Using Digit Statistics to Word-Frame
PCM Signals

By J. R. GRAY and J. W. PAN

(Manuscript received June 5, 1964)

Framing of PCM signals can be accomplished by statistical means. For
signal samples whose probability distribution tends to be concentrated at
the cenler of the coding range, the second digil of the Gray code generated has
a probability of mostly 1's. This information can be used to frame PCM
words. Three circuils are proposed that test this probability. Reliability and
reframe time for each circuit arve oblained either analylically or experi-
mentally. The first circuit uses a pair of racing counters: one counts (’s in
the second digit and the other 0's in the third digit of the Gray code. When the
system 1s in-frame, the first counter seldom reaches full count before the
second, whereas during oul-of-frame either counler can reach full count
first with equal probability. The second circuil uses a reversible counter
which advances on a 0 and retards on a 1. When connecled to the second
digit of the Gray code, the preponderance of 1’s will keep the counter at or
near zero count,; when connecled to any other digit, where the probability of
a 1 is at most 0.5, the counter will reach full count in a finite time. The
third circuil uses an RC integrator in place of the reversible counter: each
0 of the second digit generates a pulse to charge the capacitor and each 1
permits the accumulated charge on the capacitor lo decay. The aclion is
similar to that of the reversible counter but is difficult lo analyze. Experi-
mental framing performance s given for this circual.

I. INTRODUCTION

When a signal is transmitted by PCM, the receiver must be able to
group the serial pulse train into code words before it can properly re-
cover the original signal. This process is called “framing.” It is also
called “word synchronization,” as distinguished from bit synchroniza-
tion where the time base of the individual pulses is sought. When the
pulse train contains several PCNM signals multiplexed together, there is
also the task of multiplex framing or frame synchronization whereby
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the individual channels must be identified. Word synchronization can
be derived from frame synchronization if the words are always arranged
in a definite order within a multiplex frame; otherwise, word synchroniza-
tion is acquired independently. This article will consider only the
problem of word synchronization, hereafter simply called “framing.”

Framing is ordinarily accomplished by using supplementary framing
pulses inserted among the information-bearing pulses at predetermined
intervals. The receiver will then find these framing pulses by searching
and testing for the unique pattern of these pulses. If the framing pulses
are inserted between every word, a substantial loss of channel eapacity
will result; on the other hand, if framing pulses are inserted only oc-
casionally, the PCM words will not be uniformly spaced, which is
inconvenient for a sampled-data system. When the PCM signal contains
known redundancies, it is possible to accomplish framing without the
use of supplementary pulses. The signal is then said to be framed
“statistically.” The receiver now searches for the word grouping which
will yield the expected statistics for the signal. A simple example of such
a statistic is the intelligibility of voice. Voice transmitted by PCM is
intelligible only when the PCM words are grouped correctly. Other
criteria, easier to instrument than intelligibility, are available. Most
signals have amplitude distributions other than the uniform distribution
or have frequency spectra other than the flat spectrum. Both of these
properties will be altered when framing is incorrect. One of the easiest
statistics to measure is the average occurrence of 1’s and 0’s in the code
words. Measurement of this statistic for the case of a linear coder operat-
ing on a Gaussian signal source will be the main theme of this article.
The next section will elaborate on the digit probabilities, followed by
descriptions and analyses of framing circuits which acquire framing by
comparing the probabilities of 1’s and 0’s in the second digit of the
Gray code.

II. PROPERTIES OF THE GRAY CODE

If the amplitude of the signal before PCM encoding is centrally dis-
tributed — Gaussian, for example — and the Gray code is used to convert
this signal into PCM, then the individual digits of each code word will
not have equal probability of being either a 1 or a 0. This fact can be
demonstrated by observing the Gray code assignments illustrated in
Fig. 1. Because the signal amplitudes are centrally distributed, the center
codes will be used more frequently than the codes-at the extremes; the
second digit, being a 1 for the center codes, will thus be dominated by
1’s. Tt should be noted that this redundancy is the result of a linear coder
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Fig. 1 — Gray code digit assignments,

operating on a Gaussian source. If a more efficient digitizer is used for
this source, as for example (1) a nonlinear coder or (2) a linear coder
followed by a digital processor to produce variable length codes or
block codes, then this redundancy can be removed. The amount of
redundancy in question is approximately one bit. Efficient coding would
therefore exclude the use of statistical framing,.

Fig. 2 illustrates the probabilities of 1’s for all the digits; we can see
that the probabilities of each digit being a 1 obey the following inequali-
ties:

P(Dy=1) < P(Di=1)< -« <P(D,y=1) <PD;=1) (1)
or, equivalently, the probabilities of each digit being a 0 conform to
P(Dy=0)>P(Dy=0)>--->P(Dy=0)>P(D:=0). (2)

Any out-of-frame condition is represented by a cyclic permutation of
the digits so that one of the inequality signs in (1) will be reversed and
similarly for (2). Any circuit which examines the validity of (1) or (2)
is therefore a framing detector. A few such circuits will be listed here.
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Fig. 2 — Gray code digit probabilities.

(1) Racing counters. In this scheme two counters are connected as
shown in Fig. 3. When either counter reaches the full count of N, both
counters are reset to zero. Now if the upper counter is connected in
such a way that its count is advanced for every 0 in digit 2 and the lower
counter is similarly connected for digit 3, then according to (2) the lower
counter will reach full count and reset both counters most of the time.
However, if the signal is out-of-frame, the counters will be actually
counting the 0’s of the digit pairs 3-4, 4-5, - - - or 1-2, and according to
(2) the upper counter will now be able to reach full count and reset both
counters much more frequently. The reset signal from the upper counter
can thus be used as an out-of-frame signal. The probability of a false
out-of-frame signal can be made small by increasing N, the size of the
counters.

(2) Reversible counters. A single reversible counter, shown in Fig. 4,

PULSE WHEN OUT-OF -FRAME
DIGIT 2=0 COUNT TO SIGNAL
—_—
N
RESET
RESET
PULSE WHEN
DIGIT 3=0 COUNT TO
N

Fig. 3 — Racing counters.
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Fig. 4 — Reversible counter.

can also be used to detect the framing status. The count is increased by
a 0 and reduced by a 1. When digit 2 is connected to this counter, the
preponderance of 1’s will keep the counter at or near the zero-count
state and prevent it from reaching full count. When the receiver goes
out of frame, this counter will be controlled by pulses of some other
digit which, as can be seen from I'ig. 2, has af least 50 per cent zeros;
therefore full count will be reached within a finite time. Framing can be
accomplished by searching for a word grouping such that the counter
does not reach full count in a certain time interval.

(3) RC cireuit. If a random pulse train is connected to an RC circuit,
shown in Fig. 5, then the presence of a pulse will charge the capacitor
and the absence of a pulse will permit the accumulated charge on the
capacitor to discharge somewhat. The process is similar to that of the
reversible counter, except that the charge and discharge rate is now a
function of the accumulated charge. A threshold cireuit monitoring the
voltage on the capacitor can be used to indicate the framing status. A
pulse train derived from the received signal such that each pulse indi-
cates a 0 and each space indicates a 1 in the second digit of the Gray
code is used as an input to the RC' circuit. When the receiver is in frame,
the pulse pattern at the input to the RC circuit will be sufficiently
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Fig. 5 — Framing with RC' ecireuit.
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sparse so that the accumulated charge will result in an output voltage
that seldom builds up to the threshold. However, an out-of-frame con-
dition will result in at least 50 per cent pulses present at the input, and
the output of the RC circuit will reach threshold in a finite time.

III. FRAMING CIRCUIT CHARACTERIZATION

Two figures of merit are commonly used to characterize framing eircuit
performance, (1) misframe rate and (2) reframe time. Misframe rate is
measured in terms of the probability that the circuit will indicate an
out-of-frame condition when in fact the receiver is in frame. Reframe
time is characterized by the probability distribution of the time re-
quired for the receiver to achieve correct framing; this includes the time
taken to detect the out-of-frame condition. In a conventional framing
circuit, wherein a known framing pulse pattern is monitored, misframe
rate and reframe time are sensitive only to the error rate of the trans-
mission medium. Performance is degraded due to masking of the fram-
ing pulses by noise. With statistical framing, performance is more de-
pendent on signal statistics. Let the probability of a 0 in digit 2 be 0.05
at the transmitter; with an error rate of 10 per cent, the probability of
a 0 will increase to about 0.14, which is still different enough from 0.5 to
keep the circuit in frame. The signal itself, of course, will hardly be
usable at this error rate. On the other hand, a significant change in signal
statistics at the transmitter may cause a collapse of framing. Care must
therefore be exercised when the performance of statistical framing
cireuits is to be compared with that of conventional cireuits.

To evaluate the misframe rate and the reframe time of the statistical
framing eircuits, the response of these circuits to random inputs must
be determined. Unfortunately, the statistical properties of the transient
response of analog circuits such as the RC circuit excited by a random
signal have not yet been completely solved. Therefore analytical results
for framing schemes using only digital counters will be presented here;
even with these circuits the results are approximate.

An experimental approach is used to determine the performance of
the framing scheme using RC ecircuits. The instrumentation proves to
be rather simple and some results will be given.

IV. ANALYSIS OF THE RACING COUNTERS

To lend some physical meaning to the analytical results, the analysis
will be accompanied by numerical results for a typical application,
namely, transmission of a mastergroup of telephone channels by PCM.
A mastergroup earries 600 voice-grade channels frequency-multiplexed
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together, and its amplitude distribution is very close to Gaussian if the
signal load is predominantly message service.! With normal busy hour
loading the rms value of the signal is approximately 14 of the system
overload voltage. Under extreme conditions the rms may rise to 14 of
the overload voltage. These figures will be used to calculate the per-
formances of the framing circuits. A nominal sampling rate of 6 X 10°
samples per second is assumed for the mastergroup. This rate will be
used to translate misframe rate into misframe interval, the mean time
between misframes.

We can consider the two racing counters as a sequential machine hav-
ing (N + 1)* possible states. In Fig. 6 the (N + 1)” states are depicted
in a square array A; each of its elements a;; represents a state where
the upper counter has count 7 and the lower counter j. From a;; transi-
tion is possible to 3 adjacent states @i1,;, @is1,541, OF @ 41 UpON Te-
ceiving as inputs 01, 00, or 10 respectively. In this notation the first
digit represents the input to the upper counter and the second digit
the input to the lower. Since the counters count only (0’s, an input of 11
will not advance the counters and the state will remain at a;; . Starting
from the initial state aq , the problems are (a) to find the probability
of reaching the bottom row when digits 2 and 3 are connected to the
counters (this yields the misframe rate) and (b) to find the probability
distribution of the time required to reach either the bottom row or the
right-hand column when other pairs of digits are connected to the
counters; this leads to the distribution of reframe time when the result-
ing distributions are convolved.

A convenient technique for finding these probabilities is to use signal
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Fig. 6 — State diagram for racing counters.
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flow graphs.” Using @ = ¢ * as the time delay operator, the transitions
indicated in T'ig. 6 are as follows:

_ zP(01)
down d = T p(1T)
. _ zP(00)
dlagonal g = m (3)
) ~_ zP(10)
and to the I‘lght r = ITEW .

The denominator [I — xP(11)] is due to self-loops at each state when
neither counter advances. In principle, this flow graph can be solved for
the transmission from the initial state to either the bottom row or the
right-hand eolumn as rational functions of the delay operator z. From
these rational functions the total probability of reaching the bottom row
can be calculated by letting x = 1, and the probability distribution of
the waiting time can be obtained by a power series expansion of the
rational functions. However, in a practical situation with counters
counting up to 16, the caleulations become extremely involved, and even
with 20 decimal digits round-off errors become excessive. Approximations
are therefore used to estimate the misframe rate and the framing time.

To calculate the average misframe rate, the substitution x = 1 can
be made before solving the flow graph of Fig. 6. This reduces complexity
considerably and one can caleulate the probability of reaching the bot-
tom row before the right-hand column. Information about time delay
is lost and must be estimated independently.

The flow graph can be solved by observing that

Q) =dQ(z — 1,7) +¢Q(i — 1,7 — 1) + Q4,5 — 1) (4)
for
121=N-1 and 1=j=N-1

where Q(%,7) is the probability that the state a.; is reached at any time
starting from ag . The d, g, and » are now numerical quantities caleu-
lated from (3) with 2 = 1. The above iteration formula is valid for all
states except the border states of the array A. To complete the picture
we have

Q(00) =1 (5)
since ag is the initial state, and going straight down

Q(i0) = dQ(i —1,0) 1=<i=<N. (6)
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To the right we have

Q(0,j) = Q0 — 1) l1=j=N (7)
For the bottom row we have
Q(Nj) =d@(N — 1,j) +¢Q(N —1Lj—1) 1=j=N-—-1 (8)
and the rightmost column
QUN) =¢gQ( — LN -1 +rmQN—-1) 1
and, finally, the lower right state has probability

Q(N,N) = gQ(N — LN — 1) (10)

IIA

' =SN-1 (9

since it ean be reached only by way of ay_; ~—1 . The special treatment
given the bottom row and right-hand column is necessary because they
are the end states; from here we start anew at ag .

The probability of reaching the bottom row is the sum

U= ;:E(] Q(N.j) (11)

which is the probability of an output pulse from the upper counter be-
fore the lower counter reaches count N. This is the probability of a false
out-of-frame signal when digits 2 and 3 are connected to the counters.
The recurrence formulas are valid for signals that are independent with
respect to the past, so that d, g, and r are the same for all states. Statis-
tical dependence of the two digit inputs is considered in their joint
probabilities. This iterative procedure has been carried out, and some
numerical results are presented below.

Assuming a Gaussian distributed input signal the joint probabilities
of digits 2 and 3 can be determined for normal loading with an rms input
at 14 of the system overload and for extreme loading with an rms input
at 14 of the overload. The various probabilities are shown in Table I:

TasLE ] — ProBaBILITIES OF DIGITS 2 AND 3

0t 00 i 10 1 1
RMS 14 overload 0.0428 0.0026 0.6826 0.2720
0.5468 0.3196

RMS 14 overload 0.1092 0.0244

substituting these numbers into (3), we have for x = 1 the transition
probabilities shown in Table II.
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TABLE II — TRANSITION PROBABILITIES

Transition D?[W]l Diﬂ.ggonal To ther Right
RMS 14 overload 0.0588 0.0037 0.9375
RMS 14 overload 0.1605 0.0359 0.8036

The strong tendency to go to the right is quite evident here. The
probabilities of reaching the hottom row before the right-hand column
can be calculated from these data using the iteration formulas developed
above. To translate these probabilities into mean time between misframes
we proceed as follows. When the signal is in-frame, the lower counter
almost always attains full count before the upper. For counters of size
N, the lower counter resets both counters on the average of every N/p
PCM words, where p is the probability of a 0 in digit 3. The mean time
between misframes is then N/pU. The results are shown graphically in
Fig. 7 for various counter sizes. At normal loading and N = 16, the
mean time between misframes is 1.2 X 10 words which, at a sampling
rate of 6 X 10° per second, amounts to 2 X 10° seconds or a little more
than 2 days. When the rms signal is increased to 14 of overload, this
mean time deteriorates rapidly to fractions of a second, so that the
counter size has to be more than 32 to insure adequate reliability under
severe overload conditions.

To complete the picture on the racing counters, the framing time will
be estimated. During search for the correct framing we observe that the
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upper counter will be advanced, with 0’s oceurring with probability at
least 14, and that it will be able to reach full count without first being
reset by the lower with probability at least 14. Thus with M digits in
each PCM word and assuming the worst case of searching through all
M — 1 positions, the counters will be reset on the average of 2(M — 1)
times. Each reset requires on the average of 2§ words to either the upper
or lower counter. A conservative estimate of the average framing time
for the worst case is therefore 4N (M — 1) words.

As mentioned earlier, the exact distribution of the framing time is
difficult to obtain; however, the variance of this distribution can be
estimated. The framing time distribution can be considered as a com-
pound distribution, where the number of times n either counter reaches
full eount during framing is governed by one distribution and the wait-
ing time ¢ for each reset is governed by another distribution. It is known
that such a distribution has mean E(n)E(t) and Variance E(n)Var(t)
+ Var (n)E*(t)." The distribution of the number of times either
counter reaches full count before the upper counter reaches full count
M — 1 times is governed by the negative binomial distribution.” With
the upper counter having probability 14 of reaching full count, n has
average 2(M — 1) as mentioned before and variance 2(M — 1). The
waiting time for each reset is similarly governed by the negative bi-
nomial distribution. With probability 14 of receiving a 0, the waiting
time ¢ has mean 2N and variance 2N. The variance of the framing time
is therefore 2(M — 1)(2N) + 2(M — 1)(2N)*; for large N this is ap-
proximately 8(M — 1)N°.

Tor a 9-digit PCM system M = 9, and if we use N = 32, the average
framing time for a sampling rate F, = 6 X 10° per second is

8(M — )N 4 X 8 X 32

7 = T8 X 10° = 171 usec

the standard deviation is

8V — DN _ (8 X 8)" X 32

7 6 % 10° = 43 usec.

Since the distribution is the result of many convolutions, it can be ap-
proximated by a normal distribution; with this assumption we can use
three standard deviations as the confidence limit and estimate the maxi-
mum framing time as 300 psec. During out-of-frame conditions the upper

* See Ref. 3, p. 253. Actually the negative binomial distribution governs the
number of times the lower counter reaches full count. This average is M — 1;
the total average waiting time is therefore (M — 1) + (M — 1) = 2(M — 1).
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counter actually receives 0’s with probability greater than 14, so that
the estimates are conservative.

V. ANALYSIS OF THE REVERSIBLE COUNTER

The use of a reversible counter allows greater reliability without re-
sorting to large-capacity counters as is necessary for the racing counters.
The analysis is also simpler, since only one counter is involved. The flow
graph for a reversible counter is shown in Fig. 8. The probability of a 0
which increases the count is p, and ¢ = 1 — p is the probability of a 1
which decreases the count. The count cannot go below zero. The gain
of the graph for any counter size N can be obtained by standard tech-

qz
Opx px px pz px px
N Y N N NV
1 2 3 4‘\ N-1
qz qr qz aqzx N-2 qx .

Fig. 8 — Flow graph for reversible counter.

niques. The result can be expressed conveniently in the form of a re-
cursion formula for the denominator polynomial

Dy(z) = Dya(z) — pgr'Dy_s(x)
where
Dy(z) =1 and Di(z) =1 — gz.

The numerator is simply Ny(z) = p"2". Some representative results
are

4 4
- Pz
W) = T =3 T 2900 + PP (12)
and
pExB
Q@) == gz — Tpga* + bpg's® + 15p°g'at - 19

— 10p2q3$5 — 10p3q3$ﬁ + 4p3q4z'n' _l_ piqus
The average time between misframes can be determined from the
above by differentiation. Thus*

Tnv = QN’(]-) (14)

* See Ref. 4.
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when p and ¢ are for the second digit of the Gray code. The results for
various counter sizes and for system overload at 4 and 3 times rms are
shown in Fig. 9. It is seen that with a counter of size 16 and worst-case
loading the misframe interval is still sufficiently long, 1000 hours at a
6-mc sampling rate.

One disadvantage of using the reversible counter is the slow reframing
process. When the receiver is out of frame the counter can be assumed
to receive 1’s and 0’s with equal probability. Using formulas developed
above for N = 16 but substituting 0.5 for p and ¢, one obtains an
average of 272 words to reach full count. For a 9-digit PCM system
sampled at 6 me, this amounts to 360 ysec for the average framing time.
To shorten the framing time a dual-mode secheme applied frequently in
conventional framing ecircuits can be used. The scheme is deseribed in
more detail below.

The framing circuit is designed to have two modes of operation. In
the in-frame mode, the counter size is set at 16 for maximum reliability ;
once the out-of-frame signal is received the counter size is reduced to 8
to secure fast framing. The logic is depicted in Fig. 10.

The flip-flop determines the mode of operation. When in frame, the
flip-flop is reset and the counter must reach count 16 excess 0’s over 1’s
of the second-digit Gray code. When the system goes out of frame, the
probabilities of 1’s and 0’s are equal, and an output from the N = 16
lead of the binary counter chain sets the flip-flop to the out-of-frame
mode. In this mode the output from the N = 8 lead of the binary chain
is used. At the same time a timer is turned on to reset the flip-flop after

1020
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0 4 8 12 1€
N-SI1ZE OF REVERSIBLE COUNTER

Fig. 9 — Reliability of the reversible counter.
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Fig. 10 — Dual-mode reversible counter framer.

a certain elapsed time. This elapsed time is selected such that it is longer
than the maximum time required to get an output from the N = 8
lead when the system is searching but shorter than the minimum time
required to get an output from this same stage when the correct frame
is found. “Maximum” and “minimum’ are used here in a probabilistic
sense to be defined later. Thus during recovery the timer is reset before
it reaches the preset time, thereby preventing the flip-flop from resetting
back to the in-frame mode. When the system cycles back into frame,
the timer will return the system to the in-frame mode. Each time a .
signal appears at the counter output, the framing counter is inhibited
one time slot in order to examine the next bit position; the reversible
counter is also reset automatically to zero. With the proper preset time,
the system is almost always prevented from cyeling past the true in-
frame position.

To estimate the framing time for this scheme, we again use the exam-
ple of a 9-digit PCM system sampled at 6 X 10° per second. For the
worst case of searching through all 9 digits the average framing time
is given by

Te = Qu'(1) + 7Q5'(1). (15)

The effect of incorrect decisions by the timer which cause recycling is
ignored here. The first term corresponds to detection and the second
term corresponds to the search through the next 7 positions. The time
spent in verifying that the last position is the correct one is not included,
because the system will already be in frame. The above equation is
evaluated for p = ¢ = 14 and yields the worst-case average framing
time of 130 psee. This estimate is again conservative, since 0’s occur with
probability greater than 14 in some digits of the Gray code.
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The exact distribution of the framing time for the worst case may be
determined by expanding Qus( 2)Qs (z) in a power series. Again, this is
difficult to do accurately. To get around this problem an approximation
to the inverse transform of Qs(x) is determined by noting that the decay
in the tail of the distribution is dependent mainly on the singularity of
Qs(x) closest to the unit circle (1.01728 in this case). On this basis the
inverse transform is approximately

1.6986 X 107°

(1.01728)% for &

f]s(k) =

v
o

and
@(k) =0 0=k<8
where 1.6986 X 107" is selected so that
g gs(k) = 1.
Using the result and returning to the x domain

L 1.6986 X 107%"
Qs(x) ~ - (16)
( 101728

We now make the further approximation of replacing Qis(z) by Qs(z)
in the product mentioned above. We can therefore deal with the simple
result given by (16) raised to the 8th power. On this basis a somewhat
optimistic expression for the distribution of the framing time can be
readily obtained:

—24 8 LAY
p(n) = (1.6986 X 107°) (n — 57)! for "> 64

71(n — 64)1(1.01728)" - (17)
0 0=n <64

p(n)

The upper tail of p(n) is shown in Fig. 11,

Taking the 10" point as the confidence limit and multiplying by the
sampling period, we get 200 psec as the maximum framing time. Since
the framing process is dominated by the Qs'(x) term, the error intro-
duced by the substitution of Qs(z) for the Qs(x) term should not be
significant.

Finally, we note that an optimum time must be chosen for the timer
in Fig. 10 to reset the flip-flop back to the in-frame mode. Selection of
this time is hased on the distributions of waiting times for an output
from the N = 8 lead of the counter, first under the out-of-frame condi-
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tion and second under the in-frame condition. Summing the first two
columns of Table I we obtain 0.13 as the probability of a 0 for the second
digit when the rms input is at 14 of the system overload. For the other
digits a probability of 0.5 is assumed. Expanding (s(z) in a power series
when p = 0.5 and when » = 0.13 yields the desired result. This is plotted
in Fig. 12. If the time is chosen to be 560 frames, the framing detector
will be in the wrong operating mode only 0.01 per cent of the time,
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Fig. 12 — Selection of optimum time for the timer.
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which means that the framer will seldom cyele past the true frame
position during the framing process.

We note for future reference that the distribution of the waiting time
in Fig. 12 for p = 0.5 is a straight line on semilog paper, which indicates
that it has an exponential tail.

VI. MEASURED FRAMING PERFORMANCE FOR THE RC CIRCUIT

We introduce this seetion by defining the problem. Illustrated in Fig. 5
is a typical input to the RC circuit, a random pulse train

x(t) = X augt = nT) (18)

where a, is a sequence of independent random variables assuming values
1 or 0 with probabilities p and (1 — p), and g() is a rectangular pulse
of height E and width w. When this pulse train is applied to the circuit
of Fig. 5, the capacitor will charge when a pulse is present and discharge
otherwise. The charging time constant is

= E% c (19)
and the discharge time constant is
T4 = RoC. (20)
Tt is also convenient to refer to the attenuation constant
K—le_?m:l—:_;. (21)
We are interested in the transient response of the circuit y(t), particu-
larly at times ¢t = w, t = T +w, ---,t = MT +w because they are
the local maxima. We can proceed step by step:
y(w) = aKE[l — exp (—w/7.)] (22)

y(T) = aKE[1 — exp (—w/r.)) exp [— (T — w)/7a;  (23)

at t = T + w, the charge due to a, is added, the charge due to ao de-
cays further with a time constant of either r. or r4 depending on the
value of a,

y(T + w) = a,KE[l — exp (—w/7c)]
+ {aKE[l — exp (—w/7.)]exp [— (T — w)7dl} (24)
[asexp (—w/7.) + (1 — @) exp (—w/7a)l;
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in general

y(MT + w) = KE[1 — exp (—w/7.)] ian

n=0

exp [— (M —n)(T — w)/7d) (25)

M
H+1 lan exp (_w/"'r) + (1 — a'm) exp (_w/'rd)]-
The framing performance of this circuit is related to the probability
distribution of the first time that the output of the circuit exceeds a
certain threshold. It is the distribution of the smallest 3 such that

y(MT + w) > threshold. (26)

To find the distribution analytically from (25) appears difficult.
Some simplification can be obtained by assuming that the widths of the
pulses are small or by assuming that the charge and discharge time
constants are the same. Under either of these conditions the product in
(25) disappears and the output is essentially of the form

M
z= 2w  0<B<L (27)
n=0
The behavior of the random variable z when M — « has received some
attention,” but the distribution of the first passage time of z with respect
to some threshold is still difficult to obtain.

Here the experimental approach is taken; the circuit used is depicted
in Fig. 13. The input is derived from an analog-to-digital converter with
a Gaussian signal as input. The output of this converter is in Gray code.
By adjusting the level of the input signal and by selecting the various
digits of the Gray code, a pulse train with any desired pulse density may
be obtained. The digital timer measures the waiting time; it is started
at the closing of the input switch and stopped by the threshold circuit.
The threshold circuit also opens the input switch and signals the re-
corder to write the timer output on tape. A delay circuit resets the digital
timer and initiates the next eyecle of measurement after the RC circuit
has returned to the rest condition. Each timing and recording operation
takes about one msee; about a million measurements were made and
recorded in a matter of minutes. A simple computer program reads the
data and compiles the cumulative distribution of these data as well as the
mean and standard deviation.

Some qualitative results concerning the effects of the various parame-
ters will be given below. First, for all of the combinations of the parame-
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Fig. 13 — Measuring distribution of first passage time.

ters chosen, the measured distributions tend to have an exponential tail;
they plot as straight lines on semilog paper (sce, for example, Fig. 15
below). An intuitive argument can be given for this result. If we suppose
that the threshold is set very low compared to the average output of the
cireuit, at voltages below this threshold the circuit acts more like an
integrator than an RC circuit because it charges almost linearly and
discharges very little between pulses. The distribution should therefore
be similar to the distribution of the waiting times for the nth success in
a sequence of Bernoulli trials, which has an exponential tail. Now we
suppose that the threshold is set high compared to the average output
of the eircuit. Near this threshold, the circuit decays rapidly between
pulses, so that a succession of many pulses in a row is necessary to drive
the cireuit over the threshold. The problem is now similar to the first
oceurrence of n consecutive successes in a sequence of Bernoulli trials,
which again has an exponential tail. Finally, we can suppose that the
threshold is set about equal to the average output of the circuit when the
probability of a pulse at the input is 0.5. Near this threshold the decay
due to an absence of a pulse is about equal to the charge contributed by
a presence of an input pulse. The circuit therefore behaves much like a
reversible counter in this region. In the previous section this has been
shown to have an exponential tail. All of these arguments are of course
approximate, but, lacking a complete theory, they serve to provide some
insight. Knowledge that the distribution of the waiting time has an
exponential tail enables us to use the techniques developed for the re-
versible counter to estimate the framing time distribution of this cireuit.
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The second qualitative result is that the measured distributions of the
first passage time for the various circuits are very much the same as long
as their composite time constants and relative threshold settings are the
same. By “composite time constant’ is meant the time required for the
output to reach (1 — ¢') of the maximum output when all pulses are
present at the input. By “relative threshold” is meant the threshold as
a fraction of the aforementioned maximum output. The different situa-
ations are illustrated in Fig. 14.

The composite time constant and the maximum output can ke com-
puted from (25), setting all a,’s to 1.

y(MT + w)
a _ 28
= KE[1 — exp (—w/.)] nzﬂexp - [(M —n) (T - Ls :"-.v):l (28)

Te

Letting M approach infinity we obtain the maximum output
[1 — exp (—w/7.)]

[T

The expression inside the summation in (28) can be rewritten as

exp — I:T(M —n) (1 — v + EJ-’)] (30)

Ymax = KE

Td Te

where w' = T'/w, the duty cycle of the pulses. From this we can see that
the composite time constant is

(1 —w + 3’)1. (31)

Td Te

The third qualitative result is the following. For circuits and threshold
settings such that with equal probability of pulses and spaces at the
input the distributions of the first passage time are the same, the average
first passage time for low probability of input pulses is longer when the
relative threshold is higher. Relative threshold is defined as above.
This result can be explained by using arguments similar to the first re-
sult. At low threshold settings, the eircuit acts as an accumulator so
that the average first passage time is inversely proportional to the aver-
age pulse density. On the other hand, for high threshold settings, the
first passage time depends on the occurrence of many consecutive pulses;
the probability of this occurrence decreases exponentially with the
average pulse density. This result is directly applicable to the framing
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Fig. 14 — Two situations depicting different parameter settings but with sub-
stantially the same distribution of the waiting time to first passage of the thresh-
old voltage.

problem. For the RC circuit, the dual-mode operation controlled by a
timer used for the reversible counter is not necessary. With appropriate
choice of cireuit parameters and threshold, one can achieve fast framing
and low misframe rate at the same time. To what extent the threshold
can be adjusted to improve framing performance depends on the stability
of the cireuit. When the threshold is set near the level corresponding to
all pulses present, a small drift in any of the parameters will cause a
large change in reliability.

The framing performance of a typieal RC cireuit will be given here.
Again we assume a 9-digit PCM system with 6-me sampling rate. The
parameters are as follows:

pulse width = 50 per cent duty cycle
charging time constant = 0.44 usec
discharge time constant = 1.2 psec
composite time constant = 0.64 usec.

With the probability of a pulse set at 14, the variation of the distribu-
tion of the waiting time with threshold setting is illustrated in Fig. 15.
The variation of the misframe interval and average framing time with
threshold setting is illustrated in Fig. 16. If the threshold is chosen such
that the misframe interval is 10 seconds (about one day), the average
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first passage time is about 20 usec. This yields an average framing time
of 160 usec if 8 positions are to be cycled through. Using the results of
the reversible counter as a guide, the maximum framing time with 99.9
per cent confidence is about 250 usec.

VII. SUMMARY

This paper has considered the possibility of framing a PCM signal
by utilizing the statistics of the code digits. Three schemes for testing
digit statistics have been proposed and their performances analyzed or
measured. Statistical framing is shown to be feasible and effective
whenever the signal statistics satisfies certain weak conditions.

The authors wish to acknowledge the help of H. H. Henning and
F. P. Rusin for design and construction of equipment used and assistance
given in obtaining the experimental results. The encouragement of M.
R. Aaron is also appreciated.

REFERENCES

1. Holbrook, B. D., and Dixon, J. T., Load Rating Theory of Multichannel
Amplifiers, B.S.T.J., 18, Oct., 1939, p. 645.

2. Huggins, W. H., Signal Flow Graphs and Random Signals, Proc. I.R.E., 47,
Jan., 1957, pp. 74-86.

3. Teller, W., An Introduction to Probability Theory and Its Applications, John
Wiley & Sons, New York, 1957, pp. 268-277.

4, Aaron, M. R., and Gray, J. R., Probability Distributions for the Phase Jitter
in Self-Timed Reconstructive Repeaters, B.3.T.J., 41, Mar., 1962, p. 503.






