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ing the photodetector. In the case of a photomultiplier, this is not nor-
mally necessary. Even when these terms are not completely negligible
compared to 7,, cos 8, their effect can be eliminated by varying the phase
of the injected signal so that cos @ takes on the value £1. The only out-
put which depends on 6 is the desired modulation signal. Thus one need
only take the algebraic difference between the extreme deflections of the
synchronous detector as 8 is varied. The fact that there is a synchronous
detector deflection which depends on the phase of the injected signal is
an unambiguous indication of microwave modulation on the light.

All aspects of (2) have been verified in the course of photoelastic and
electro-optic modulation experiments above 150 me by placing variable
attenuators in various parts of the circuit to see if the variation of each
term had the proper dependence. Modulation depths of 10-% could be
easily and accurately determined with integration times following the
synchronous detector of less than one second. No special shielding was
required. It should also be noted that the output of the synchronous
detector is proportional to the RI" amplitude rather than the square of
the amplitude as in most other radiometer detection schemes. Thus, the
output is proportional to the amplitude of the light modulation rather
than its square.
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I. INTRODUCTION

The problem considered here is that of coding for the time-discrete
amplitude-continuous memoryless channel with additive Gaussian noise,
the code words lying on the surface of an n-dimensional hypersphere
with center at the origin and radius v/nP.

We define a code as a set of M real n-veetors & = (&g, @2, -+, x,)
satisfying the (“energy’) constraint,
n
>t = al. (1)
=1

The transmission rate R is defined hy A/ = ¢"*, so that & = (1/n) In M.
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The code words are transmitted through a channel in which they are
corrupted by noise, the reecived word § = (1, 42, -+, yu) being the
veetor sum of the transmitted word T and a noise vector Z, i.e.,

g=(n,pn, ) =(n+za,tz, 0tz =2+2 (2)

The components of the noise vector zx(k = 1,2, - -+, n) are assumed
to be statistically independent Gaussian random variables with mean
zero and variance N.

n
The signal “energy” is », x° = nP, and the expected noise
k=1

“energy” is E[Y ¢ z°] = nN, so that the signal-to-noise energy ratio is
P/N. This quantity is also the signal-to-noise “average power.”

It is the task of the decoder to examine the received vector § and de-
cide which code word & was actually transmitted. If P, is the probability
that the decoder makes an incorrect choice when code word ¢ is trans-
mitted (i = 1,2,3, ---, M), and if each of the M code words is equally
likely to be transmitted, then the over-all probability of a decoding error
is

M

p,=L13p,. (3)
M =

Tt is not hard to show that the decoding seheme which minimizes P, for
a given code is the minimum-distance decoder, where the decoder selects
that code word which has smallest Euelidean distance from the received
vector and announces that word as the one which was transmitted.
Thus if 5§ = (41,42, -+, ) is the received vector, the decoder an-
nounces that code word & which minimizes (with respect to )

n

AdEg) = 2 (e — )’ = 2 ad + 20’ — 22w
k=1 k k k
Sinee Y par’ = nP, d(F§) is minimized when vy is maximized.
Hence minimum-distance decoding is equivalent to selection of that
code word & which minimizes the angle in n space a(#,j) between & and
i, where
Z Tk

cos alFj) = £ . (4)

(Z =) ()

The behavior of codes for this channel has been investigated in detail
by Shannon,"* who has shown the following:
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Fundamental Coding Theorem: Let R be any number such that
R<(C=1%n][l+ (P/N).

For each n, there exists an n-dimensional code with rate R(M = e"*) such
that the error praobability s

—nE(R)t+o(n)
P.=c¢ , (h)

where the exponent E(R) (called the “‘reliability”) is positive when B < C
(so that P, = 0).
Shannon? also obtained estimates of the best possible exponent

E(R) = lim — (1/n) In P,.

n->m

In this note we establish the following upper bound on E(R) (i.e., a
lower bound on P,):

E(R) = J?N o (6)

For small rates R, (6) is sharper than the bounds of Ref. 2. Inequality
(6) is plotted together with the estimates on E(f) in Ref. 2 in I'ig. 1.
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Fig. 1 — New upper bound on E(R) vs R for P/N = 4 (solid line). The bounds
on E(R) of Ref. 2 are in dotted lines. £(R) lies in the shaded area.



B.S.T.J. BRIEFS 3073

II. DERIVATION OF THE BOUND

Consider an n-dimensional code with 1/ code words &, Ta, =+, Tar .
Let 6 be the minimum angle between pairs of code words a(z;, &;)
(i # j). Denote by 8, (M) the largest possible minimum angle 8 in an n-
dimensional code with 3/ code words, and by

su(M) = 24/nP sin [6,(M) /2],

the largest possible minimum distance between pairs of code words in an
n-dimensional code with 1/ code words. Paralleling an argument of
Shannon [Ref. 2, pp. 647-648] it is not hard to show that the error prob-

ability satisfies
/nP i 6.(0/2)
cn(cyTattn),

,,,zm

b |

where

ﬁr

is the cumulative error funetion.
We now employ the following result of Rankin® to obtain an upper
bound on 6,( ):

¥

T (n : 1) sin @ tan g

M = ) (8)

]
n . n—=a

ar (3) f (sin ¢)" (cos ¢ — cos B)de
- 0

where 8 = sin”' v/2 sin (6/2), and 8 is the minimum angle in an n-di-

mensional code with 1/ code words. Taking logarithms of (8) yields

, r(t=- 1)
1 : 1 . 1 2
R=-InM £-Inh=smpgtang + - In ————=
n n 2 n n )
r (E) (9)
1 ? )
- lnf (sin @)™ “(cos ¢ — cos B)de.
n 0

It is shown in the appendix that for large n we may approximate the
upper bound of (9) hy —In 4/2 sin (8/2), yielding

lvlm

e r. (10)

l\.J'

1
.\/
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Since for large n, a code with 3/ /2 points has the same rate as one
with M points (10) and (7) yield (for large n)

1 /nPeR)
Pazzfﬁ( ,‘/ N 3 (11)

Using the well known a.symptotlc form of the cumulative error func-
tion ®(—z) ~ (1/zv/27)e =" (large x) we obtain

E(R)=1im— mp, <L ¢

2
n—w = -lN (12)

APPENDIX

We must show that the limit of the right-hand member of inequality
(9) as n tends to infinity is — In /2 sin (6/2). The first two terms of
this quantity both tend to zero as n becomes large, so that we must
show the following:

Let
ﬂ 2
I, = f sin" " ¢ (cos e — cos B)de,
Q
then
L1 .
EF=lm-InI, =Insing.
Proof:
8
(a) I, = f sin"* 8 (cos¢ — cos B)de = sin" 8 [sin B — B cos B],
0
so that
1 n— 2 . 1 . n .
7—11111,.§ lnsm,8+7—1]n[sm,6—ﬁcosﬁ]—-lnsmﬁ.
Y]
(b) I, = f sin" ¢ (cos ¢ — cos B)de
BB/ n)
s (13)
> sin"_g( — Q)f (cos @ — cos B)dp.
n/ Ja—@rn)

Now
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]
I= f (cos ¢ — cos B)de = sin f — sin (B '8) -k cos 8
B n

—(B/n) n

B_B

sin 3 — sin 8 cosg + cos B Sinﬁ - cos 8.

Expanding sin (8/n) and cos (8/n) into power series in (8/n), we ob-
tain

2 2
I =sinB [)'6;?, + 0 (l,,)] = % sin B[1 4+ o(1)].

n® 2

Thus

lln]r = 1ln‘ﬁ—ﬂsin,ﬁ + " (14 o(1)) = 0.
n n o 2nt n

From (13) we have

_9
% In/l, = R—HJ In sin (,6 — @) + B In 7 = In sin 8.

12 n

Therefore £ = In sin 8, which completes the proof.
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