Equivalence Relations among Spherical
Mirror Optical Resonators

By J. P. GORDON and H. KOGELNIK
(Manuseript received May 11, 1964)

The frequencies, field patterns, and losses of the resonant modes of spheri-
cal mirror oplical resonators can be oblained to good accwracy as the solu-
tions of the integral equations of Fresnel diffraction theory. By a simple
transformation of the variables and parameters of the integral equations,
we have found certain families of resonators which have the same diffrac-
tion loss al each mirror, and whose field patterns are scaled versions of
each other. In the case of the infinite strip resonator, this reduces from five
to three the number of parameters necessary to specify the losses and mode
patterns.

1. INTRODUCTION

The resonant frequencies, field patterns, and losses of the modes of
spherical mirror optieal resonators can be obtained to good accuracy as
the solutions of the integral equations of Fresnel diffraction theory.!
The equations are particularly applicable when the separation between
the two mirrors forming the resonator is large compared with the di-
mensions of the mirrors. Unfortunately, the equations are usually not
soluble analytically, and require numerical (machine) computation.
There are many parameters involved: the dimensions and curvatures
of the mirrors and their separation. By a simple transformation of the
variables and parameters of the integral equations, we have found
certain families of resonators which have the same diffraction loss at
cach mirror, and whose field patterns are scaled versions of each other.
In the case of the infinite strip resonator, this reduces from five to three
the number of parameters necessary to specify the losses and mode
patterns.

II. THIE TRANSFORMATION

The equations which determine the field patterns, resonant fre-
quencies, and losses of an infinite strip resonator (see I'ig. 1) are!
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Fig. 1 — Spherical mirror resonator with mirrors of curvature radii R, and
R» , and of widths 2a, and 2as. Mirror spacing is d.

v = YL [ K, ) (e (19)
_ Vi : N
vata(xs) = H\/ﬁf—a. K(xy, @) w(a)da (1b)

with the complex symmetric kernel

K(ay,2:) = K(xa, 1) = exp [—j(x/Nd) (g’ + govs’ — 20a22)].  (le)
Here
gi = 1 —(d/Rl)! 1= 11 2:

the mirror separation is d, R, and R, are the radii of mirror curvature,
2a, , 2a, are the corresponding mirrors widths, and A is the wavelength
in the resonator medium. Also, u;(x;) is the (generally complex) nor-
malized field distribution on the left-hand mirror of Fig. 1, while wu.(2.)
is the normalized field distribution on the right-hand mirror. If the two
funections are normalized so that

[t Fan = [ ) e, (@)

then one notes™ that the power reflection coefficient of the left mirror

* According to (1b) a light beam with a field distribution w,(x,) across the left
mirror causes a field ysus(rz) across the right mirror. Therefore, the power re-
flected from this latter (perfectly reflecting) mirror is proportional to
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is | v1|* and the reflection coefficient of the right mirror is | v, |*. There-
fore the loss at the left mirror is 1 — |+ °, the loss at the right mirror
is 1 — |2 |°, and the round-trip loss is 1 — | y1y2 [*. The condition for
resonance is that yrys exp [—j2r(d/X)] be real and positive.

We presume on the weight of much experimental and theoreti-
cal”® evidence that a sequence of solutions to (1) does exist. Suppose
now that we have found a mode of some resonator; i.e., we have found
a solution for u;(z,) and us(x,) which satisfies (1) for one set of values
of the five resonator parameters a; , az , g1, g: and d, and have found the
corresponding eigenvalues v, and . . Our present concern is to find a
family of resonators, each of which will have a similar mode; that is,
a mode with the same values of v; and v, and with similar (scaled)
eigenfunctions. For this purpose we rewrite (1) in terms of dimension-
less variables and eigenfunctions by substituting

Ty = ﬂ,‘f;, 1= 1, 2 (3)
and
v:(&) = wi(x) Vai, 1=1,2 (4)

By this transformation we obtain a generalized set of integral equations
for the modes of the resonator

+1
yi(8) = VN » dts va(t) K (&1, &) (5a)
yawa(£) = VN [, dEl n(&) K(&, &) (5b)
with the kernel

K&, &) = exp [—jnN(—26E + Ght® + Gatd)). (5¢)

In (5) only three independent resonator parameters occur
N = a-]_ag/'fkd, (ﬁa)
G, = gi(a/as), (6b)

a2
| Y2 l:l f | m(xz) i2 dxy .
—ap

The power of the beam as it left the left mirror was, of course, proportional to

f ' | 22 (2c1) |2y .
ay
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Gy = go(a/aq). (6¢)

N is the Fresnel number of the resonator, while ; and G are generalized
g factors which deseribe the mirror curvatures.* A geometrical interpre-
tation of the (s is shown in Fig. 2.

Note that the above transformation maintains the normalization of
the eigenfunctions

+1 \ +1 \
[ el P = [l @)
and therefore the physical meaning of the eigenvalues v, and v .

III. DISCUSSION

The integral equations of any spherical mirror resonator can be
transformed into the form of (5a, b, ¢), which describe completely the

Fig. 2 — Geometrieal interpretation of G, .

mode patterns, diffraction losses and resonant frequencies. It is clear
that two resonators have the same scaled eigenfunctions, the same
diffraction losses at each mirror and corresponding resonant frequencies
whenever they are described by the same characteristic parameters
N, (1, and G2 . Two resonators are therefore equivalent if

Mmas/Nd = @yd/Nd = N (8a)
gila/as) = Gu(d@/a) = Gy (8b)
golaa/ay) = Go(d@s/dy) = Gy (8¢)

where the overbar indicates the dimensions of a resonator equivalent to
the original resonator.
* Note added in proof: in recently published perturbation analyses of optical

resonators, Gloge* and Streifer and Gamo® have arrived at the same three resona-
tor parameters.
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Quantities which can be expressed in terms of N, @;, and (. also
remain invariant when we change from one resonator to an equivalent
one. Some of these are listed in Table I. They are used in later computa-
tions.

The set of characteristic parameters N, (7;, and G. provides some
insight into the behavior of resonators. The quantity

a2

G = Gng = 1§z (9)

may be called the “stability number.” One finds from its value whether
the resonator is intrinsically of the “stable” or “unstable” type."* To
be stable the resonator must satisfy

0<6G <1, (10)

TABLE I — SoME INvARIANTS OF EQUIVALENT RESONATORS

Resonator Parameters TField Parameters
(See Section 11T and Fig. 1) (See Section X and Fig. 3)
(1.1) N = mas/Nd (2.1) ayr/\z
(1.2) G = gi(m/az) (2.2) gi:{a /)
(1.3) Gy = galaz/m) (2.3) g:(z/a1)
(1.4) Gt = gig. = WG, (2.4) =01
(1.5) a*¢q/aslgs = G /G (2.5) a g/ g
1.6)* gla?/Ad) = GIN (2.6) qi1z{@12/hz)
(L.7)* ge=(Nd/a,?) = G2N (2.7) g:(hz/0,?)
(2.8) g:(x*/\z)

* Quantities like 1.6-1.7 but with subscripts 1 and 2 interchanged are also in-
variants.

The quantity & is the well-known ‘‘Fresnel number.” For N > 1 the
diffraction loss of stable resonators is typically very small indeed, and
the increase of loss in erossing the boundary from a stable to an unstable
type is abrupt. As N decreases toward unity, the loss of the stable
resonators increases, and the boundary becomes less sharp until, as
N « 1, all resonators have high loss.

Tinally, at least for stable resonators with not too small Fresnel
numbers, we can see that the mirror with the larger ¢ has the smaller
diffraction loss. From Ref. 6, or from Section VIII of this paper, we
know that the radii* w; of the fundamental mode “spots’” on the mirrors
are related by

w'/w = go/gn . (11)

* We use the word “radius’’ here and later to mean half the width of the mode
pattern, as defined in Section VIIL.
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We therefore have
(wlfal)/ (we'/a)’) = guas’/grar’ = Go/Gh . (12)

The ratio w./a; between spot radius and mirror half-width ecan be taken
as a measure for the diffraction loss at a mirror. According to (12)
the mirror with the smaller ¢'; has the larger ratio w;/a;, and thus the
larger loss. In the special case (f; = Gy, one sees that (5a) and (5b)
become identical, and so the diffraction losses must be equal.

1V. SPECIAL ADDITIONAL EQUIVALENCES

There are two previously known!® special equivalences which exist
in addition to the new ones we have been discussing. These are:

(a) reversal of sign of both ¢, and g,

(b) interchange of both ¢, and ¢, , and a; and a; ; i.e., interchange of

the mirrors.
The first of these special equivalences changes the sign of both ¢ and
@G, and does not alter N. This equivalence results because the allowed
field patterns split up into those of odd and even symmetry in the a’s.!
The equivalent field patterns are complex conjugates of the old ones,
but the losses are unchanged.

The second special equivalence corresponds to an interchange of the
two mirrors. It leaves 2 and N unchanged, but interchanges ¢; and
(. . It also obviously interchanges the mode patterns and the losses
of the two mirrors. Combined with the equivalence relations which we
have discussed before, this interchanging of the two mirrors means that
two resonators are also equivalent if

N=N (13a)

G = G, (13b)
and

G, = Gy. (13c)

From these relations one deduces some rather curious equivalent resona-
tor pairs if one postulates that the mirror curvature should be left
unchanged (g, = § and g. = §.) and only the apertures a, and a, varied
to form an equivalent resonator. With (13) one finds that

1 = 052(91/92)% (14a)
i = a(ge/gn)’ (14b)

=
|

&
I
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is necessary for equivalence. Note that the equivalent resonator was
found simply by changing the mirror apertures. The mode pattern that
appears on the left mirror of this new resonator is a scaled version of the
pattern that appeared on the right mirror of the original resonator,
and the pattern that was on the left is switched to the right mirror of
the resonator.

Similarly, one obtains a pair of resonators equivalent in the above
sense when the mirror apertures are kept constant and the curvatures
are changed in accordance with (13).

V. THE CONFOCAL RESONATOR

The resonator commonly known as ‘“‘the” confoeal resonator is
actually a very special confocal* resonator for which B, = R, = d,
and hence g, = ¢g; = 0, and (/; = (» = 0. All of the equivalence trans-
formations we have mentioned transform one confocal resonator into
another. Our relations bring out the known fact that the losses and field
patterns (apart from scale factors) of the confocal resonator depend
only on the Fresnel number N and not at all on the ratio of the mirror
apertures.’

VI. RESONATORS WITH EITHER G; OR G: EQUAL TO ZERO

When, in a system with mirrors of unequal curvature, the mirror
spacing is equal to the radius of curvature of one of the mirrors, then
one of the g’s is zero and we have (/; = 0, or G, = 0. Let g = G = 0.
As a transformation to an equivalent resonator leaves (7; invariant, we
have for the equivalent resonator . = 0. In the stability diagram,"*
which shows the stable and unstable resonator regions versus g, and
g2 , our transformation yields equivalent resonators that are represented
by points on a straight line (in the general case, one has a branch of a
hyperbola g9, = const).

The parameters of equivalent resonators with G, = 0 are related by

G =G, = gila/ax) = Gu(@/a). (15)

This relation allows one to find for each resonator with g, = 0 and
unequal apertures an equivalent resonator with g. = 0 and equal aper-
tures, which is discussed in Ref. 1. Resonators of the former type have

* Any resonator whose mirrors have coincident foei may be termed confocal,
whether or not the mirrors have equal curvature. As has been noted,’ only “‘the’’
confocal resonator is a low-loss resonator.
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been of interest for the selection of transverse modes in optieal maser
oscillators.” The mode selection properties of equivalent resonators are,
of course, the same. FFor a resonator formed by a spherical mirror and
a small plane mirror at its center of curvature’ (g, = 0) one finds equiva-
lent resonators of equal mirror apertures which are the closer to the
confocal resonator the smaller the flat mirror [compare (15)]. As it
appears that the confocal resonator has the best mode selection prop-
erties of all spherical mirror resonators, the above behavior would imply
that reducing the size of the flat mirror will improve the mode selectivity
of the above system. T, Li’ has indeed found this to be so on the basis
of computer ealculations.

VII. RESONATORS WITH RECTANGULAR OR CIRCULAR MIRRORS

The integral equations which determine the modes of resonators with
rectangular mirrors decompose into two sets of equations identical to
(1), each set involving a single one of the two transverse Cartesian
coordinates.! ® Hence all of the above applies immediately to such
resonators, including resonators with astigmatic mirrors, provided the
principal directions of the astigmatism are parallel to the edges of the
mirrors.

Equivalent families of resonators with circular mirrors can also easily
be found by a similar method, starting from the appropriate integral
equations which are indicated in the Appendix. The resulting parameters
are of the same form as (6), but with the a; now redefined as the radii
of the mirrors.

VIII. DETERMINATION OF SPOT RADII

If the apertures of the mirrors are sufficiently large, ie., if N > 1,
and if G* is not too close to 0 or 1, then the field patterns of the modes
approach closely to Hermite Gaussian functions and lose their depend-
ence on the apertures. Then one can define a ‘“‘spot size”’, or spot ra-
dius,’® where the Gaussian part of the function has dropped to ¢ ' of
its maximum. In the transformations among equivalent resonators, the
mode patterns scale in proportion to the apertures; hence two other
invariants of equivalent resonators are obtained by replacing a, and
a; in (6b) and (6¢) with the spot radii w, and w, . Now any quantity
which is an invariant of equivalent resonators must be expressible as a
function of the basic parameters N, G, and G . But since the values of
N and G4/G. , which depend on the apertures, do not influence the spot
radii, these two invariants of the equivalence transformations can be
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functionally dependent only on ¢ # = (47, . Hence we obtain the rela-
tions

wwy/ N = f(G°) (16a)

(wy ’w-:)a(,ql "’gz) = 1. (16b)

Equation (16h) follows, since we know that for mirrors of equal eurva-
ture (and hence with g, = g»), the spot radii are also equal. The function
F(G*) on the right side of (16a) may be evaluated by comparison with
a known result’ for mirrors of equal curvature

(gr = 9. = ¢; wy = Wy = Ww).

Equation (27) of Ref. 8 can be conveniently expressed in our present
notation as

w/Nd = (1/=)(1 — {;2)_5 (17)
which, on comparison with (16a), identifies f( G°) as

H(F) = (1/m)(1 — 97 (18)

Equations (16a) and (16b) can be rewritten with the help of (18) as

wi/wy = (g2/g0)* (19a)
wiws = (Nl /7)(1 — g.gg)_%. (19h)

These last equations are identical with (39) and (40) of Ref. 6 and
together determine the two spot radii. Their derivation here is included
hecause of its relative simplicity, and as an example of the use of the
invariants.

I1X. FACTORS OF THE GENERAL TRANSFORMATION

Given the parameters (dimensions and curvatures) of one resonator,
specification of @, and § for an equivalent resonator completely deter-
mines all parameters of the equivalent resonator, apart from the special
equivalences discussed in Section IV. The general transformation from
the original to the equivalent resonator can be factored into a succession
(product) of two simpler transformations, in the first of which a; is
changed but g, is not, followed by a second for which g, is changed but
a, is not.

The first of these simpler transformations effects a rather simple
squeezing of all resonator dimensions, all transverse dimensions (aper-
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tures) being multiplied by the same factor ¢, say, while all longitudinal
dimensions (radii of curvature, mirror separation) are multiplied by
¢. To see this we note that R, and d must change proportionally to
leave g; unchanged. R, must change in proportion with these because
of the invariance of gig., i.e., of G*. Finally, a; and a, must change
proportionally to leave G, invariant, and they must change as d' to
leave N invariant.

The second simpler transformation leaves the aperture a; unchanged.
Suppose it changes the radius of curvature R, in accordance with the
relation

/R = (1/Ry) + (1/f). (20)

In practice a thin lens of focal length f inserted directly in front of the
mirror can produce such a transformation. By using the invariants
NGy, N/G:, and N [listed as (1.6), (1.7), and (1.1) of Table I] in suec-
cession, one can derive the following relations between the parameters
of the transformed and original resonators

1/d = (1/d) + (1/f) (21a)
1/(d — By) = [1/(d — Ry)] + (1/f) (21b)
(fg/& = l’lg/d. (210)

Equations (21a), (21b) and (21¢) show respectively that the position,
center of curvature, and aperture of the original second mirror are
changed to those of the new one by imaging them through the lens.
In this imaging process, objects on the side of the lens toward the second
mirror are taken as virtual objects, while objects on the other side of
the lens are taken as real objects.

X. TRANSFORMATION OF THE FIELD INSIDE AND OUTSIDE THE RESONATOR

The mode patterns on the mirrors of two equivalent resonators are
scaled versions of each other, and one expects also a correspondence of
the fields of a mode inside and outside the equivalent systems. This
correspondence is studied in this section.

With the assumptions of the diffraction theory of optical resonators
the fields inside or outside the resonator structure can be expressed in
terms of the field pattern on one of the mirrors via Fresnel’s formula.
TFor fields independent of y (this restriction can be removed easily;
compare Appendix) we have for the field traveling to the right, say,
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.
wl(zz) = :ﬁf day wy(xy,0)
Z oy

(22)
exp | —j = T 20— 2aw
exp l: i (grevr + g 111)]
where (2, 0) is the given field pattern on the left mirror and u(x, z)

is the field on a spherical references surface that intersects the optics
axis a distance z away from the mirror (see Fig. 3). The quantities

g = 1 — (2/Ry) (23a)
1 — (2/R) (23b)

g

are again used to describe the curvatures of the mirror (curvature
radius R,), and that of the reference surface (curvature radius R).
The mirror width is 2a; .

The transformation to an equivalent resonator changes the aperture
and curvature of the mirror under consideration, and scales the field
pattern on it accordingly, i.e., if

a — (24a)
= q (24b)
then
'\/a_l ul(.‘vl y 0) = ‘\/-5;121(.31 ’ 0) (24:0)
where
.T-l/ﬂ-]_ = .fl/a'1 . (24(1)
€L
—R, R S
T \ N
| REFERENCE | }
2; SURFACE z 23
| ! N_EFT ausm) |2
} MIRROR | MIRROR |
[
X __ l’ — Y
Lffffszfa-f fffff d-z—————

Fig. 3 — Reference surface for description of the fields inside the resonator.
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We seek a new surface, deseribed by z, §. (or R), on which a scaled
“Image” @(F, z) of u(w, z) will be found. To do this we find, just as in
Section I, a set of invariants necessary so that (22) retains its formin
the transformed parameters. Essentially these invariants are the three
terms in the exponential of (22), with the added fact that since
transforms like @; we replace ; in those terms by @, . By manipulation
we obtain the set of invariants listed as (2.1) through (2.8) in Table I.
The terms (2.6), (2.8), and (2.1) come directly from the three terms
in the exponential of (22); the others may be derived from them.
Tinally, the transformed function is given by

(z/a) 'ulx, 2y = (2/a) 'a(z, ). (25)

From this set of invariants one ecan find the new position (Z), curvature
(7.) and transverse scale factor (/) of the scaled function. First,
consider the position. The invariant (2.6) may be expanded, using

(23a), as
2 2
a” (1 1\ a (d ) o
T(z i) = (- 1re). 20)

But now the term (a,’g;/Ad) is itself an invariant (1.6, Table I) of the
resonator transformation, and hence the remaining part of (26), i.e.,

0y (ff:;ﬁ)
A z

also forms an invariant. Finally we can simplify this a bit by dividing
by N (1.1, Table I) to yield the invariant

9@‘?. (27)
s z

We see that the ratio z/(d — z) transforms like a,/a. . From (27), we
obtain the equation from which the new position £ may be derived

gld—z _ & (E#é) (28)
(e F4 o z ’ -

Once we have found the new position, the new transverse scale factor
and curvature may be found most easily using the invariants (2.1)
and (2.4), respectively, of Table I; i.e,,

(#/x) = (2/z)(a:/d)) (29)

and
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.57.- = ,(1':91:/'51z (30)

and the scaled function is as given in (25).

To provide a more physical picture of the field transformation, it is
interesting to note that the simple squeezing and imaging transforma-
tions discussed in Section IX apply to the arbitrary reference surface
and its field as well as to the second mirror and its field.

Finally we note that the transformations of Fresnel’s formula we have
been discussing do not depend on the fact that wu(xy, 0) is an eigen-
function of a resonator. The preceding discussion, with the exception of
the derivation of (26), all applies equally well to the fields generated
by any prescribed field distribution over an aperture.
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APPENDIX

Resonators with Spherical Mirrors of (GGeneral Shape

Within the assumptions of the theory of optical resonators'=* the
modes of a resonator formed by two spherical mirrors of quite general
shape are governed by the integral equations

ol (2, ) = XJH f dAs-K(ay, 2250, y:») “Ea(xa, 12) (31)
As

and

aalos (s y .U") =

) ﬁ AL dA; K (2, x5y, ye) -Ex(an, y) (32)

with the kernel

K(;!‘l y L2y Yy '."f?)
- exp{ﬁ_]‘)%':?[gl(.rl2 + ) + g + ye') — 2(xre + .‘Il?f’-')]}' (33)

Here (a1, y1) and (xs, 72) are coordinates in planes perpendicular to
the optie axis, d is the mirror separation, and g, and g, deseribe the mirror
curvatures as in Seetion I1. Subseript “1” indicates quantities associated
with the mirror on the left-hand side, and ““2” refers to the mirror on
the right. o, and oo are the eigenvalues corresponding to and . dis-
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cussed in Section II. The integration has to be performed over the re-
flecting areas 4, and A, of the mirrors where d4; and dA. are the area
elements. No assumptions on the curves bounding the reflecting areas
have been made, and the formulation (31) and (32) includes mirrors
of quite general shape. Special cases are, of course, strip mirrors, square
mirrors, rectangular mirrors, and mirrors of circular shape. These are
of main practical interest.

Let us compare (31), (32) and (33) with (1a), (1b), and (1¢) of
Section II. It is clear that the discussion of two-dimensional resonators
systems given in Section IT can be extended to the three-dimensional
case in which we are interested now. The only difference is that we now
have two transverse coordinates (x, y). If they are subjected to the
transformation

xr; = EIGE,‘ a Yi = E,'g,' H ’J‘: = 1, 2 (34:)
and the mirror areas and area elements are scaled like
A,‘ = E,’Zfii N dA, = E,'ﬂdA; (35)

then the mirror curvatures and the mirror separation of two equivalent
resonators are related by the same invariants as before. All we have to
do is to replace a;* by A, in the table of invariants. For the special case
of cireular mirrors, a; can be redefined as the mirror radius and retained
in the invariance relations.

Note that we have used the same scaling factors ¢; for the x and y
coordinates. If different scaling factors are used one obtains, of couse,
equivalent resonators with mirrors that are not spherieal but astigmatic.
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