Modes in a Sequence of Thick Astigmatic
Lens-Like Focusers

By E. A. J. MARCATILI
(Manuscript received June 1, 1964)

M azwell’s equations are solved for a periodic sequence of lens-like focusers
separated by gaps. Each focuser consists of an arbitrarily thick slab of
dielectric in which the dielectric constant tapers off radially with different
quadratic laws in two perpendicular directions. Since there are no limita-
tions on the thickness of the slabs, the solutions cover the complete gamut
from a sequence of infinitely thin lenses with astigmatism to a continuous
dielectric waveguide, and from spherical to cylindrical lenses.

The field configurations of the modes and their propagation constants, as
well as the transmission and cutoff bands, are calculated. Any arbitrary
input field distribution can then be expanded in terms of the normal modes,
and the expansion determines the field everywhere.

Formulas derived for sequences of weak lenses turn oul to give very good
results even for lenses whose thickness and separation are equal to the focal
length.

I. INTRODUCTION

One possible long distance transmission medium for optical waves
consists of a periodic sequence of converging lenses. In order to negotiate
unwanted but unavoidable bends of the axis of the sequence it is neces-
sary to space the lenses as closely as possible.! Nevertheless, ordinary
dielectric lenses exhibit substantial surface scattering, and therefore
the minimum spacing between lenses depends on the tolerable transmis-
sion loss.

D. W. Berreman has shown that an effective lens can be made using
gas with thermal gradients?? thus avoiding the solid-to-gas transition
problems. D. W. Berreman and 8. 15 Miller® proposed a gaseous lens
consisting of a tube with hot walls through which a mild gas current at
lower temperature is forced to flow. At any cross seetion the tempera-
ture inereases from the center to the wall. The density and consequently
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the dielectric eonstant is then maximum on the axis and decreases
radially roughly with a square law. Without the problem of scattering
at the interfaces, tubular gas lenses can be closely spaced and the gaps
may be comparable to the thickness of the lenses.

The advent of such a new transmission medium makes it opportune
and important to generalize the theory of modes in a sequence of thin
lenses by determining the normal modes in an idealized structure which
consists of a periodic sequence of arbitrarily thick slabs of dielectric
whose dielectric constant tapers off radially with quadratic law.

The preferential direction of gravity creates convection currents that
may introduce astigmatism in the gaseous lenses. Such an aberration
is included in our model by making the radial quadratic law of the
dielectric different in two perpendicular directions.

We calculate the modes of propagation of the idealized structure
without including the solid walls surrounding the medium. Taking them
into account would perturb the modes only slightly, introducing diffrac-
tion losses. Just as in the case of a waveguide with perfect metallic
walls, the idealized modes considered here are not attenuated, but their
discussion is similarly expected to be useful in approximating: (a) the
propagation constants: (b) the range of dimensions over which trans-
mission is permitted or forbidden; (¢) the extent of mode conversion at
discontinuities or imperfections; and (d) the field at any point due to an
arbitrary input such as an off-axis or tilted beam. Of these, (a) and (b)
are treated in this article.

The calculations are general enough that by changing the lens param-
eters and the length of the gaps it is possible to cover uninterruptedly all
the range from a sequence of thin lenses’:¢7-% to a continuous dielectric
guide,!-?1% and from spherical to eylindrical lenses. Up to now only the
extreme cases, that is, thin lenses or dielectric guide and spherical or
eylindrical lenses, have been considered in the literature; this article
bridges the gaps.

II. DESCRIPTION OF THE PROBLEM

Consider a periodic sequence of dielectric slabs, shown in Fig. 1.
The refractive index » of each slab is independent of z, but varies with
different quadratic laws in the x and y directions as

i@ @ o

The refractive index n on the z axis and the characteristic parameters
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Fig. 1 — Periodie sequence of arbitrarily thick and astigmatic lenses.

of the lens-like medium, I, and L., permit adjustment of the parabolic
distributions. The physical significance of L, and L. will be treated
below.

In spite of the fact that it reaches negative values for large x or y,
this dielectric distribution is useful because it matches the dielectric
distribution of the gaseous lens, especially for small values of mx/L,
and wy/Ls . Besides, it turns out that the field of most modes is negligi-
ble in the region where the dielectric constant is small or negative, and
consequently that region does not contribute essentially to the guidance
of the modes.

In the Appendix we solve approximately Maxwell’s equations. The
sequence of lens-like focusers supports hybrid modes H,,, charac-
terized by the indexes p and ¢. These integers indicate that the intensity
of each transverse field component passes through p zeros in the x
direction and ¢ zeros in the y direction.

The only approximation in the solution of Maxwell’s equations
consists in neglecting terms of the order of pN/Ly and gA/L, compared
to unity. A is the free-space wavelength. Typically N/L, and N\/L, are
of the order of 107" therefore, except for very high-order modes (p
and /or ¢ very large), the results must be satisfactorily precise.

The modes have no eleetrie field in the y direetion nor magnetic field
in the « direction. The remaining components — 1, , K., H, and H.
in the dieleetrie slabs and I, , 15, , I1,, and ., in the gaps — are found
asswmning as normal modes only those field configurations that repeat
themselves periodically at each lens. Therefore the equiphase surfaces
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of each mode are planes at z = 0 and { = 0, as shown in Fig. 1. We
reproduce here only E, (55) and E,; (58).
All the other components can be deduced from them with the help

of (45).

2 2 2
= —i -t _ ¥ )_ 1 (W TR
E;, = exp{ ) I:im (z 5B, T 2 Rz) (p + 2) tan (sf tan Ln)
_ 1 -1 W22 mz ([ : _ (y)2}
(q - §) tan (().—22 tan E)] (m) . (2)
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(‘-’ g) - () - (4 )

wa2)n(s5)

where [see (55) to (67)], & = wv/eu = 2x/\ is the free-space prop-
agation constant and H,(a) is the Hermite polynomial of order g.

The physical significance of the symbols s, sa, S, , S,2, B1, R, ete.
will be developed below. We give first their mathematical meaning and
in order to avoid repetition, from now on the letter m will stand for
either the subindex 1 or 2, depending on whether the symbol under
consideration refers to a dimension in the plane y = 0 or * = 0 respec-
tively. Calling the thickness of each dielectric slab ¢, and the gap between
them b,

B 1 + C, ctn gp,,,)*
Sm = (1 — C, tan g, )
Sgm = wm(l + Cm ctn Qam)}(l - Cm tan ‘Pm)’ (5)
wy = L g/ Aom (6)

™ n
¢, =n 1)-[41 (7)

t

@m g [4_ (8)
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ﬂ;)
Sm + etn @ (9)

1 w, \' wy \' 27z
m = Swm - 4—"-' — m —_— 10
e/ e () - () [ ) 00
ks, 2 )]
Rﬂm - 4§_ [1 + (lt-s—nm'! (11)

Pgm = Sgm /‘/ 1+ (k?i?)— (12)

Let us find the physical significance of R, Rym, om, Pgm s Sm s Sgm
wn and L, . Equating in (2) and (3) the imaginary parts of the expo-
nents to constants we obtain two equations of equiphase surfaces (wave-
fronts), one applicable within a lens and the other in a gap. At the z
axis, each wavefront has a radius of curvature in the plane y = 0 which
in general is different from that in the plane z = 0. Within a lens those
main radii of curvature are R, and R, [see (9)], while those in a gap are
Ry, and Ry [see (11)]. If Ly = L, , then Ry = Roand Ry = Ry .

For the fundamental mode p = ¢ = 0, at a given abscissa z or { the
field amplitudes (2) and (3) decrease with different Gaussian laws in
the = and y directions. The distances at which the field is 1/e of the
maximum occurring on the z axis are the beam sizes p; and p, [see (10)]
within a lens, and p, and p, [see (12)] in a gap.

For z = 0 and { = 0 we find from (10) and (12) that p, = s, and
pgm = Sym . Therefore s,, and s,, are the beam sizes at the planes of
symmetry of each lens and each gap respectively.

The physical significance of w,, becomes obvious on reducing the gaps
between lenses to zero. Then instead of a sequence of lenses we have an
uninterrupted dieleetric waveguide and we derive from (7), (4), (5)
(10) and (12) that

=

. _—
—
+

AN

Pm = Pgm = Sm = Sgm = Wnm . (13)

Therefore in the continuous guide the propagating normal modes do
not change size along z, and for the fundamental mode w, and w. measure
the beam sizes in the x and y directions.

From (10) we find that within a lens the beam sizes p; and p, in the
y = 0 and x = 0 planes vary periodically along z; their periods are I,
and L, respectively.

For the particular case in which L, = L, the field in the gap (3)
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coincides with that found by Boyd and Gordon® for the resonator made
with confocal mirrors of infinite aperture.

III. TRANSMISSION AND CUTOFF CONDITIONS

Both s, [see (4)] and s, [see (5)] must be real quantities, otherwise
the fields given in (2) and (3) become infinite as @ or ¥y — «=. This
establishes that a mode can propagate in the sequence of lenses either
when

C, £ ctn g, (14)
or when
Cr < —tan ¢m. (15)
Their equivalents in explicit form are
b = (2L, /nw) etn (wt/2L,,) (16)
and
b = —(2L,/nr) tan (wt/2L,,). (17)
Which equation must we use? Since b and L,, are positive, (14) or (16)
must be used when ¢, = =t/2L, falls in an odd quadrant and (15) or

(17) when it falls in an even quadrant. Naturally, if these equations are
satisfied for only one of the two indexes, that sequence of lenses cannot
propagate any nonattenuating mode,

If b = 0, the sequence of lenses is reduced to a continuous waveguide
and transmission takes place, as it must, no matter what the values
of ¢, and ¢, are. If now we increase the gap b, transmission will take
place as long as (16) or (17) is satisfied.

IV, DISCUSSION OF THE FIELD INSIDE AND OUTSIDE THE LENSES

The sequence of lenses admits a ecomplete set of modes. For each mode,
the field inside (2) and outside (3) the lenses is a wave traveling in the
z direction whose amplitude, period and equiphase surfaces (wave-
fronts) vary along z.

The amplitude depends on x as a product of a Gaussian funetion and
a Hermite polynomial (parabolic cylinder function) whose degree
depends on the mode under consideration. A similar type of variation
occurs along .

In Fig. 2 we plot qualitatively the beam sizes p, and p,. for ¢, =
wt/2L,, in the first, second and third quadrants. For ¢,, in an odd quad-
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rant, as in Figs. 2(a) and 2(c¢), the maximum and minimum beam sizes
within each lens are

1 + Cm ctn ‘Prn)= (18)

Pmm = 8m = wm 3 ~ < -
e (1 — O, tan ¢,

and
u’rﬂﬂ 1 - Cm tan ©Pm g
mmin — —— = Wp\7+T7—7F7——F77—7" | - 19
P Sm v (1 + ij ctn ‘.Dm) ( )

The period between two successive maxima is L,, . The square root of
the product of the maximum and minimum beam sizes in the dielectrie
is a constant

3
(Pm max Pm Il]ill)) = Wpn

and coincides with the beam size w,, of the lens-like medium.
In the gap, the only extremum for the beam size is a single minimum
which occurs at { = 0 and, from (5) and (12), corresponds to

Pgm min = Sgm = wm(l + Cm thll (p,,.)} (l - Cm ta.ﬂ lpm)}. (20)

If ¢ = wt/2L, falls in an even quadrant, as in Fig. 2(b), the mini-
mum and maximum beam sizes interchanged from the odd quadrant
are (18) and (19) respectively. Again (20) corresponds to the unique
minimum in each gap.

V. SPECIAL CASES

Let us consider the field in a gap assuming

Li=L =1
and
t/L=n or ¢ =¢ = 1(r/2) (21)
where 7 is an integer. Then unless the gap b = 0, the minimum beam
size in the gap pgm min (20) becomes infinitely large and the electric

field (3) is reduced to a plane wave travelling in the z direction. If more
generally only ¢, = 5(r/2), but ¢, is unrestricted, then the wave fronts
are cylindrical surfaces parallel to the z axis.

Consider again

L1=Lq=L

but
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(= C;, = ctng; = ctn ¢ (22)
or

(,=Cy, = —tan ¢, = —tan ¢ . (23)
Then according to (20) the minimum beam size py min = Pz min = 0
and the field in the gap (3), for p = ¢ = 0, becomes

E., = exp —iks (1 4+ 2:;?’2). (24)

The wavefronts close to the ¢ axis are concentric spheres and their
centers coincide with the pointx =y = ¢ = 0.

Therefore the two conditions indicated above correspond either to
plane waves in the gap or to concentric waves (if one observes only the
field in the region close to the { axis). They are equivalent to those in
Fabry-Perot resonators with plane and concentrie mirrors.”*’

The condition under which the beam is closely concentrated on the
z axis is found by minimizing the maximum beam size within a lens,
s [see (18)] or w,. /s, [see (19)] depending on whether ¢, is in an odd
or even quadrant.

If the gap b decreases, the value of s, or Wn'/Sm also decreases; for
b = 0 the sequence of lenses becomes a dielectric waveguide, the beam
size does not vary with z, and its value is s, = wn'/$w = wn . On the
other hand, if the thickness t of each lens is the only variable, the mini-
mum of §, Or w,'/sm is achieved by making

m a m - -

9w _ 98m _ 0 if ¢,, is an odd quadrant

or (25)
d 1 a 1

o= Y =0 if ¢n is in an even quadrant.
ot 8m a(Pm Sim ¢ ! ad *

These conditions lead to the same requirement, namely:
Cn = ctn 2¢p, (26)
or its equivalent
b = (2L,/nx) ctn (wt/Ln) (27)

which, replaced in (18) or (19), determines the minimized value of the
maximum beam size within each lens

Sm min = ('w’mE/Sm} min — wm[(l + sz)i + (f‘m]i- (28)
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For the same condition (26) or (27), the beam size in the gap at any
abseissa { is derived from (5), (12) and (26)

_ 2v% 01112 25")2]!
Pmu - wm(l + Cm) [] + iTC\T’:z (F . (29)

VI. SEQUENCE OF WEAK ASTIGMATIC LENSES

Before considering weak lenses, let us relate the characteristic lengths,
Ly and L, of the lens-like focusers to their focal lengths in the planes
y = 0and @ = 0. To calculate the focal length in the y = 0 plane (see
Fig. 3) the ray trajectory is determined from the equation

d'z/dZ = (1/v) (dv/dzx). (30)

Taking the refractive index » from (1)

d*x 1 d
L = _ V1 — (m 3 31
dz* V1 — (‘n‘.l:/L1)2(1'.;12 1 (mz/Ln) (31)

For paraxial rays
mr/Ly < 1 (32)

and within a lens the trajectory of a ray entering parallel to the z axis
at a distance x is

x = agcos (mz/Ly).
The angle of refraction at the output surface is

6, = (nw/L)x sin (wt/Ly). (33)

PRINCIPAL
PLANE

LENS

Fig. 3 — Ray trajectory in the plane y = 0 of a lens.
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Then from simple geometric considerations in Fig. 3, the focal length
fi1 results

Ly

_ . 34
) (34)

We assume now weak lenses. They are characterized by
om = (7/2) (t/L.) <1, (35)

and in all previous results each circular function can be replaced by its
leading term.

Because of the inequality (35) the characteristic length of the focusing
medium L, in (34) can be calculated explicitly by

Ly = m/nlfy . (36)

Similarly, for the plane x = 0

Ly = 7w/ nlf, . (37)

The weak lens requirement (35) then becomes
1/
m — = e l. 38
on =3 ,‘/ T < (38)

m

Using (36) and (37) together with the simplifying assumption (38) we
re-evaluate the maximum and minimum beam sizes (18), (20) for
weak lenses (¢, In first quadrant),

(N1 4 (ab/t) )‘ .
- (mﬂ) (1 — (/4 (30)

. 1A ! nb\* - b)i
= () (+) (- 5). ()

The distance & between the principal planes may be of interest. Using
(33) and (34), this distance turns out to be

ZL',,, tan i
T

A = 2L,

—'3 (41)

Ixpanding the circular function in series, keeping only the first two
terms and substituting L, by their equivalents (36) and (37) we ob-
tain,"

1 t
hm . {(; - 1) + Wf;' (42)
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6.1 Example
Let us assume a sequence of gaseous lenses such that
b=t=fi=,=02m
A = 0.6328 10" m

n 1.

For these dimensions ¢; = ¢ = 0.5, and therefore the weak lens in-
equality (38) is hardly satisfied. Nevertheless, let us go ahead and
calculate extreme beam sizes s; = s, and s,; = s, as well as the charac-
teristic length L; = L, of the lens using (39), (40) and (36)

81 = sy = 0.286 mm
S;0 = §p = 0.248 mm (43)
L, = L, = 0785 m.

Let us calculate again the extreme beam sizes using the exact expres-
sions (18), (20), deriving L from (34)

8§ = & = 0.276 mm
Spp = Spp = 0.224 mm (44)
Ly = L, = 0704 m.

The two sets of results (43) and (44) are reasonably similar and show
the usefulness of weak lens formulas even for lenses with comparable
values of ¢ and f.

VII. CONCLUSIONS

The properties of the modes in a sequence of thick, astigmatic and
unbounded lens-like focusers are similar to those in a sequence of thin
infinitely large lenses.

The modes are hybrid and described by parabolic cylinder functions
(product of Gaussians times Hermite polynomials). Transmission takes
place as long as the gap between lenses is smaller than a value given in
(16) or (17).

The maximum beam size can be reduced by decreasing the distance
between dielectric slabs. Nevertheless, if the gap is fixed, the minimiza-
tion of the maximum beam size can be obtained by selecting the dielec-
tric properties or the thickness of each focuser according to (27).

Simplified formulas derived for sequences of weak lenses yield good
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approximations even for lenses whose thickness, separation and focal
length are comparable.
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APPENDIX

Solution of Maxwell’s Equations in a Sequence of Thick Astigmatic Lenses

We will obtain, first, a general enough solution of Maxwell’s equations
for one of the lenses; see Fig. 1. Then by makingn = land L, = L, — =,
we will deduce a general solution for the uniform gap between lenses,
and finally we will match the tangential fields to satisfy the boundary
conditions. For modes with only four field components, E. , E., H, and
H., Maxwell’s equations become

af, Ak

_ — wnH
az oz Jertl
e ouH,
" (45)
aff, oH, el
ol = —jweb,
dy az Jue
a_%l = —jweEz
ax

where g, the magnetic permeability, is a constant;

s -G -@)] )

e, Ly and L. are arbitrary constants; and wy/eu = 27/A = k is the
free-space propagation constant,

By eliminating variables and by neglecting terms of the order of
A/ Ly and A/L,* as compared to unity we obtain identical equations for
E.and H, . T'or E,,

OB, | OB, | FE. | 2[ (m:)ﬂ (11-1')2 »
6.1'2 + a—!l'-’_ + ('}EE + (].H-) 1 E E E;; = 0 (47)

* In practice A/L, and N/L. are of the order of 1075,
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This equation is separable and a general solution is

() (2]
1 W

2 : 2+ 1N 24 1)
. exp | —ik _ A 4
X ; Z « BXP l: thnz (1 o I o Lz) :l (48)

o () m (52

wn

where » and p are integers, and A,“ is an arbitrary constant. Using m
to indicate either subseript 1 or 2,

n

(49)

w”.l =

E R

The funetion
H,(§) = (=1)'¢" (&/dg)e™™
is the Hermite polynomial” of order ». Hermite polynomia.ls of lowest
degree are Hy(£) = 1; Hi(§) = 2§ Ho(§) = 48 — 25 and Hy(§) =
8¢ — 12
Expression (48) can be simplified provided that the important terms
of the summation are those for which

VA/_L[ << 1
and (50)
uN/Ly < 1.

Then the square root in the exponent can be replaced by the first two
terms of a power series expansion and

E, = exp (—35 - i - lqu) I:Z A, exp [i(mvz/L1)|H (‘\i‘i?):l

wy 2 we” y=0 1

X I:»Z:o By exp [i(mvz/L,)]H, (\/Tfy):’

A1 1
= flnz[l —E(E-I-E)j’

We will look for a periodic field configuration that reproduces itself
at each lens. For reasons of symmetry, then, the planes of symmetry of
the lenses (z = 0) and gaps (¢ = 0) must be equiphase surfaces.

(51)

where
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We choose the field at the plane z = 0 to be

o (- 5= 5)m (5 . ()

where p and ¢ are integers and s and s, are arbitrary parameters for
the time being. Therefore for z = 0, we obtain from (51)

£ w2 () - on (- D) (2)
oo (- ). (42) - (- (2).

Using the orthogonality properties of the Gaussian-Hermitian product,”
we obtain

- L)
A= T L P LT e

1 (V2) . (V29

and a similar expression for B, . Replacing the result in (51) and per-
forming, as in Ref. 13, first the summation in » and p and then the
integration in £, the transverse field component inside a lens expressed
in closed form results

' 22 yz 1
b, = oo {4 [in (- ~ g = 51z) - (v+3)
-1 ’U’.h? me —1 w22 e =
-tan (ﬁ tan Ln) ( + 5) tan (;‘T tan E):I (55)
N2 2 L B
conl- G - )] (w33 (422)
P P2 P1 P2

where, form = 1 or 2

)
Ll’" J Sﬂl

R, = - - ctn T J (56)

8 1 1] — (¥ ' sin &
's_m L"I

and

(54)

o
LY

and
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_ 1 wWa\* w, \' 2#21 57
= s/} 1+ () + [1- (&) ]z 00

The electric field in the uniform dielectric gap between two lenses
can be derived from the previous expression by making

n=1
and
/Ly =0

and by substituting another symbol, s,., for s, . Again we demand the
plane of symmetry of the gap, z = (b + t)/2 (see Fig. 1), to be an
equiphase surface. This is achieved by substituting { = z — (b + ¢)/2
for z.

The electric field in the gap is then

2 2
= —3 _T _ ¥ y_ 1 -1 2
E., = exp { ) [k(;‘ SR, ZR,Z) (p + 2) tan T

e+ N ] - (=) - (v 5
(q + 2) tan kstﬂz] (Pal) (902) } (')8)

g1 Pg2
where
_ Iczs,,,,,'[ ( 2r )2] .
Ram = 4§_ 1+ m (-)ﬂ)
and
2¢ \?
Pgm = sﬂm 1 + ksgmg) . (60)

To match the fields (55) and (58) at the interfaces, the = and y
dependences of the field at both sides must coincide. The fact that it
can be matched guarantees that Maxwell’s equations are satisfied
simultaneously in lenses and gaps. It can be verified that if the tangential
electric field continuity is satisfied, the tangential magnetic field con-
tinuity is also guaranteed. By considering waves propagating in both
directions, it could be possible to take into account reflections at the
interfaces, but we shall instead assume that at each interface there is a
matching mechanism that prevents reflections. Notice that in the case of
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gaseous lenses the small changes of dielectric constants automatically
insure negligible reflection at the interfaces.

The exact matching of the fields at the interfaces is achieved by
making equal the coefficients of &, y, +* and 3 in both expressions (55)
and (58) at the boundary z = (/2 of the lens and { = —b/2 of the gap.
Then

Rm(z =12 = R:Jm(r = —b/2) (61)

Pm(z = t/2) = Pgm[} =—(®b/2)] + (62)

From them, together with (56), (57), (59) and (60), we deduce the
values of s. and s, that guarantee the matching at the interfaces.
They are:

Sp = W [1—1_—%:%%’:]{ (63)
and
Sm = Wa(1 + Cpetn )} (1 = Cp tan o)} (64)
where
O = n(w/2) (b/Ln) (65)
om = (7/2) (t/Lwm) (66)
w, = (1/7) V/ALn/n. (67)
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