, Py, (107)

i=1 j=1

since

s

33 Ew)Eiw) < ©,  ae (Po,P).  (108)

i=1l J

I
-

On the other hand, from (102) and square-integrability, a.e. (Po, P1),

* See Appendix E.1.
t See Appendix E. 2
Namely, (hii, -+- , hin) is the solution of (94) for each? = 1,
§See Cooke,'s pp. 282—289 in particular, Theorem (10.3, II), extended to the
case of double sequences.
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of {a,(w), t € T},
[[ a@hsnae) dsdt = 3 3 hat(w) (o),
i=l j=

a.e. (Pu,Pl)-

(109)

Hence,

B(w) = foT s(@h(s ) (w) dsdi, ae (Po,Py). (110)

2.4.3 Discussion and Summary

Recall that, in order to specify the set S, € & for given « as (91),
it is sufficient to assume (88), which assures existence of § (w) and §
defined by (89) and (92) respectively. Moreover, in order to express
#(w) as (110), it requires the additional assumptions that () the
integral equation (100) have a square-integrable solution and (7)
the conditions (98) and (99) be satisfied.

It can be shown, however, under the assumptions (7) and the fol-
lowing:

ai; <1, 1 =12, -, (111)
the conditions (4¢) and (88) can be replaced by the following:

a;; > Z' l G'iji; i = 1, 2, ey, (112)*
i=1

and that there exists a constant K > 0, independent of 7, j = 1, 2,
-, such that

o0

[(ai/Ne) — 85| € K(a; — 2 | awl), (113)

where a;; is defined by (93).t It is quite possible that, once the condi-
tion (7) is assumed, the conditions (111), (112) and (113) may be
superfluous. That is to say, in some special cases, if the integral equa-
tion (100) admits a square-integrable solution h(st) it may be pos-
sible to prove directly that

©

h(sit) = lim »_ i R ()¢ (), (114)

n—+owc i=1

in the mean, which immediately implies (97) and (105), thus establish-

* The prime on the summation sign symbolizes omission of the term j = <.
t See Appendix D.
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ing (107) and leading to (110). However, in the general case, establish-
ment of (114) does not seem possible, nor does finding a sufficient
condition for (114), without making the resultant condition excessively

implicit and complex.

2.5 Summary

If
ffmwmmm@@m@=n@n—mm
v T

has a solution A(s,t),

foT P(st) dsdt < =,

then the set So € ®q, given a (0 < a < 1), can be specified as

&=“i%wmwmm@wgm%6%ﬁ? (115)

where
A =lim| @™ (™),
and
(Q'™)e; = Nibis, Q") =aii;  HLi=1,,m

and

@ij = ;1 MUk UL 5 i, = 1,2, -+~

Uij = fTsa;(E)\f/j(I) dt;
where Ay = Ay = - -c 5 n(l), du(t), -, and p =2 = -5 all),
es(t), -+, are the eigenvalues and the corresponding orthonormal

eigenfunctions associated with the given covariance functions ro(s,t)
and r,(s,t), which are positive-definite and continuous on 7" X T
provided that
(1) Gy < 11i= 1!2a Rty
(2)651'1'>Z”a?'1'|1 1::1,2,---,
=1

(3) the following is bounded uniformly in¢,j = 1,2, --- :
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aij

x | =k
1— 20 |85 — ae|
k=1

ij
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APPENDIX A

Theorem on Optimality

Let P, and P, be probability measures defined on a Borel field &
of subsets of an abstract space Q. Through the use of Lebesgue decom-
position theorem and Radon-Nikodym theorem:* for a nonempty set
H ¢ ® with Po(H) = 0, there exists a nonnegative function f(w) in-
tegrable over Q with respect to Py such that

Pi(A) = f F(@)dPy + Py(a 0 H) (116)

for an arbitrary A € ®.1

Theorem: For an arbitrary constant k > 0, define a set S € ® by

S = [f(w) 2k UH (117)
Then,
EPo(S) + Pi(S°) — kPs(A) — P1(A°) =0 (118)

for an arbitrary set A € ® where S° and A are the complements of S and
A with respect to Q.

Proof:
Put p = kPo(8S) 4+ Pi(S°) — kPo(A) — Py(A°). By adding and
subtracting kPy(S N A) and P;(S° N A°),

* See Loéve,!? pp. 130-132.
t This paragraph closely parallels Grenander,! pp. 209-210.
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p = k[Py(S) — Po(S NA)] 4+ Pi(S°) — Pi(S° NAY)
— E[Po(A) — Po(S N A)] — Pi(A°) + Pi(S° N A°)

(119)
=EkPy(S NA®) — Pi(SNA%) + P,(S°NA)
— kPo(S° N A).
From (116) and (117), with & > 0 and Py(H) = 0,
Pi(S NA°) — P(SNA)
- fanuf(”)dp" B -/.;=ﬂA Jw)dPs (120)

+P(SNANH) —P(SSNANH)
’CPo(S ﬂ Ac) — ]cPo(Sc ﬂ A),

v

since
Py(S°NANH)

=Pi({f(w) <k} NH N ANH)
By substituting (120) into (119),

1A

P(H NH) = 0.

P O!
which proves (118). (Q.E.D.)

Corollary 1. Suppose Py = P, and let kb = [o/(1 — ), 0 < a < 1.
Then, a set S, defined by

Se = {f(w) 2 &/(1 — @)} (121)
has the property expressed by (118), .e.,
aPo(Sa) + (1 — a)Pi(Sa") = aPo(A) + (1 — a)Pi(A°)  (122)

IIA

for an arbitrary A € ®.

Proaof:
Note that Py = P; implies P;(H) = 0. Hence, in (118),

kPo(8) + Py(8°) = [a/(1 — a)]Po(Sa U H) + P1(S. U H)
= [a/(1 = &)]Po(Sa) + Pr(Sa).

Thus, substitution of the above into (118) and multiplication by 1 — «
proves (122).

Corollary 2. Take Q to be R, , an n-dimensional Euclidean space, and ®
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to be Borel field of right semi-closed, semi-infinite intervals in R, , denoted
by . Let pu(xy, -+ ,x.),m = 0, land (xy, -+ ,x.) € Ry, be Baire
density functions corresponding to P, , m = 0, 1; i.e.,

Pulz: = piyi =1, -+, d|

P1 Pn (123)
=f 44.f d_fcl...dx"pm(xl’...,xn)-

Suppose pr(x1, -+ ,x.) = 0 whenever po(x1, ---,%.) = 0. Then

Sa.n defined by
o= (Pl e )

po(zr, -, ) 1 —a
*

has the property expressed by (122)

Proof:
Note that P, = P, thus P,(H) = 0. Then, from (116),

o, o) = H ae. (P, P)

Hence, apply Corollary 1.
APPENDIX B

Preliminaries on Integral Operatorst

Let I be an integral operator with a real, symmetric, continuous and
positive-definite kernel r(s,) defined on the rectangle 7' X T where
T is the closed interval [0,1]. That is,

10 = [ (s, 01(s) ds (124)

where f(¢) is an arbitrary real-valued function in the space of square-
integrable functions on 7', which is symbolically denoted by £:(0,1),
or simply by £ .

Then, according to the theory of linear operators, all the eigenvalues
of L are positive, of finite multiplicity, and finite or denumerably in-
finite in number. Thus, counting each eigenvalue as many times as its
multiplicity, we can construct an ordered sequence of eigenvalues,

* This replaces the Neyman-Pearson theorem in the classical theory of testing
simple hypotheses when the criterion changes from the Neyman-Pearson’s to

the minimum error probability. See Cramér,!® pp. 529-530.
t See Riesz-Nagy,'” pp. 227-246.
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MZ A2, (125)

and the corresponding sequence of orthonormal eigenfunctions (using
the Gram-Schmidt orthonormalization process if necessary),

(1), Yalt), -~ - . (126)
Then, according to Mercer’s theorem,
T(S,t) = z:; R,IP,(S)Iﬁ,(t), (127)

where the series converges uniformly on 7. Consequently, ¢:({) is
continuous on T for all 7, and

im = f r(tt) dt < =, (128)

i=1

namely, the sum of all eigenvalues is finite.
Furthermore, because of the positive definiteness of the kernel r(s,t),
the set of the eigenfunctions {y,(f)} forms an orthonormal basis of £..

Let {¢:(t)} be another orthonormal basis of £, . Then,
Yi(t) = 'Z:; wie:(t), in the mean, (129)
where
ws = [ e:Ou0) at (130)
which satisfies the following orthogonality conditions:

kZﬂ WikWjk = Lw;(t)qa_,(t) dt = 5,‘_,',

. (131)
D Wiy = f Yi(0)y;(t) dt = &;; .

k=1 T .

APPENDIX C

Density Functions of £i(w), 7 =1, ---, n

It has been established in Section 2.4.1 that the random variables
defined by (75), i.e.,

B = [a@w@d, =12 (132



RECEPTION OF BINARY GAUSSIAN SIGNALS 2799
are Gaussian variables with respect to Py and P;, where
Bofa(w)) = 0,06 T,m = 0,1, and foﬁ(m) dt < o,
a.e. (Po, P1) .
C.1 With respect lo Py
Through repeated use of Fubini’s theorem,
Eyfti(w)) = j;En{.T.;(w)} gy dt=0 i=1,2---, (133)
and
B) () = [ [ Polr()ne) a0 ds di

= ff ro(8,)¥:(s) ¢;(1) ds dt (134)

= )\1'65.?'; @r.? = 1! ?‘l Ty
where Mercer's theorem is used for the third equality. Then, since
£(w), 7 = 1, ---, n, are Gaussian variables. (133) and (134) immedi-
ately give (76) and (77) with m = 0.
C.2 With respect to P,
By substituting (129) into (132),

E;(w) = A; irkl-m-(w), a.e. (Pu ’ Pl) (135)
where
@) = [al@ed, =120 (136)

which exist a.e. (Fq,P1), and Gaussian variables just as ¢(w), ¢ =
1, 2, ---, are. Then, the results in C.1 imply that

Efni(w)niw)l = pibi;; Lj=12, . (137)

Define

m

Ej(mJ(w) _ Z ‘”an(m)’ i=1 - ,mn, (138}
k=1

* Note n:(w) here must not be confused with the one in Section 2.3.2.
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and let #;"™ be the distribution function of &™(w), - -, £™(w),
and let £, (1, -+, 7)), —© < 7; < ®,j =1, --+, m, be its char-
acteristic function with respect to Py, i.e., :

A™(r1, vy ) = B {exp [igr,-s,-ww)]}. (139)

Then, according to Levy’s continuity theorem,* lim F,™ exists if and
only if lim /1™ (71, -+, ma) exists for every r;, —® < r; < o, and

continuous at 7; = 0, j = 1, - - -, n; and, furthermore, when lim F;™ =

m—+o0

F, exists, its characteristic function fi(r,, -- -, 7.} isequal to lim f;

(r1, -+, 7o) forall r;, — e < 7; < ©,7 =1, ---, n. Hence,
it suffices to obtain lim f;""(7y, - -, ), namely, the limit of (139)

as m — oo, and to assure its continuity at the origin.
By substituting (138) into (139),

{7 (71, oo, 1) = Bn {exp [ JZ:: T i uk:m(w):l}
= FE, {cxp Li () il Tjuk:']

(m)

Note that

o o0
2 | iy | = Z | i | = :; e < o, (138)
k=1 —

since

Il

Upilins |

Um(t)wf(t) dtHfm(t)%-(t) dt{

[ el at [ [ at [ dt]%

=1.
* See Cramér,® p. 102.

lIA
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Hence,

13 n

o0 n n a0
kz: TiT iUk iUp; = Z Z TiTj Zl MEWg iUy «

=1 1=1 j=1 i=1 j=1 k=

Then, putting
(Ql["]):'j = Z BpUgiley 1:] = lr T, N,
k=1

continuity of exponential functions implies

lim f™ (7, +++, 7a) = exp [-—— > Z ("™ -:T-'Tj:l,

m-»co i=1 j=1

which is obviously continuous at ; = 0,7 = 1, ---, n. Note that the
right-hand side above is the characteristic function of the Gaussian
distribution function with the density function (76) and (77) with
m = 1.

APPENDIX D

Po — Equivalence between ® ¢ and &,

It is to be proved that, for an arbitrary set A € ®,, there exists a
nonempty set A € @&, such that Py(AAA) = 0. Note, however, that
the above statement is equivalent to the following:

Let Fr C ®; be a class of all sets A € B such that A € F, implies
existence of a nonempty set A € &_ with Po(AAL) = 0. Then, Fr =
®7."

The second statement will be proved.
D.1 Foreveryt € T,

2 (w) Z () (t), a.e.(Po). (139)

Proof:

According to the discussion in Section 2.1, (77), &(w), k = 1, 2,
are equal, a.e. (P;), to the Riemann integrals in quadratic mean eri-
terion of x4(w)y¢r(t) on T. Hence, from the proper orthogonal decomposi-

* It must be proved first that such an 7 is not empty. This will be done in
Section D.2.
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tion theorem,* the series of (139) converges in quadratic mean with
respect to Py to 2,(w) uniformly on 7'. Furthermore, £(w), k = 1,2, -+,
are mutually independent Gaussian variables with means zero and vari-
ances A\, k = 1,2, -+, with respect to P, .1 Hence, the series converges,
a.e. (Py), to a limit for every ¢t € T since the series of its variances con-
verges for every ¢t € T, ie.,

kz:; Eﬂ{sz(w)}d’kﬂ(t) = ’;AM&LU»)#/L(t) = Tn(l,t) < ©,

from Mercer’s theorem. Yet, since both the convergence in quadratic
mean and the convergence almost everywhere imply the convergence
in probebility measure, this limit must be equal, a.e. (Py), to x,(w)
for every t € T. (Q.E.D.)

D.2 Let Az € Br be defined by
A’P={‘Tt5(w)épixizl!"'jn'l- (140)
Then there exists a nonempty set Ar € ®_ such that

Po(ArAAdg) = 0.

Proaf:
Consider a set defined by
Ar= {J;Eﬂ:(w)\bk(ti) S pi,i=1, ,n} (141)
Clearly, Ar € &, . Define I'; € &7 by
T, = {a:,(w) = AZ; Ek(w):,bk(t)}, te T (142)
Note that (139) implies
Pn(I‘t) = 1, tE T. (143)
Then it is self-evident that, fort; € T,z =1, --- , n,

Ar = Az N n r,,.) + Ag n(u 1‘,‘:),
= - (144)

1'{1‘_ KTn(ﬁ Ft,—)+ ETn(UIF!;c)y
i=1 i=

where T, is the complement of T',, . Note that, from (142),

* See Loéve,!° pp. 478-479.
t See Appendix C.1.
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n -~ n

Ar n(n 13‘.) = Ar ﬂ(ﬂ P,;), (145)
i=1 i=1

and, from (143),

Py [AT n (U F,f)] =0=DP [ﬁr n (L_J F,,.‘):I. (146)

Hence, upon combination of 144, 145, and (146),
Po(ArAA7) = 0. (Q.E.D.)

D.3 51. = (BT.

Proaof:
First, it is easily seen that the class F 7 is a field. Moreover, it will now

be shown that Fr is a Borel field. Let A; € F,7 = 1, 2, -+ . Then,
from the definition of ¥, , there exists A; € &, such that

Po(AAA) =0, i=1,2---. (147)
Define two sequences of null sets M, and N;,7 = 1,2, ---, by
M;= A —Ri, Ni=Ai— A (148)
Then,
M-N.cAcCcAh UM, i=1,2 -
Hence,

which implies

i=1 i=1 i=1
Thus,
(5 (3]0
namely,
Ones.
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Furthermore, since

A A = (u
=1 i=1
and also Fr is a field,
NA; €5z,
=1

Hence, - is a Borel field.

Secondly, note that ¥, contains the generating class of @, as shown

by (140) and (35). Hence,

Fr D Br.

Yet, from the definition of Fr,

Fr C Br.

Therefore,

gr= QT-

APPENDIX E
Fquivalence between Two Equations
E.1 Preliminary

Through Mercer’s theorem,

ro(s,t)

I

ri(st)

Then,

[ [ nGsow ) ds dt = 3 wusau = ass.

Hence,

?'1{8,1) = Z E G,’j'lf/{(s)'l//j(t),

i=1 j=1

2 N(s(t)

,,.Z,: pieor(8)er(t),

in the mean.

(Q.E.D.)

(149)

uniformly.

(151)*

* This is a trivial extension of well-known results in the case of functions of one
variable. A special case of (151) is found in Courant and Hilbert,!? pp. 73-74.
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1.2 Equivalence between Two Equations
Tiquation (95) can be rewritten as
-]
2 Nhaaw; = @ — Ndij,  J=1,2,+, (152)
k=1
where 7 = 1, 2, - - - . Repeating (100),

f f ro(sp)h(up)r(vt) dude = ri(st) — n(st). (153)

(a) If (hiy,ha, --+) is a solution of (152) for each 7 = 1,2, -+,
with

i z:n: h-,’,": < = y (15-1-)

then a square-integrable function A(s,t) with

hist) = x Z hipp(s)y (L), in the mean, (155)
by s

satisfies (153).

Proof:
The left-hand side of (153) is clearly square-integrable. Hence, it
has the following expansion:

f f ro(s,0) h(up)r (0,0) dude = i i i Nihiap: () (1), (156)
7 im1 j=1 k=1 56

in the mean,

-

since, through substitution of (149), (150), and (155),

ffl:f f ro(s,u) b)) ey (oyf) (fuu'i':lnlz,-(s)lpj(l) s dl
TYT T YT

. (157)
Z \if ik T’JJ = 1: 2:- e
k=1
Yet, by virtue of (hy,hi, -++) being a solution of (152) for each
= 1,2, -, the right-hand HldF‘ of (156) becomes
2 2 2 Mt ()95 (1) = 22 (o = Asyi (g (0), - (158)
i=1 j=1 k= i=1 j=

the right-hand side of which in turn becomes, from (149) and (150),
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Tl{s,t) - TU(th)

8

= Z 2 (ai; — N€iji(s)y;(1), in the mean. (159)

o0
i=1 j

Thus, upon combination of (156), (158), and (159),*

|
|

f f ro(S,u) h(up)r(od) du dv = ri(st) — ro(s,t). (160)
T YT
(b) If h(st) is a square-integrable solution of (153), then
(hi y bz, - - - ) satisfies (152) for each 7 = 1, 2, - - - , where
by = [ [ hsDwa(s)e(0) ds dt. (161)
T YT

Proof:

Since h(s,t) is square-integrable, it has the expansion of (155) where
hij;1J = 1, 2, -+, are defined by (161); thus (157) is established.
Meanwhile, from (149) and (150),

];,_/; [?‘1(S,t) - I'o(s,f:)]\bf(s):j;j(t) = aij — Nbij;

(162)
hi= 1,2

Then, combination of (160), (157) and (162) establishes
Z A.‘h;kﬂkj = &;; — 7\;‘61'1'. (QED)
k=1

APPENDIX F

Alternative Condilions

Assume

a; <1, i=1,2 .-, (163)

and the integral equation (100)
f f ro(8,u)h(wp)ry () dudy = r(st) — ro(s,t) (164)
T YT

has a square-integrable solution.} Then, the conditions that

* Note that, if a sequence of functions converges in the mean to two limits, the
limits are equal almost everywhere. Furthermore, if the limits are continuous,
they are equal everywhere. Note also that continuity of the left-hand side of
(156) can easily be seen through the use of the Schwartz inequality.

t Recall from Appendix E that this implies D_;_1 201 ki < =.
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aie > 2 lai; |, (165)*
i=1
and there exists a constant K > 0, independent of 7,7 = 1, 2, --- , such
that
| (aii/Ni) — 8| = K (ﬁ-j; - Z’ | @ ) , (166)
k=1

imply the conditions (98), (99) and (88); namely, for each i = 1, 2,

2 lei| <1, (167)
=
and there exists a constant K; > 0 such that

b;(i)éKs(l—iicjkl), =12, (168)

k=1
and finally
lim tr [(@™)7'Q"™ — 1] < o,
“l]l tl‘ [Qo(n)(Ql(ﬂ))“l _ I] < o, (1(]9)
Proof:
First, note that
ay > 0, i=lr2:"'r (170)

and
;au: ;u"- (171)
For, from (93) and the fact that . > 0,k = 1,2, -+,

- -1
2
a;; = E Mpllyy > 0,
k=1

and, from (131),

o0

] kel 2 >
S = XSt = Sw = 3wt

1=l i=1 k=1 k=1 i=1

* The prime symbolizes omission of the term j = ¢ in the summation.
t For justification of interchange of order of summation, see Apostol,?® pp.
374-375.
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Second, through (93) and (94) with (163), (165) and (166),
=1—|1- as| —Jg'fai,»[

-3
ay;; — .le Iﬂi_—," > 0,
J=

and
bi("") | (a'u/?\ ) 511

1= Z|CJ!¥[ aj; — ;"a}k

which prove (167) and (168).

éK; ?:,j=1,2,"',

Last, note from the definition of hii ™ ai =1,2 . F
tr [(@™) Q™ = 1] = Z:‘ Z; hiyai; = z{ Zl hii " as,
i=1 j= iml i=

— tr [Qu(n)(Ql(n))fl — I]

Yet, according to the theory of infinite systems of equations, for each
i=1,2 -,

Il

Z Z hn‘j("))\iﬁij = Z h.-,-("))\.,-.
i=1

i=1 j=1

[ k™| = K,
By putting K; = K,7=1,2, ---,
|h'l'.'ﬁ'(m ’ = I{’ ?'!.7 =12 -

B

Il
[e—
0
—

Then,
‘Z::g“h: a;| = ’éghl.,{ <
i | hi N | = Ki:; A < oo,
since
 * Recall:

(QD(M)—IQI(M - I = [((‘)U(u))*l —_ Ql(n) IJQl(nl

™ = (L@ = @ =1,
0; ,j=n+1,n+ 2

t See Kantorovich and Krylov,!s pp. 26-27.
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o T Y (F TN DO S S

i=1 i=1

Hence, from (97),

lim | tr (@) Q™ — 11| =

n-»0

|
® =
¥
tE

=1
© = 1 © @ 3
(B30 EE)
t=1 j=1 i=1 j=1
< @,

lim | tr [@" (@)™ — 11| = lim

Ti—»0 -0

1A
—
s

=

o
~—
N
its

>

- -
\_{_

(QE.D.)
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