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Beginning with the familiar ideas of time-congestion and call-congestion
for a full access trunk-group, this paper considers the relations belween
various measures of congestion for networks of more general structure. The
discussion is based on a simple heuristic model which makes the definitions
of time- and call-congestion directly comparable. This model leads to a
two-dimensional classification of measures of congestion, which should be
useful in treating types of syslems not mentioned here. Three imporian
papers in the lilerature are analyzed in lerms of the proposed classification

1. INTRODUCTION

The concepts of time-congestion and call-congestion have been in com-
mon use since the early days of telephone traffic theory. Both ideas
are quite simple when applied to a single set of devices used in telephony,
such as a full-access trunk-group. But applications of these ideas in the
theory of networks of more general structure, composed of elements
arranged both in series and in parallel, have not always been consistent,
either internally or with each other. This paper describes an attempt to
resolve some of the difficulties, which may have arisen because the
simplicity of many ‘“classical” models renders unnecessary some dis-
tinetions which are important in the general case.

This section describes the nomenclature used below and the assump-
tions on which the remainder of the paper rests. The following section
treats a useful model in the context of a full-access trunk-group. In
the third section, similar ideas are applied to the theory of general com-
munication networks. The fourth section contains a brief discussion of
some of the switching literature, in the light of Section ITI. Some con-
clusions appear in the fifth section. In order to save space, I propose the
abbreviations “CC” for call-congestion and “TC” for time-congestion.

I use the following terminology. A single element of a system carry-
ing traffic is busy or ddle. This choice is binary and tells whether or not
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the element can honor a request for service. When a set of elements is
arranged so as to form all or part of a communication network, the
events {path} and {no path} correspond respectively to the existence
and non-existence of a chain of idle elements connecting two specified
points of the network. A call-attempt, which is a request for an idle path
connecting two points of a network, is blocked if no such path exists.
Blocking is a binary concept. ‘“Congestion” refers to a non-vanishing
probability of blocking, which takes values on the interval [0,1].

Analysis of congestion refers to a specified portion of a communication
system. This may be one group of trunks, considered in isolation; it may
be the switching network connecting incoming to outgoing trunks in
a tandem office; or it may be an entire system. When congestion exists,
some call-attempts do, or could, fail. A call-attempt must be made by
a source and must be directed to a destination,; sources and destinations
are terminals. Since we may think of call-attempts as simply appearing
as inputs to a particular model, a terminal really marks the boundary
of the model, which may or may not include the entities originally re-
sponsible for call-attempts.

But, for stated exceptions, this paper should be read with the under-
standing that blocked calls are cleared, i.e., that call-attempts which
cannot be served immediately are dismissed and have no effect on the
system. With blocked calls delayed, there may be more than one rele-
vant notion of blocking. One may ask for the probability of positive delay
or of delay exceeding a fixed amount. If only finite queues are possible,
one may want to know the probability of entering the queue or of over-
flow from the queue. The ideas expressed below can easily be extended
to such systems, but for simplicity they are introduced here in the con-
text of loss operation (blocked calls cleared), with or without retrials.

The traffic that a source or class of sources offers to a system is de-
scribed by means of a random process which specifies the instants at
which call-attempts occur. The parameters of such processes (with
deterministic traffic as a special case) can vary with time, from source
to source, or with the states of their sources, of the network, or of other
sources. When an expected number of call-attempts in an interval of
time is divided by the length of the interval, the quotient is an average
calling-rate. The present method of elucidating congestion allows, and
takes into account, dependence of a calling rate upon its source and
upon the state of its source and of the network; but it is simplest, with
one exception treated explicitly, to require independence among different
sources. There remains only the question of time-dependence.

Let us assume that the stochastie process which describes the operation
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of the traffic system of interest is stationary. The method proposed
below is based on subdividing a typical interval of time according to the
states of various elements of the system. I write as if various quantities
were defined as ratios of lengths of sub-intervals of an interval of finite
length T'. For every kind of time-congestion (TC), the definition is ac-
tually the limit, under appropriate conditions, of such a ratio as 7' — o,
For the sake of shortening complicated statements, this important dis-
tinetion will not be mentioned in Sections IT-1IV.

Similarly the definition of call-congestion (CC), which is what many
authors mean by “probability of blocking”, is often for the stationary
case given as the limit as T — = of the ratio of the number of blocked
call-attempts (in [0,7)) to the number of all attempts (in the same
interval). I propose to describe CC and TC in comparable terms by
equating call-congestion in a typical case with such a ratio as

[(expected length of blocked time in T' when attempts are possible)
- (expected calling-rate when attempts are possible but blocked)]
+[(expected length of time in T when attempts are possible) - (expected
calling-rate when attempts are possible)].

This procedure, of replacing an expected number of calls by a product
of an expected length of time and a conditional expected calling-rate,
is valid in cases for which a fraction such as that displayed here has a
limit as T — < which agrees with the corresponding true CC as defined
above. The procedure is certainly valid when the traffic system can be
described by a stationary Markov chain, as is the case for many systems
representable by models with finitely or infinitely many sources, blocked
calls cleared or delayed, ete. But so far as I am aware, it is not now
known either exactly what systems can be so described in a tractable
way, or for what other systems the desired agreement holds. Thus further
discussion of the applicability of this approach is deferred until Section
V. The additional problems, especially in connection with ratios such as
that displayed above, that are encountered in measuring the various
kinds of congestion form a separate topic and are not discussed here.
The preceding paragraphs make it clear that this paper does not
encompass traffic that varies in time (except possibly where we need
only finite-time-average values of congestion), although such traffic
can be quite simply described. By resorting to ensemble averages — that
is, to the conceptual experiment of running a traffic system over and
over again from time 0 to time ¢ with statistically identical inputs — it
is quite possible to define instantaneous values of congestion from various
points of view, although it is difficult to motivate a distinction between
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CC and TC. However, such generality would again serve only as a
distraction from the main issue. I therefore adopt the assumption of
stationarity: For present purposes this is a steady-state (equilibrium)
theory.

The reader must see now that this introduction is really a sop to
Cerberus. It records the framework of ideas in which the following re-
marks are couched, but very informally and on the assumption that the
reader is thoroughly familiar with the concepts and terminology of
traffic theory. I hope the loss of precision inherent in such a heuristic
approach is outweighed by the gain in simplicity.

II. CONGESTION IN THE SIMPLEST SITUATION

Let us first consider a single full-access trunk-group G. Its relevant
properties are represented in Fig. 1. It consists of a number of channels.
Subseribers at one end communicate with those at the other over a
shared communication system which for our purposes consists of G
alone. (We do not discuss communication between two subscribers at
one end of G.) Two particular subscribers are labeled “A” and “B”, and
we define the pair P as the pair (4,B). Traditional notions of blocking
and congestion in this situation refer to the state of G. Of course in de-
fining CC from A’s point of view we have to distinguish blocked states
in which A is busy from those in which A is idle; but the fundamental
concept is that of “all trunks of g busy”. This is because the idea is
simple and makes sense: Either some trunks are idle or they are all
busy; and when all are busy, any subscriber either has a trunk or cannot
get one.

Now let us represent a typical period of time T for G as the sum of
periods z, y, u, and v, drawn as intervals in Fig. 2. The label “no path”
for intervals z and y means that all trunks of g are busy, and “path”
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Fig. 1 — Full-access trunk-group.
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Fig. 2 — Division of time for G.

means that G has at least one idle trunk. With these conventions, it is
clear that the standard definition gives

. x4y .
TC = P (Fig. 2).
(In each such expression, the number in parentheses specifies the figure
in which the symbols are defined.)

The intervals z and  in which there is “‘no path” are lumped together
in the formula for TC, as are u and », because the wire chief’s point of
view ignores the state of terminal A. “The wire chief’s point of view”
is a traditional phrase which expresses the possibility of viewing the
possible paths between A and B with the interests of the shared com-
munication system rather than of the terminal-pair in mind. This view-
point reflects a concern for the network itself and its ability to establish
connections between pairs of terminals, and is therefore symmetric with
respect to A and B. In particular, congestion between A and B is natu-
rally seen as the fraction of time during which no path composed of idle
elements exists. The complementary point of view, emphasizing states
of the source, is known as that of the “particular subscriber’” (a phrase
from which I shall often omit the first word). This concept of “point
of view” is useful, but requires considerably more discussion in the next
section.

Suppose that A’s calling rate varies, and is on the average r(4)
times as large when there is no path through G as when there is a path.
Of course #(A) can represent either an instantaneous effect or one de-
pending on A’s history. (Note that r(4) incorporates the effects of, but
is by no means simply related to, a change in 4’s calling rate triggered
by an unsuccessful attempt and persevering until a successful attempt.
If r(A) has such a cause, then probably 7(4) > 1 with human callers;
but an automatic calling system might easily be designed to haver(4) <1
in order to reduce the load on the switching equipment caused by un-
successful attempts.) If A can initiate a call only when idle, then the
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customary notion of call-congestion, the proportion of A’s attempts
that are unsuccessful, is that

Ay
cC = r(A)y + u

If subscribers are not all alike, this formula may apply only to A, as
suggested by the traditional association of CC with the particular sub-
scriber’s point of view.

If indeed A attempts calls only when idle, it may be totally uninterest-
ing to him to consider intervals of time during which he is busy. But
A may still want to distinguish between, on the one hand, the fraction
of his call-attempts which fail and, on the other hand, the fraction of that
time in which he can initiate calls during which attempts must fail.
Thus it is natural to define the modified (or conditional) time-congestion
as

(Fig. 2).

- _ Y ™
MTC = T (Fig.2).

Fig. 2 shows clearly that MTC, like CC, measures congestion from the
subscriber’s point of view.

What relations hold among these three measures of congestion in
this situation? First, it is obvious that CC and MTC agree if and only
if r(A) = 1, and that CC < MTC if r(4) < 1 and vice versa. Second,
suppose that a relation R holds between the modified and ordinary
time-congestions, where R is either <, =, or >. Multiplying both sides
of the formula MTC R TC by (y + w)(x + v + u + v), we get y(x +
y+u+v) R (x+ y)(y + w. Subtraction of (zy + y* + yu) from
both sides yields the result that MTC R TC if and only if v R au.
Whenever uy = 0, it is helpful to rewrite this condition as

MTC R TC if and only if f; R %

(In certain degenerate cases uy = 0. For example, if G contains ¢ trunks
and there are ¢ terminals at each end, ¥y = 0 because A cannot be idle
when there is no path through G.) In the finite-source model analyzed
by Engset [Ref. 1, pp. 250-1], where r(4) = 1, the events {4 busy]
and {no path} are positively correlated, so that (v/u) < (x/y). There-
fore MTC < TC, and this in turn implies the well-known fact that
CC < TC. But notice that no inequality between MTC and TC inheres
in the definitions; it is not inconceivable that in some useful model
{A busy] and {no path} could be negatively correlated events, which
would make (v/u) > (2/y) and so reverse the previous inequality.
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We care most about the relation between call- and time-congestion.
The previous paragraph covers this for the special case in which 7(4) = 1.
The procedure applied above, of cross-multiplication, cancellation, and
division by uy, shows that in general

CC R TC if and only if r(A)(l + %) R (1 + %)
Unless both CC and TC agree with MTC, we see that they are not very
likely to agree with each other. Also, the most natural assumptions
about a traffic system in the absence of information to the contrary
would be, first, that r(4) = 1, and second, that (v/u) = (z/y) because
of a positive correlation between the events {no path} and {4 busy}.
Unless put in quantitative form, these assumptions lead only to the
conclugion that MTC is likely to be smaller than both time- and call-
congestion.

For this situation we have defined three types of congestion. The
two kinds of time-congestion would agree if the probability of blocking
within the shared communication system were independent of the state
of the relevant source. CC agrees with MTC when a calling rate is
unaffected by the availability of desired paths. CC and TC agree if
both agree with MTC, or otherwise when r(4)[1 + (v/u)] = 1 + (a/y).
Since these three measures of congestion can differ, all are of interest.

III. CONGESTION IN NETWORKS

A communication network 97 is sketched in Fig. 3; this one happens
to be a 3-stage switching network. Before defining anything, we note
one fundamental difference from the simple example in Section IT. It
makes sense to emphasize the dichotomy described by “all trunks of g
busy” and “G has some idle trunks”. The isolated, full-access trunk-
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Fig. 3 — Connecting network.
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group exemplifies the more general case of congestion in any one link,
composed of interchangeable (fully accessible) channels, of a communi-
cation network. IFor present purposes we can completely deseribe such
a link at a given instant by saying whether it does or does not contain
at least one idle channel. But, except in special cases of little interest,
no such concept as “9t is busy” can be defined in a useful way. Even the
wire chief does not say, “My network is busy”; he says, “No paths
exist between the following pairs of customers”. In a general network,
whether it be a switching network, a network of trunk groups, or a
combination of both to form a complete communication system, the
notion of blocking applies only to specific pairs P = (A4,B) of terminals.
This is why so many investigators immediately fix their attention on the
subgraph g(P) of 9N corresponding to the various routes over which A
and B could be connected. Fig. 4 shows one conventional way of repre-
senting g(P) for the situation of Fig. 3. The nodes are switches and the
branches, links.

Let us take {P idle} to be the event that both A and B are idle, and
{P busy} the event that either 4 or B or both are busy; that is,
{ Pbusy} = {Pnot idle}. Then one possible way of subdividing a typical
period of time for M is shown in Fig. 5. Here the conditions “path’ and
“no path” refer to the subgraph g(P), so that the entire subdivision of
the period T is of interest only to the terminal-pair P. (It will of course
relate also to other pairs, if any, whose behavior is in every respect
statistically identical with that of P.) Let us call each quantity that is
nost naturally defined by dividing time as in Fig. 5, congestion as meas-
ured for (or by) the particular pair. The nature and significance of this
convention are considered below.

(One important feature of the representation of Fig. 4 is that no branch
of g(P) is uniquely associated with one subscriber. Thus, as seen by the
pair P, g(P) is the entire shared communication system, just as G was
in the example of Section II; though of course the behavior of g(P) is
affected by traffic passing through the remainder of 9. With this view-
point » = 0 in Fig. 5; for it is quite possible for a path between A and
B to exist in g(P) when P is busy, because the terminal nodes of g(P)

LINK SWITCH
A

LINK

g(P)

B

Iig. 4 — Subgraph g(P) of 2.
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Fig. 5 — Possible division of time for 9

are the switehes to which A and B have access. I have gathered in
conversation that certain traffie theorists have a mental picture of 9
like the one in Fig. 6, in which g(P) includes a branch for each subseriber.
The only effect of this change, when it exists, is to make the events
[P busy} and {path} incompatible. In this case » = 0 in Fig. 5. The
distinction between the conventions of Iigs. 4 and 6 is conceptually
quite important, because Fig. 6 by itself can suggest the omission of
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Fig. 6 — Extended subgraph.

p from all our formulae. But the distinetion does not affeet the charac-
ter of the results discussed below, and so we assume the model of Fig.
4 without further comment.)

Returning to Fig. 5, it seems natural to define the time-congestion as

T+ y .
TCz = m (Flgﬁ),

where the subseript ““2” refers to measurement for the pasr P. This
definition is clearly analogous to that of TC in Section IT: For TC, , being
a function of ¥ + vy and of u + v, is based only on what P sees as its
shared communication system; the states of the terminals are not taken
into account. On the other hand, the intervals 2 4+ y and u + » relate
to g(P) alone rather than to all of 9. For these reasons we may call
TC, “the wire chief’s definition for the pair P”, indicating that the
point of view is the wire chief’s while the measurement is for (or by) the
particular pair.

Fig. 5 leads to natural definitions of MTC and CC (again as measured
for the pair), but only if we think of calls as being attempted between A



2280 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1965

and B only when P is idle. The usefulness of this convention, which is
discussed below, depends on the physical arrangements of the network.
It is hard to think of “attempts” in any other way in a connecting net-
work with gas-tube crosspoints, in which one tries to set up a connection
between two points by establishing a potential-difference between them;
if idle paths exist, the gas tubes along one of them will break down and
so0 connect the two points. Some forms of common control tend to lead
toward similar ideas; for example, it may be useful to think of a marker
as “attempting” to find a route between two devices only if both devices
are idle. Here we define the modified time-congestion as

__y ;
MTC, = oy (Fig.5),

and the call-congestion as

r(P)y )
As in Section II we may distinguish between TC, and these quantities
by saying that the latter reflect the viewpoint of a pair of subscribers
rather than of the wire chief, and thus by calling them ‘“‘the subscribers’
definitions for the pair P”.

With congestion measured for the pair in three ways, what about the
network as a whole? Surely we may want to know what fraction of all
calls offered to the network are blocked, or what fraction of time finds
the average pair unable, for lack of paths in 91, to establish a connection.
These questions are easily answered by averaging the previous quantities
over all pairs P. The resulting measures of congestion could be described
as “for the office, exchange, network, or system” or as the “office aver-
age”, etc. Because ‘“‘system’ seems too broad a term, and in order not
to emphasize switching applications as opposed to trunking, I choose
the term ‘“network” to describe congestion averaged over all pairs.
This operation yields the quantities

TC. = avgover P of TC,;
MTC, = avg over P of MTC, ;

and
CC* = weighted avg over P of CCs,

where the weighting in calculating the network-average call-congestion
is proportional to the average calling-rate for each P. (Such weights may
be very hard to find when r(P) # 1.) Notice that, with homogeneity of
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subseribers, averaging has no effect: For example CC, = CC, if all
subseribers are alike.

In some networks it is possible for 4 to try to call B whenever A is
idle, regardless of B’s state. Step-by-step switching is an obvious exam-
ple, as is the Bell System voice network including all its subscriber sets.
Even with common control, it is possible for a request for connection
to initiate search for an idle path even if detection of a busy destination
must follow establishment of a path through g(P). In fact there are
systems in which it is useful to imagine busy terminals as initiating
call-attempts. In an electronic central office, for example, a path is
sometimes reserved for a connection which is to be established as soon
as P becomes idle. In such a system an attempt can oceur in the presence
of any combination of states of the terminals of a pair, and each such
combination may have a different associated calling-rate. The present
treatment is restricted to less formidable models. Nevertheless it is
important to realize that the situations in which only idle pairs make
attempts and in which any idle terminal can make attempts, are only
two of a large class of situations, many of the more complicated members
of which are of engineering interest.

Calls attempted by an idle source can be successful, or can fail because
there is no path in g(P) or because B is busy. In situations for which it
is important to distinguish between these sources of failure, the model
must surely allow for calls to busy terminals. We arrange this by drawing
Fig. 7. In a sense it subdivides time for A with respect to B, since the
event {path in g(P)} relates to a particular B. Fig. 7 suggests the defini-
tions

_ r+ vy .
TC(]) = (L‘—_—_—I- v + W + " (Flg.7),
_ Y :
MTCy = T+ (Tig.7),
and
_ Ay '
CC(l) = m (Flg.?),
‘ x ] y u | v \TJME
‘A BUSYI A IDLE ‘ A IDLE | A BusY |
o NoPatHIN g(P) h patH IN g(P)

Fig. 7— Time subdivided for A wr.t. B.
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which may be described as measures of congestion for one particular
terminal with respect to another (hence the subseript ““(1)’’). These
quantities agree as closely as possible with those (lacking subseripts)
of Section II. Notice also that TCyy = TC,, a correspondence which
does not hold for MTC or CC.

The quantities just defined measure A’s difficulties in trying to call
B. We can measure A’s difficulties in making any calls by averaging
over all B. We obtain measures of congestion for the particular terminal:

TC, avg over B of TCy, ;
MTC, = avg over B of MTC, ;

and

CCy

where these weights are proportional to the frequencies with which A
calls the various B to whom he can be connected.

One more averaging process takes us to congestion as measured for
the network, for the case in which calls to busy destinations are possible.
We define

weighted avg over B of CCq,,

TC, avg over A of TC; ;
MTC, = avg over A of MTC, ;

and
CC, = weighted avg over A of CC,,

with weights according to the relative frequencies with which the differ-
ent A place calls. Here, as before, the measurements before and after
averaging coalesce when terminals do not differ from each other. In any
case, because TCyy, = TC,, we also know that TC,; = TC,.

For a general network, measures of congestion have been defined for
the pair and the network when attempts occur only between idle termi-
nals, and for the terminal and the network when any idle source can
attempt calls. In the latter situation, we also have measures of congestion
for the particular terminal with respect to one destination. These are
always useful because they lead to the particular terminal’s measure-
ments; and they have intrinsic interest in those cases, such as the control
of electronic switching systems, in which it may be important to know
the congestion encountered by messages from one source to each of
several destinations. As for differences among the three quantities
TC, MTC, and CC, the discussion in Section II on ordering relations
carries over, mutatis mutandis, to the cases subseripted ““(1)” and “2”.
(Notice, however, what care must be taken when dividing by uy in



CONGESTION IN COMMUNICATION NETWORKS 2283

repeating the caleulations involving R. The generalization of the cau-
tionary example given above is that ¥ = 0 in Fig. 5 whenever the net-
work 9 is non-blocking.) Similar arguments can be applied with caution
to the measures obtained by averaging. It is particularly important
that no simple formula for CC, can be written using an “7(P)” found
by taking a P-average of r(P); and so on.

Here we pause to summarize the measures of congestion defined above.
This is best done as in Table I, which shows how the proposed symbols
and terminology are related. A more accurate description of the mode
of operation associated with the number 1 in a subscript would be that
attempts are made without regard to the state of the destination; the
heading in the table is shorter and suggests the distinction that is often
most important. Classification by “point of view” is omitted entirely:
For as used here the phrase is merely dichotomous, the wire chief being
associated with TC and the particular subscriber with MTC and CC,
so that the names “time-congestion” ete. are adequate by themselves.
“Measurement for (or by)” is a new classification which supplies words
to go with the subscripts and bars. The word “terminal” is used in
column headings instead of “‘subseriber” because the latter would be too
reminiscent of classification by point of view.

We have not yet considered the important case in which a single source
A tries to call a “destination” consisting of several terminals, such as a
group of outgoing trunks. Quite different paths through the network
may lead from A to various equally useful members of the “destination”’.
The discussion of Jacobaeus’s work? in Section IV covers congestion in
this situation.

Before concluding that each of our apparent plethora of definitions
is necessary, we must ask this question: Is there really a non-trivial
difference between quantities defined for the case in which attempts
occur only when P is idle, as in Fig. 5, and those for the case of Fig. 7 in
which a busy terminal ean be ecalled? We answer this question in terms

TaBLE I — MEasures or CONGESTION

Mode of Operation: .............. Attempts when P Idle Attempts Possible to Busy Terminal
Terminal
As measured for: ................ Pair Network w.r.t. One Terminal Network
Destination
Type of eon- | Time: TC. TC. TCu TC, TC,
gestion: odi . = —_——

Modified | nppe, | PTG, | MTCa, | MTC, | MTG,
Call: CCQ C —‘2 CC(l) 001 ECL
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of Fig. 8, which combines Tigs. 5 and 7. The intervals w, y, u. and v are
as in Fig. 5, but the time when P is busy is labeled according to whether
A is busy or idle, and z and v are subscripted correspondingly. The
most restricted definition of TC — that with subseript “2” or “(1)” —
depends only on {path} or {no path} in g(P), and is the same for both
modes of operation. But

MTC, = —2 (Fig. 8)
y+u
and
_ T+ Y .
N[TC([) = oy + Y + u + v, (FlgS)

Cross-multiplication and cancellation as before show that

MTC; R MTCyq, if and only if (1 + z_) R (1 + g—)

again assuming that uy # 0, and after adding 1 to both sides for later
convenience. Although the state of B is unspecified when A4 is busy and
P is busy, certainly B is busy when P is busy and A is idle as in the
periods x; and v; . It follows that

U . _ Pr{P idle | path]
T Fie8) = il | path]

Pr{Bidle & A idle | path}
Pr{A idle | path}

= Pr{Bidle| 4 idle & path},

and likewise

Y .
o (Fig.8)

These quantities are the reciprocals of those appearing in the previous

Pr{Bidle| A idle & no path}.

x y u v
| Xb | Xi ‘ ‘ Vi ‘ Vp TIME
A BUSY| A IDLE A IDLE ‘ A BUSY ‘
P Busy P IDLE P IDLE P BuUsY
No PATH IN g(P) paTH IN g(P)

T'ig. 8 — Further subdivision of time for 9.
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relation. Subtracting both of them from 1, we find that MTC, R MTC,
if and only if

Pr{B busy

A idle & path} R Pr{B busy

A idle & no path}.

In some models, Pr{B busy} is not affected by the existence or non-

existence of a path from A when A is idle. But in most systems in which

the terminal B contributes a positive fraction of the traffic carried in

g(P), Pr{B busy| is so affected, and MTC, must differ from MTCy, .
A similar argument applies to call-congestion. Because

_ Py -
CCQ = m—l-—’l{ (Flg. 8)
and
CCu = r(A)(z: + y) (Fig. 8),

r(A)(z:i +y) +u+ v
we can show that CC, R CC when

1+ (vi/u) r(A4)
1+ (xi/y) = r(P)’

assuming r(P)uy > 0. Equality in this relation requires either an un-
likely coincidence or agreement of both the MTCs and the calling-rate
ratios. Only these last need further comment. Whenever it is reasonable
to think of the calling rate of P as being composed of calls attempted by
A and by B, the ratios r(4) and r(P) are equal if the calling rates of A
and B (to each other) respond in the same way to a “no path” condi-
tion in g(P). This they may or may not do, but anyway this question
is independent of whether calls attempted by P are made up equally of
calls from A and from B.

Having observed a genuine difference between the “pair-attempt”
and ‘‘source-attempt’” models, we return to Iig. 8 to tie off one more
loose end. The definition of r(P) seems natural; but suppose that, when
calls to busy terminals are possible, changes in A’s calling rate occur
in response to the failure of attempts, with no distinetion between busy-
terminal and blocked-path failures. It is even possible to imagine aver-
age relative calling-rates rp(4) during {no path} and rz(4A) during
{path & B busy}, although relating these ratios to A’s rules of operation
might be extremely difficult. Such a model would generalize the defini-
tion of call-congestion to

rp(A)(z: + )
ra(A) (2 + y) + u + re(A)v;

CC(1U) = (Flg 8),
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which still measures the frequency of blocking due only to {no path}.
Here I drop this line of thought, which can be extended if necessary
in a particular application. (The possibility of defining CC so as to
illuminate particular matters of interest is discussed by S. P. Lloyd
in an unpublished Bell Laboratories memorandum. He treats especially
the problem of correcting the apparently high CC caused by A’s “ex-
treme impatience” in retrying very rapidly after an attempt fails.)
The main point is that the theorist may want to desecribe A’s behavior
as conditional upon the state of the system, whereas A actually responds
to the results of his call-attempts or to other sampled data on the sys-
tem’s states.

1V. QUANTITIES CALCULATED IN THE LITERATURE

The purpose of this section is to compare the foregoing ideas with
discussions in several papers on connecting networks. We begin with
the monumental 1950 paper by Jacobaeus.? Syski, in his book,! achieves
wonders of condensation in his excellent summary of this paper, mostly
in Section 1 of Chapter 8, “Link Systems”. Although Syski’s book is
available to most readers, I think it will be best to quote certain passages
in full from Jacobaeus. The essential remarks are in Chapter 4, “Prin-
ciples of Congestion Calculation in a Link System”, and Chapter 9,
“Formulae for Call Congestion in a Link System”, of Ref. 2. They
correspond to Sections 1.1.2; 1.1.3, 1.2.1, and 1.7.2 of Syski’s Chapter 8.

The portion of a system analyzed by Jacobaeus consists of two switch-
ing stages and the links joining them. Fig. 9 illustrates his nomencla-
ture, which I use in order to facilitate comparison with his paper; Ameri-
can terms appear in parentheses. An “A-device” is an inlet to a primary
switch (strictly, a switch in the first stage considered), and an “A-group”
is the set of inlets to one switch. A “B-device” is a primary-secondary
link, and a “B-column” is the set of links emanating from one primary
switch. Thus a B-device connects a primary outlet to a secondary inlet.
A “C-device” is an outlet from a secondary switch, and a “route” is
generally a “C-column”, which is the set of corresponding outlets of the
secondary switches. For example the second C-column is the set of
second outlets of secondary switches. A route may consist of a part of a
C-column, or of more than one.

Jacobaeus calculates, under various conditions, the probability that
an A-device has no access to a particular route. He does this by writing
first the probability that p of the C-devices of the route are busy; then
multiplying by the probability that the m — p B-devices (links) leading
to the idle C-devices are also busy; and finally summing over p. This
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Fig. 9— Nomenclature of Jacobaecus.

procedure yields his basic congestion-equation [Jacobaeus, p. 11, equa-
tion (1); Syski, p. 437, equation (2.1)]. The first ingredient of the product
just deseribed is a probability distribution for the number of busy C-
devices in a route. The second ingredient is a distribution for the number
of busy links in a specified part of a B-column. Three topics account for
much of the length of Jacobaeus’s paper. One is the correct choice of
these two distributions in each situation studied. (It is easier to under-
stand Jacobaeus’s discussion of this topic with the aid of Syski’s re-
marks [p. 439] on the meanings of the various traffic parameters used.)
The second is the inaccuracy caused by assuming independence of the
instantaneous link- and route-loads, as represented by multiplying the
two blocking-probabilities. The third is the inaccuracy caused by ap-
proximating some of the difficult summations arising from the basie
equation.

Tt is clear that this basic equation, as used in Chapters 5-8, 10, and 11
of Jacobaeus, yields TCqy, where this “congestion” is contributed by
the portion of a system included in this model. We see this for the fol-
lowing reasons: I'irst, the basic equation ignores the state of the calling
A-device. Second, the goal of a call-attempt is not one destination but
a route, consisting of several equally useful C-devices, and usually
considered to be loaded with traffic from many sources according to
Erlang’s B-formula (first loss-formula). Third, calls are placed without
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prior regard to the state of the desired route. Fourth, the equation holds
for a single A-group calling a single route. Thus TC, is measured for
the particular terminals which share one primary switch, with respect
to the class of destinations attainable via one route (which may be a
trunk group). This measurement is as particular as possible, given that
almost any switching system has some symmetries among its terminals.
Application of the basic equation in such a way as to account for
finite-source effects appears to yield CC, . However, since the case in
which 7(4) # 1 is never mentioned, this quantity cannot here be dis-
tinguished from MTC, .
These views are partially confirmed by Jacobaeus on p. 23 of his Chap-
ter 9:
“The congestion formulae derived in the preceding chapters have all referred
to the usual congestion concept, time congestion. The quantity used to express
the congestion is the fraction of time during which the loading in the switching
system is such that a new call cannot be switched. It is also possible to consider
the call congestion, the fraction of the total number of ealls which are blocked
owing to a shortage of means of connection. In a full availability group loaded
with random traffic the call congestion is equal to the time congestion, because
the probability of a new call is always the same independent of the conditions
ruling in the group. The condition for this is that there should be an infinite

number of traffic sources, which must be the case if the traffic is to be truly
random.

“In_the majority of the connection systems treated above, the number of
traffic sources in each A-group has been limited. ... It may therefore be expected
that the call congestion will have a smaller value than the time congestion.”

There is further discussion [pp. 24, 38] of the finite size of an A-group,
mostly with respect to the question of independence of sources. Jaco-
baeus points out that A-devices are truly independent only when they
are ‘“direct traffic-producers: subscribers’ lines. ... Otherwise the A-
devices are secondary traffic sources, that is they derive their traffic
from a large number of traffic sources by way of a concentrating device.”
We see that the ‘“particular terminal”’ for which measurements are made
may in fact be a “source’” within the shared communication system, de-
pending on what portion of the system is selected for study by means
of this two-stage model. (Actually Jacobaeus discusses extensions of
his method to more stages.)

We note in passing that some of the distributions substituted into the
basic equation apply only when blocked calls are held (i.e., remain in
the system for a length of time which does not depend on when or
whether the desired path becomes available). Jacobaeus discusses this
point [pp. 35, 38]. Relevant formulae appear in his Chapter 7; see also
equations (2.15-17) of Syski [p. 442]. This situation is represented by
the possibility, because of the presence of concentrating primary
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switches, that an A-device can be busy even when all B-devices for the
same A-group are occupied by other sources. This cannot happen in
the model of C. Y. Lee, to which we turn next, since he writes [Ref. 3,
p. 1300, footnote] that ‘“we restrict our attention to networks consisting
of switches of non-blocking type”.

The ideas of Jacobaeus form the closest possible analogue in the gen-
eral case to the simple approach of Section II. In Lee’s paper we expect
to find measurements for the pair rather than for the particular terminal,
since he writes in his Introduction [Ref. 3, p. 1288], “. . . methods for cal-
culating . . . ina gas tubenetwork are . . . given ...” (see above, p. 2280).
Our expectation is confirmed; for, although the links of Lee’s subgraphs
g(P) are directed, his methods of calculation are symmetric and do not
distinguish between sources and destinations. (See especially his Section
4.3, in particular the subsection on end-matching [p. 1311] in which a
“yoltage is applied to both ends of the network simultaneously (across
a single input and a single output)”.) I believe that Lee’s use of directed
links serves merely to specify, out of the geometrically possible ones,
the allowed paths for a call in g(P). But Lee does not discuss the pair-
vs-terminal issue. In applying his model to line-switched traffic in a
trunking network, one would naturally calculate congestion for one
terminal, possibly with respect to another. This point is not important,
for, as we see below, it cannot really be decided.

The essential attribute of Lee’s model is that it ignores the states of
terminals. He shows a four-stage switching network together with a
subgraph g(P) [Ref. 3, Figs. 3.2-3]; each possible path in the latter
consists of just three branches. Such a model corresponds to our Fig. 4
rather than Fig. 6. The quantity found directly by Lee is “P(i,j) the
probability of all paths from input ¢ to output j busy” [p. 1300]. This
quantity corresponds to our TC.. The question of pair or terminal
discussed above is moot because, as we recall from p. 2282 above, TC.
agrees with TCy, ; their measurements diverge only for MTC and CC.

Lee introduces the important idea of blocking-probability for a
network as an average of such probabilities over all terminal-pairs
[p. 1300, equation (3.1)]. This, the quantity of major interest to Lee in
parts of his paper, is of course our TC,. Furthermore, Lee sometimes
assumes complete interchangeability of terminals [Section 3, p. 1300]:
“In this section, we assume P(i,j) to be independent of 7 and j....”
In this case, TCs = TC, for every terminal-pair.

Lee’s methods apply directly only to the (approximate) calculation of
TC. His results are therefore consonant with those of Jacobaeus on TC,
although these results are approached by the one on behalf of the pair
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and by the other on behalf of the source. It also seems clear from Lee’s
Section 4, in which he applies his methods to problems of retrials and
connection time and discusses the results, that his formulae are meant
to be taken as yielding CC,. I think this intention constitutes an im-
plicit assumption of what Jacobaeus (as quoted above) called “truly
random traffie”’; that is, that »(P) = 1 and that there are “infinitely
many’’ sources.

The paper by Grantges and Sinowitz* is important because it extends
the methods of the earlier literature and launches a practical attack on
the problems of independence, network size, and computational com-
plexity from which all researches in this field have suffered. They say
[Ref. 4, p. 969] that “the nodes of the graph represent network switches
and the directed branches of the graph represent network links”. Their
Figs. 1 and 2(a) [p. 970] show that, as in my Fig. 4, no branch of a
subgraph is associated with any single terminal. Their “program is
based on a simplified mathematical model of switching networks de-
veloped by C. Y. Lee” [Ref. 4, p. 967]. They assume [p. 969] stationary
traffic, non-blocking switches, and complete equivalence among termi-
nals. As discussed above, this last assumption makes network averages
agree with measurements for one pair or terminal. I write here of the
quantity that is calculated directly, and therefore ignore the symmetry
that also yields measures of congestion for the whole network.

The previous paragraph shows that the mental picture of Grantges
and Sinowitz is compatible with that embodied in this paper. Let us
now examine the first paragraph beginning on p. 976 of Ref. 4. The
predecessor of that paragraph discusses congestion in the simple context
of a full-access trunk-group. The paragraph in question describes the
attitude taken by the authors toward the problem of more general
networks. They say that . .. the measure of most concern to the net-
work designer is call congestion. Now if it is assumed that calls originate
completely independent of the state of the network, time congestion
will equal call congestion. Such an assumption is unjustified if calls
cannot originate from busy lines, since time congestion conventionally
includes busy line periods while call congestion excludes them.” The
last clause means ‘“‘excludes from both numerator and denominator of
the ratio”, as is clear from all our formulae for TC and CC. The second
sentence just quoted must mean that TC and CC would have the same
formula; and indeed our expression naturally defining CC would be the
same as that for the corresponding TC if call-attempts occurred (as
they do in Erlang’s infinite-source model) without regard to the state
of the network. This possibility is ruled out in the third sentence, which
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simply observes that the formulae for the two quantities differ. Of course,
as our Section III shows, it is because calls often cannot originate from
busy lines that we conventionally exclude busy-line periods in defining
CC. Grantges and Sinowitz continue, “It is, however, reasonable to
assume that idle pairs of terminals originate calls at a constant rate
independent of the state of the network.” (This sentence restricts us to
measurements for the particular pair: that is, to TC,, MTC;, and CCs,
with the proviso that the network averages are included by symmetry.)
“In particular, there must be no change in the calling rate after a blocked
call.” (In other words r(P) = 1.) “If, under this assumption, time con-
gestion is modified to include only periods in which both lines are idle, it
will be equal to call congestion.” (Here they recognize that MTC, = CC.
when r(P) = 1.) “Actually, even if the foregoing assumption is
not met, the time between calls is likely to be much longer than the
time taken by the network to return to equilibrium, so that, again, the
modified time congestion will be close to the call congestion.” (That
is, MTC, is near CC; when r(P) is near unity.)

In the second paragraph beginning on p. 976, Grantges and Sinowitz
go on to say, “With a suitable choice of branch occupancies, Lee’s model
allows the computation of call congestion. Alternatively, the branch
occupancies may be chosen so as not to reflect the requirement that only
idle terminals are to be considered, thus allowing the computation of
time congestion.” Here “suitable” means that branch occupancies are
[p. 977, footnote] “chosen to reflect the requirement that the input-
output terminals j,k are idle by (usually) subtracting the load contrib-
uted by the terminals 7,k from the assumed carried link loads”. This
confirms the claim that the pair’s measurement is calculated, since
otherwise one would subtract the load contributed by one terminal
alone.

It appears from all this that the NEASIM program of Grantges and
Sinowitz was designed to find (approximately) either TC. or, after
correction of branch occupancies, MTC., the latter quantity being
supposed very close to CC» on the ground that r(P) is very near 1. This
situation agrees with that of Lee’s paper, though the latter does not
mention the correction procedure needed to find CC,. Neither paper
mentions the possibility of call-attempts to busy terminals, but the
correction procedure is easily modified, as mentioned above, to cover
that case. Since the output of the NEASIM program [Ref. 4, p. 975] is a
functional relationship between sets of branch occupancies and proba-
bilities that no path exists through g(P), no decision is actually built
into the program as to which measure of congestion is calculated. The
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user makes this choice separately by relating terminal loads to branch
occupancies, a process which may have to be iterative and to rely on
routing assumptions in order to ensure consistency.

V. DISCUSSION

Before summarizing the implications of this approach we must re-
consider the question of applicability mentioned in Section I. It is not
really profitable to try to characterize exactly (beyond the need for
stationarity) models in which the mathematical limits required by the
present method, with its use of conditional calling-rates and finite T
exist and agree in pairs. Instead we should look upon the arguments
leading to Table I as exemplifying a point of view which is, if flexibly
applied, relevant to a wide range of traffic systems.

Section IV shows that the thirteen independent entries of Table
I — (recall that TCs and TC, agree with TCq, and TC, respectively)
— suffice, as they stand, for interpreting a variety of investigations in
the literature. What can be said about this approach in cases of doubt,
or when it is clear that a system requires new and more appropriate
definitions? We need only to remember that such sketches as appear in
Figs. 2, 5, 7, and 8 are intended merely to represent in a manageable
way certain conceptually simple processes of measurement. For TC
or for MTC such a process requires two clocks, one or both of them
controlled by switches whose states reflect the defining states of the
network under study. The measurement of CC requires instead two
counters, which count respectively blocked attempts and all attempts
of the desired categories.

For illustration consider a source A which, after every blocked at-
tempt, makes retrials at a steadily increasing rate until the desired
connection is set up. Application of one of our formulae for CC would
require knowledge of r(4), a quantity more difficult to evaluate in this
case than call-congestion itself. But it is simple in principle just to
count attempts and blocked attempts, which define CC directly. What
is not so clear is whether this definition is useful. If periods during
which a call-attempt of A would be blocked tend to be rare but long-
lived, a very few unsuccessful first-attempts can lead to a high value of
CC. When the cost incurred through failure to deliver a message in-
creases rapidly with time, as does the retrial rate, this measure of con-
gestion may be appropriate. Under other circumstances it may be pref-
erable to count only first attempts and blocked first-attempts, or to
count blocked retrials with a weighting factor that decreases with retrial
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number. The conceptual framework proposed here should not obscure
the fact that measures of call-congestion can always be understood by
reference to the idea of counting call-attempts; and similarly for time-
congestion and the measurement of time intervals. The hard part in
practice is to choose a definition whose behavior accurately reflects the
usefulness of a system’s performance.

-~ Furthermore, conceptual simplicity does not guarantee utility. Direct
measurement of MTC; requires a clock that knows when both A and B
are idle and when there is no idle path in g(P). Especially in a large net-
work, this is likely to be impossible or impractical. One must often
estimate congestion indirectly and in finite time, rather than measure it.
This brings up such matters as sampling bias and efficiency, cost of
instrumentation, and so on. Thus in choosing a definition of congestion
one must consider not only its purpose, as discussed above, but also the
cost of, and attainable accuracy in, measuring (or estimating) the
quantity defined.

These interesting problems are not covered in this paper, which treats
only the concept of congestion. I think we can attribute much of the
confusion which has characterized this subject to the natural tendency
of authors to treat highly symmetric models. Neither the row nor the
column structure of Table I is significant when traffic is truly random
and all terminals are alike. But the principal conclusion of this paper
is that the distinctions embodied in Table I should be kept in mind.
In other words it is always useful, if only as a precaution, to ask in
what mode a system operates, for what entity congestion is to be meas-
ured, and what type of congestion is of interest.

A subsidiary conclusion is that there is no sharp distinction between
trunking networks and switching networks, but rather a range of salient
properties characteristic of various kinds of communication networks.
Instead the basic division is between general networks, as treated in
Section III, and single links of networks (links composed of one or more
channels), for which the simpler discussion of Section II is adequate.
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