Eigenmodes of a Symmetric Cylindrical
Confocal Laser Resonator and Their
Perturbation by Output-Coupling
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(Manuseript received October 26, 1964)

Using a numerical technique which is different from the iteration method
of Fox and Li and which is more suitable for the analysis of high-order
modes, we have calculated the diffraction losses and the field distributions
at the reflectors of the low-loss modes of a symmelric confocal resonator for
Fresnel numbers 0.6 < N, = 2.0. We have also computed the modifica-
tions which result when the two end reflectors are perturbed by circular out-
put-coupling apertures centered on the cavily axis. For a range of small
but useful aperture Fresnel numbers Ny the aperture diffraction losses can
be estimated by first-order perturbation theory from the finite-Nn, resulls
appropriate to No = 0. Such estimales fail for those larger Fresnel num-
bers Ny for which the mode inlensity patlerns are significantly distorted
at the veflectors by the finite coupling apertures.

I. INTRODUCTION

Fox and Li' demonstrated by numerical iteration that modes in the
sense of self-reproducing field patterns exist for open Fabry-Perot
resonators. Using a numerical technique which is different from that of
Tox and Li and which is more suitable than iteration for the analysis
of high-order modes, we have calculated the diffraction losses and the
field distributions at the reflectors of the low-loss modes of a symmetric
eylindrical confocal resonator for Fresnel numbers 0.6 = N, = 2.0.
The results are discussed below.

An axial section of the symmetric confocal resonator under examina-
tion is illustrated in Fig. 1. The cavity is bounded at each end by identi-
cal spherical (parabolic) mirrors whose perfectly reflecting surfaces
extend over the annular region ap £ p < a, . While a comparison of
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Fig. 1 — Axial section of cylindrical confocal laser cavity. The system is sym-
metric about the cavity midpoint; the two identical reflectors have radii of
curvature b; and the reflecting surfaces are confined to the annular region between
the two radii (ao, @m)-

the ap = 0 and ap # 0 eigenmodes is instructive as an example of the
perturbation of eigenmodes by mirror imperfections, this particular
geometry also has relevance to an aperture output coupling scheme
proposed by Patel et al.”> Asymmetric resonators in which, for example,
only one reflector is pierced by a coupling aperture will be treated in a
subsequent article. Boyd and Gordon’ have derived closed-form ex-
pressions for the eigenvalues and eigenfunctions of symmetric rectangu-
lar confocal resonators in terms of the angular and radial prolate spheroi-
dal wave functions. These results were extended to asymmetric
rectangular confocal systems with output coupling slits by Boyd and
Kogelnik." Generalized prolate spheroidal functions relevant to the
cylindrical confocal geometry have been defined by Slepian.’ Basic
expressions are summarized in a review article by Kogelnik."

Assuming that the dimensions of the resonator in Fig. 1 are large
compared to the wavelength A of light in the cavity, we define the reso-
nator eigenmodes from the same scalar formulation of Huygens’ princi-
ple used by other authors."” For the cylindrical confocal geometry the
field amplitude at the reflectors for a typical mode can be written in
the form

Fip(pe) = fip(p) exp (—ilp), 1)

where (p,) are radial and angular coordinates in a plane perpendicular
to the resonator axis and where (I,p) are integral quantum numbers.
For a symmetric system with identical mirrors, the field amplitude at
one reflector must be a constant multiple of that at the other. This
self-reproducing requirement together with Huygens’ principle gives
the following integral equation which must be satisfied by the radial
function fi,(p):

kipfip(p) = gfmdprp'tf: (g%';ﬂ)fzp(pf)- (2)
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Here J;(z) is the Bessel function of order ||, (ao,an) are the p radii
limiting the reflecting surfaces (Fig. 1), and b is the mirror separation
and radius of curvature.
The magnitude of the eigenvalue «;, determines the diffraction loss
of the (Ip) mode:

power loss/pass = 1 — | ks, | (3)
The phase of the eigenvalue determines the resonant wavelength:
resonant A = 4xbf (I + 1)m — 2 Arg ki, — 270}, )
where n is an arbitrary integer.

If we normalize the functions fi,(p) over the surface area of the mir-
rors, then

%;—r _[‘um dp pf1p(p)f1a(p) = Bpa, (5)

where 8, is the Kronecker delta symbol (5,, = 1if p = ¢, and §,, = 0
if p # ¢). The orthogonality indicated in (5) for p # ¢ follows immedi-
ately from (2) when the eigenvalues ki, , kiy are nondegenerate and can
be imposed if they are degenerate. We choose the arbitrary sign of the
funetion fi,(p) such that fi,(07) > 0.

For numerical calculations it is useful to replace the radial variable
p by a dimensionless variable » defined such that

N(p) =1 = p'/Nb (6)

is the Fresnel number appropriate to the radius p. We characterize the
hole and mirror radii (ao, @) by Fresnel numbers

2
— Tmz — Ay (7)

Nn = ?'(12 XI; .

_
Ab "
In place of the funetion i, (p) we introduce a funetion

G1p(r) = f12(rv/AD) 8)

for which (2) and (5) become:

kipip(r) = 27 fmdr'r'J;(Z';rrr')gg,,(r'); (9)

bpg = 21rj dr rg1p(1)gra(r). (10)
o

The sign convention f,(07) > 0 requires g1,(07) > 0.
The eigenvalue equation (9) for the confocal geometry is atypical
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in the sense that it can be transformed to an equation having a Hermit-
ian kernel: 2r (r’")!J,(2ar"). This fact implies that the eigenvalues
ki, are real and that the largest eigenvalue (characteristic of the mode
with lowest loss) can be computed by a variational method. These two
features do not obtain in other laser geometries for which the integral-
equation kernel is generally symmetric but not real — that is, not
Hermitian.” While we do therefore expect some qualitative differences
between the properties of confocal and nonconfocal geometries, we
can infer from the work of Fox and Li' and other authors®® that many
features are similar. Both the iterative technique of Fox and Li and the
kernel-expansion-truncation technique we describe below can be ap-
plied to nonconfocal as well as confoeal systems.

If we assume that the set of functions g;, (r) is complete, we can under-
stand the iterative method of Fox and Li as follows. Given an arbitrary
initial field amplitude ¢ (r), we express it in the form

g(ﬂ) (r) = Epcpghz(r)- (11)

Substituting this expression into the right-hand side of (9), we obtain
on the left-hand side

gil) (r) = ZpCprpip(r),
the field amplitude after one transit of the optical cavity. Using this

function on the right-hand side of (9) and repeating this iterative pro-
cedure, we obtain after n iterations

g(ﬂ) (r) = Z,0p1p gip(7), (12)

the field amplitude after n transits. In the limit of large n only terms
belonging to the eigenvalue of largest magnitude represented (C, = 0)
on the right-hand side of (11) will remain. All other terms will be re-
duced in proportion to (| kip |/| kip |max) " If the two largest eigenvalues
are sufficiently different, this procedure conveniently yields for each
angular quantum number ! the eigenvalue of largest magnitude, the
eigenvalue of second-largest magnitude (through the rate of convergence
of the iteration), and the two amplitude functions belonging to these
eigenvalues. Results for the cylindrical confocal resonator are given by
Fox and Li.'

In our analysis of (9) we have chosen to apply a different technique
from that outlined above. Briefly, we expand the Bessel-function kernel
in (9) as a power series

o = (&) £ e S (P

2) S m+1—Di(m = 1)!
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truncate the series after a finite number M of terms, and reduce the
integral eigenvalue equation (9) to an M-dimensional-matrix eigen-
value equation which we can easily solve numerically with standard
matrix-diagonalization routines. [The reduction of (9) to a matrix
equation is described in the Appendix.] A similar technique has been
used for the plane cylindrical geometry by She and Heffner.* For the
confocal system for which real-number algebra is sufficient, our com-
putations require slightly less computer time than the iterative method.
Moreover, they give the eigenvalues and eigenfunctions of higher-order
modes, whereas for each [ the iterative scheme of Fox and Li is practical
only for the two largest eigenvalues and their amplitude functions.

Related methods have been utilized in limited caleulations by other
authors.” " In place of the power-series expansion (13) it has been
suggested" that one utilize an expansion in associated Laguerre func-
tions. Because the associated Laguerre functions are the exact eigen-
functions of the infinite-mirror problem (ay = 0, @, = ), one might
expect that fewer terms are required than for the power-series expansion
(13) and that one can thereby simplify the solution of the matrix
eigenvalue equation. While such considerations may indeed be relevant
for Fresnel numbers so large that the matrix eigenvalue problem based
upon (13) becomes prohibitive, the advantages are largely offset for
small Fresnel numbers (N, < 4) by the increased effort required to
compute the necessary overlap integrals. A similar remark applies to
the Fourier-Bessel expansion used for the plane eylindrical geometry by
Bergstein and Schachter.’

One other numerical technique, different from both the iterative and
the expansion-truncation techniques, deserves brief mention. If one
approximates the integral in (9) by a sum over small but finite radial
intervals, one has in effect reduced the integral equation to a matrix
eigenvalue equation. If the number of intervals is not too large (<50)
it is practical to solve this problem directly, although for small Fresnel
numbers considerably less effort is required with the iteration or ex-
pansion-truncation techniques.

In the following section we present results appropriate to the sym-
metric eylindrical confocal geometry in the absence of coupling apertures
(No = 0). We compare those finite-N,, results with expressions derived
by first-order perturbation theory from the infinite-N, eigenfunctions
and find significant discrepancies. In Section III we indicate how finite
coupling apertures (N, # 0) modify these results and derive simple
mathematical expressions which approximate the machine-computed
results in useful regions. In Section IV we briefly discuss the far-field
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output patterns of the aperture-coupled resonator. In the final section
we briefly recapitulate some of our conclusions.

1. EIGENVALUES AND EIGENFUNCTIONS WITH NO MIRROR APERTURES
(Noy = 0)

Using the kernal expansion-truncation technique outlined in the
preceding section and in the Appendix, we have computed the eigen-
values of (9) for Fresnel numbers N, in the range 0.6 = N, = 2.0.
Where they overlap, our results agree with those of Fox and Li' and
other authors.®

In our ealculation we retained M = max (10N + 1,10) terms of the
truncated series (13), where, if r = 7, is the maximum radius of in-
terest in the field amplitudes ¢;,(r), we define N = r,r/Ab = N,, . This
choice insures that the remainder

o (=) ()
Ji(2mwrr') — mé:l (m+1— 1l(m — 1)

will never be greater than 0.001 for the relevant radii. We have indicated
in Table I for N,, = 0.8 and Ny, = 0 how the eigenvalues of the three
lowest-loss modes converge as the number M of terms increases from
1 to 10.

In Fig. 2 we have plotted the power loss/pass = 1 — |y, |° of the
least lossy modes for 0.6 = N.. = 2.0, Ny = 0. It is noteworthy that no
modes have less than 1 per cent loss/pass for N, < 0.7, that only two
modes have such losses for N,, = 1.0, but that ten modes have less than
1 per cent loss/pass for N, = 2.0. The number of low-loss modes in-
creases very rapidly for N, > 1.0 so that, whereas N,, £ 1.0 is in one
sense g small Fresnel number, N,, = 2.0 is already rather large.

In Figs. 3-8 we have indicated for various low-order modes how the
field amplitude and intensity varies with radius on the end reflecting
surfaces for No = 0 and N,, = 0.8, 1.6. From the intensity plots it is
clear that the power loss/pass increases as the mode order increases
because the higher-order eigenfunctions have more intensity lying out-
side the reflecting mirrors (and hence lost) than do the low-order eigen-
functions whose intensity is more concentrated near the mirror center.

From (9) and (13) it follows [compare (32) in the Appendix] that as
r—0

(14)

14
gip(r) — Gi(Ip) I:;r—'] r, (15)



CONFOCAL LASER RESONATOR MODES 339

TaBLE I

A, DEPENDENCE oF EIGENVALUES oN NumBER M oF TERMS
IN Serigs (13)*

M KoD K01 xo2
1 1.25853309 -_— —_
2 0.90311672 —3.6815805 -
3 1.7198455 —0.32162843 0.83714554
4 0.98489118 —1.1885874 0.24997641
5 1.0010976 —0.71086465 0.20030462
6 0.99744669 —0.77432308 0.12014589
7 0.99780308 —(0.76531222 0.130872656
8 0.99777117 —0.76618958 0.12062865
9 0.99777343 —0.76612108 0.12973537
10 0.99777330 —0.76612543 0.12972805
B. CuaNGE 1IN EIGENVALUES As NUMBER oF TERMS
v Series (13) INcrREASES®
M K00 Kol Koz
2-1 —(0.35541637 —3.6815805 —
3-2 +0.81672878 +3.35995207 +0.83714554
4-3 —0.73495432 —0.86695897 —0.58716913
5-4 +0.01620642 +0.47772275 —0.04967179
6-5 —0.00365001 —0.06345843 —0.08015873
7-6 +0.00035639 +0.00901086 +0.0172676
8-7 —0,00003191 —0.00087736 —0.00124400
9-8 +0.00000226 +0.00006850 +0.00010672
10-9 —0.00000013 —0.00000435 —0.00000732

* Tables TA and IB are computed for the case N, = 0.8, Ny = 0.

where G,(Ip) is a constant. This ' dependence of the field amplitude
and a corresponding ' dependence of the intensity is apparent in Figs.
3-8. Because only the angular-independent (I = 0) modes have nonzero
intensity at r = 0, we anticipate that the [ = 0 modes are much more
sensitive to a coupling aperture centered at r = 0 than are the I # 0
modes, a fact confirmed by the finite-N, ealeulations to be discussed in
the following section.
For infinite mirrors without apertures (N,, — =, No = 0),

ki = (—1)° (16a)

and

(r) = ["‘L—]% (2m®) %™ L, (2m®) (16b)
gin T+ p)! ! ’
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Fig. 2 — Power loss/pass versus mirror Fresnel number N, for low-loss modes
of resonator having no output-coupling aperture (N, = 0).
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(b)

Fig. 3 — (a) Field amplitude g,,(r) and (b) field intensity gi,*(r) for modes
(lp) = (00), (01), (02), and (03) with N,, = 0.8 and N = 0.
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Fig. 4 — (a) Field amplitude gip(r) and (b) field mtenmt.y gi1p2(r) for modes
(Ip) = (10), (11), (12), and (13) with N, = 0.8 and Ny = 0.
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Fig. 5 — (a) Field amplitude gi,(r) and (b) field intensity gi,*(r) for modes
(lp) = (00), (01), (02), and (03) with N',, = 1.6 and N, = 0.

where L, (z) is the associated Laguerre polynomial"

by €2 d o (p+ DI(=2)"
Ly(2) = F(Tz?(e S =2 P —m)I(l +m)m!" (a7)

Low-order Laguerre polynomials are
L' (z) = 1; Li@) =141—z
L'(z) = A+ 2)C+ 1) — 220+ 2) + 7).

The finite-N,, results we have computed transform continuously into
the solutions (16) as N, increases. If for Ny = 0 and arbitrary N, the
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Fig. 7— (a) Field amplitude gi,(r) and (b) field intensity gi?(r) for modes
(Ip) = (20), (21), (22), and (23) with N,, = 1.6 and N, = 0.

integer p = 0 orders the eigenmodes of a given angular quantum number
! with respect to increasing power loss/pass, then the eigenvalue

kip = (—1)" |k | (18)

and the amplitude function has p zeros in the interval 0 < r < rn.

If we assume for finite N,, that the low-loss eigenfunctions approxi-
mate the limiting expressions (16b), we can estimate the deviation of
kip from its infinite-N,, value (16a) by first-order perturbation theory:

1 — (—=1)", (pert) =f de 2'e (L, (2)]% (19)
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Fig. 8 — (a) Field amplitude gi(r) and (b) field intensity gip?(r) for modes
(p) = (30), (31), (32), and (33) with N, = 1.6 and N, = 0.

Two special cases are

1 — koo (pert) = c—zn.r,.,’ 1 4+ ko (pert) = [1 + (ZTFNm)zle—th'
We compare these estimates with computed values in Table II. The

errors between the computed and estimated values in Table II, while
small relative to the eigenvalues themselves, are nevertheless significant
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TaBLE II — DEVIATION OF EIGENVALUES FROM INFINITE-MIRROR
VavLues (16b)

Nm* 1 — oo 1 — xoo(pert)t |1 — woo(asym)it 1+ km 1+ xoa(pert)t |1 4+ xor(asym)tt
0.6[1.82 X 1072 |2.31 X 1072 |2.52 X 107 0.545 0.351 5.73
0.8|2.23 X 1073 |G.56 X 1073 2.72 X 1073 0.234 0.172 1.099
1.0[2.38 X 107 [1.87 X 1073 [2.75 X 1074 [6.37 X 1072 |7.56 X 1072 0.174
1.2(2.38 X 1079 [5.31 X 107* |2.68 X 1075 1.20 X 1072 |3.07 X 1072 |2.43 X 107*
1.4(2.24 % 1076 [1.51 X 107*|2.53 X 1075 1.80 X 107* (1.19 X 1072 |3.13 X 1073
1.6(~2.7 I4.31 X 1075 (2.34 X 1077 |2.40 X 1074 [4.39 X 107* [3.79 X 104
X 1077

= 0.
1‘ Lshmnted values computed from (19) of first-order perturbation theory.
1t Estimated values computed from asymptotic (20).
t The accuracy of kg for Ny, = 1.6 is limited by machine rounding errors.

when compared to the difference 1 — (—1)"i, = 1 — | x;p | which for
these eigenvalues is roughly one-half the power loss/pass (13). The errors
arise because the real eigenfunctions are not identical to the limiting
expressions (16a). Slepian’ has derived more accurate asymptotic re-
sults appropriate to N,, large:

142p+H —4xNp
1 — (—1),(asym) = "(S”ﬁ'("l)Jr B [1 +0 (1—\};)] (20)

Two special cases are
1 — koo (asym) = 8a°N,e ™" 1+ xu(asym) = w (8N )¢ ™",

Values computed from these expressions are also listed in Table I1I.

In Table III we have listed values at » = 0 of g;,(r) for (Ip) = (00),
(01), and (02). These values are consistently less than the values
predicted from the infinite-NV,, functions (16b) renormalized to the finite
interval (0,7,):

991 ¥ )
gip(r) = [i—] (202) 2™ L (20r?)

l !
o ! = 4, 2n
__ P e g2
8 {1 Ty Ly, e (m)]}
for which
= -
i) =2 {1 B f dx e_’[L,,°(g;)]2} - (22)

The differences between the calculated and estimated results again re-
flect the distortion appropriate to finite N,, of the eigenfunctions (16b)."
For a given angular quantum number [, this distortion is generally less
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TaBLE III — Frerp AMpLITUDE AT MIRROR CENTER FOR [ = 0 MobES

Nm* goo(0) gui(0) go2(0)
0.6 1.277 1.225 1.616
0.8 1.321 1.125 1.373
1.0 1.346 1.151 1.193
1.2 1.360 1.209 1.089
1.4 1.369 1.253 1.081
1.6 1.375 1.281 1.130
2.0 1.384 1.3156 1.220
0 42 = 1.414 1.414 1.414
*No=0.

significant in low-order modes than it is in high-order modes. (The
former are usually the only modes relevant to laser oscillators.) That this
is so can be understood if we recall that for the cylindrical confocal
geometry g;, () will have p zeros in the interval 7o < r < 7. . As the
interval (ro, 7 ) is compressed within the interval (0, ) appropriate to
(16a,b), those functions g, (r) whose zeros initially lay outside (ro, 7m)
will clearly be more distorted by the compression than will those fune-
tions which have no zeros (p = 0) or those whose zeros lie well within
(ro,rn). In Table IV we have tabulated the zeros within (ro, r.) of
several low-loss eigenfunetions for different N, .

III. EIGENMODES FOR FINITE MIRROR APERTURES (N, # 0)

In this section, in order to distinguish the Ny = 0 and the No # 0
results, we mark the eigenvalues and eigenfunctions for Ny = 0 by a
superseript “0”: ki1, (r)". As in the preceding section, we assign the
integer p = 0 to the Ny = 0 modes in the order of their increasing
power loss/pass: | ki, | > | kipa | - We identify the Ny # 0 modes by

TaBLE IV — ZEROS OF g1, (r) 1N THE DoMAIN 0 = 7y <r <7y,

=0 0 1 1 2 2
Nuw* rm¥

=1 21 22 1 2 22 1 21 2:

0.775 0.434 | 0.318] 0.662| 0.573| 0.432| 0.699| 0.641| 0.502( 0.718
0.894 0.433 | 0.339] 0.735| 0.604| 0.474] 0.792| 0.705| 0.560( 0.821
1.000 | 0.425 | 0.345( 0.772| 0.606| 0.496| 0.859| 0.734| 0.599| 0.903
1.095 0.418 | 0.342| 0.780( 0.598| 0.504| 0.897| 0.737| 0.621| 0.965
1.183 0.414 | 0.336) 0.774| 0.590| 0.501| 0.909| 0.729| 0.628| 1.002
. 1.265 0.412 | 0.330] 0.766| 0.585| 0.493| 0.905| 0.721| 0.626| 1.016
© © 0.399 | 0.305 0.707| 0.564| 0.449| 0.868| 0.691| 0.564( 0.977

- O
[== 10 e R

*No=0.
t The function gi,(r) has p zeroes in ro < 1 < 1w .
Irm = Nub
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the indices that those modes would carry if they deformed continuously
from No = 0. As we shall see, it is not necessary that | ki | > | ipia |
when Ny # 0; however, the Ny # 0 modes do have the properties (15)
and (18) of the Ny = 0 modes. In addition, the field amplitude g, (r)
will continue to have p zeros in the reflecting interval ro < r < rn
(ro = 0 for Ny = 0).

Using perturbation theory to express the No # 0 eigenfunctions :a
terms of the Ny = 0 functions, we have to first order:"

gip(r) = gzp(r)"{l + 7 furu dr' r'[gzp(r')ule}

()" " )
— G;’ %HQ%‘”L d?" ?"g;p(T’)ugxq(T’)D.
P P q
To second order, the eigenvalues are
To
Kip = xzpn {1 — 21rj; d‘f' ?‘[gzp(?')u]z}
(24)

0o 0 ro 2
+ > _"l‘)?_'“ﬂ_u [211- f dr rg;,,(r)ogzq(r)o] .
g#p Kip' — Kig 0

The factor multiplying g, (r)° in (23) is a normalization correction
compensating for the fact that the gip(r) are normalized in (10) over
the interval (ro, 7w ), whereas the g, ()" are normalized over the larger
interval (0,r,). The first-order correction to the elgenvalue in the first
term of (24) decreases the unperturbed eigenvalue ki, by that fraction
of the unperturbed field intensity which falls on the aperture.

The second terms in (23) and (24) describe eigenfunction mixing by
the aperture. The amount of mixing depends upon the eigenvalue
difference as well as upon the strength of the perturbative coupling. The
circular apertures, centered on the resonator axis, do not mix modes with
different angular quantum numbers. Because the signs of the eigenvalues
alternate as in (18), mode mixing in the symmetric identical-mirror
cavity is strongest among modes with the same p parity (—1)*. The
situation is somewhat different in resonators with dissimilar mirrors
such as obtains in the apparatus of Patel et al.” where only one mirror
is pierced by the output-coupling aperture. In such systems there is
significant mixing between even-p and odd-p modes.*

Whereas mode mixing will preclude two eigenvalues from actually
crossing (if the two modes are coupled by the perturbation), there is,
because of the sign property (18), no such restriction on the absolute
values | x;, | and | k41 | 01, equivalently, on the diffraction losses of the
(Ip) and (Ip + 1) modes. For some special values of (No, N») one can
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in fact reverse the power-loss progression of the Ny = 0 case to give
| ktps1| > | kip| ; however, it is always true for the identical-mirror
cylindrieal confoeal system that

| kip | > | Kipya | (25)

In more general geometries with more complicated eigenvalue phase
relations than (18) even this restricted condition can be violated.
Using the kernel expansion-truncation method outlined in the Appen-
dix, we have computed the effects of finite coupling apertures on the
properties of cavity eigenmodes. In Fig. 9 we have indicated for a Fresnel
number N,, = 0.8 how a finite coupling aperture with Fresnel number
Ny # 0 affects the loss/pass of the lowest-order modes. In the confocal
geometry the finite aperture affects only the magnitude of the eigen-
values; their signs (phases) are still given by (18). In no case do the
eigenvalues belonging to the same angular quantum number I ecross
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(the circular-aperture perturbations do not couple modes with different
1), although in Fig. 9 we do see for the (00) and (01) modes a reversal
of the Ny = 0 sequence | koo | > | ko1 | in the interval 0.08 < N, < 0.16.

Fig. 9 confirms our previous conjecture that the modes with angular
quantum number ! = 0 are more sensitive to deleterious aperture loss
than are the I # 0 modes. When for N,, = 0.8 the area of the aperture
is only 0.6 per cent of the total mirror area (No/N, = 0.006), the loss/
pass of the (00) mode has increased to the point where it equals the
loss/pass of the (10) mode. For this same hole size the losses of the
(10) mode are virtually unaffected by the aperture.

In Fig. 10 we have indicated the intensity distribution of the (00)
mode for N,, = 0.8 and Ny = 0,0.01. Except for the normalization
correction implicit in the first term of (23), the intensity distribution
for No = 0.01 is nearly identical to that for Ny = 0. We conclude for
Nn = 0.8 and Ny, < 0.01 that eigenfunction mixing in (23) is unim-
portant and, as a consequence, that the eigenvalues are accurately given
by the first-order term of (24). Using the infinite-N,, functions (16b)
to approximate g, ()" in the first term of (24), we can estimate the
ratio «;,/xi, analytically. For { = 0 this estimate can be considerably
improved if we renormalize the infinite-N, functions (16b) by the
factor go,(0)/4/2 computed from Table I1I. Doing this, we estimate

Ko = Kog] {1 — % {00, (0)°T f ™ eI[L,,‘](a;)]E}. (26a)

where «;,’ and ¢,,(0)" are implicitly dependent upon N, . In the limit

[} | ] ‘
Yo' 0.5 Tm 1.0

T'ig. 10 — Field intensity g;,2(r) of the mode (Ip) = (00) for N, = 0.8 with
No = 0 (solid curve) and Ny = 0.01 (dashed curve). (Nm = rn?; No=1,1.)
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of small Ny, for which we can in effect replace g, ()" by ¢1,(0)° in the
right-hand side of (24), this gives

kop = xop {1 — 7Nolgop (0)T}. . (26b)

To the same accuracy, the r* dependence of g, () noted in (15) implies
that ki, = kip for I s 0. The approximation (26b) has been used to
compute the dashed curves in Fig. 9. For No < 0.02 the fit to the ma-
chine-computed curves is excellent.

The effect of a finite aperture (No # 0) on the losses of the low-loss
modes for N,, = 1.6 is indicated in Fig. 11. More modes are shown than

% — ]
60 - /...4'

. N
Saals /il

° ~ 50 — y, 777 55
(- 6 02 A / / / [
§  a =1 !// |
=T a0
5 B0 J/ /
2 - L
z 40
a 1 // I/ /
g o8 — 11— ] / ~ /‘ ]
5 0.6 - /," S -
o 0.4 — - —-%—'
0 30 / A
o A /
9 o2 7 -
" Y 74 / /
£ o A
AT 7 7

L S /
3 le—— (ASYMPTOTE 01) / /
Z 0.04 - 4
5 / 20 /
& o002 //
w

0.01 //

0.008 + /

0.006 1/

0.004 //

0.002 el

10
0.001
z 10-4 2 10-3 2 * o2 * 5 e 2

APERTURE FRESNEL NUMBER, Ng

Fig. 11—Power luss/pass versus aperture Fresnel number N, for low-loss
modes with N, =



CONFOCAL LASER RESONATOR MODES 353

in Iig. 9 beeause at the larger Fresnel number more modes have low
loss (cf. Fig. 2). Observe for any fixed radial quantum number p that,
consistent with the 7' behavior noted in (15), modes with low angular
quantum number [ are more sensitive to a small aperture than are the
modes with higher angular quantum number. The sequence in Fig. 11
of upward breaks in the losses of the modes (00), (10), (20), ---is
particularly striking, as is that for the modes (01), (11), (21), *-- .

In Fig. 12 we have redrawn those curves of Fig. 11 which pertain to
the angular-invariant [ = 0 modes. The dashed curves in Fig. 12 derive
from the approximation (26b), which is here valid only for No < 0.0005
in the (00) and (02) modes and for Ny < 0.006 in the (01) mode.
[For N,, = 0.8 it applied to all Ny < 0.02.] The approximation (26b),
based upon first-order perturbation theory, fails when eigenfunction
mixing becomes significant. Mixing is strong for the (00) mode when
the losses of that mode due to the finite aperture approximate the edge
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Fig. 12 — Power loss/pass versus aperture Fresnel number N for the low-loss
! = 0 modes with N,, = 1.6. Dashed curves (00%) and (01F) are estimates based on
(26h).
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losses of the (02) mode — that is, when kp = ks . If we recall that a
variational principle applies to the present eigenvalue problem [be-
cause, in contradistinction to more general resonator kernels, the kernel
in the integral equation (9) is Hermitian], we can view mode mixing
as an attempt by the field in the low-loss (00} mode to reduce its in-
tensity at the aperture and to reduce thereby the total (00) loss. Be-
cause edge as well as aperture losses contribute to the total loss, the
deleterious edge losses of the (02) mode preclude appreciable (00)-(02)
mixing until the aperture losses of the undistorted (00) mode approxi-
mate the edge losses of the (02) mode. Because edge losses decrease
rapidly with increasing N,, (N, = 1.6 is already quite large), the
aperture losses required for appreciable mixing decrease rapidly with
inereasing N, . The relevance of mode mixing to the breakdown of
(26b) is clearly illustrated in I'ig. 13, where we show the intensity
distribution of the (00) mode for ¥,, = 1.6 and N, = 0, 0.01, and 0.02.
[The same aperture Fresnel numbers N, gave insignificant mode dis-
tortion for N,, = 0.8 (Fig. 10).]

In Fig. 14 is shown the intensity distribution for three other low-order
{ = 0 modes besides the (00) mode for N¥,, = 1.6 and Ny, = 0.01. This
figure should be compared with Fig. 5b, which shows the intensity
distribution of the same modes for N, = 1.6 and N, = 0. Note that,
whereas the intensity at » = 0 of the (00) mode decreased as a result of
aperture mode mixing, the intensity at » = 0 of the (02) mode increased.
This increase is reflected in Ifig. 12 in the sharp rise of (02) losses as
the (00) and (02) eigenvalues “repel” for N, = 0.003.
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Fig. 13 — Field intensity gi,2(r) of the mode (Ip) = (00) for N, = 1.6 with
Ny = 0 (solid curve) and N, = 0.01, 0.02 (dashed curves). (N, = r2; No = rok.)
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Fig. 14 — Field intensity gi?(r) of the low-loss I = 0 modes for N = 1.6 and
No = 0.01. (N = r?; Ny = ro*.) Notice how mode mixing has changed the in-
tensity distribution near the aperture (0 = r < ro) from that in Fig. 5(b) where
Ny, =0.

In Figs. 15, 16, and 17 we have indicated how the power loss/pass of
the low-loss modes varies when for fixed aperture size Np the Iresnel
number N,, changes. Notice in the typical Fig. 15 that the losses of the
(00) mode decrease as N,, increases from N, until for N,, = 0.7 those
losses saturate at about 11 per cent/pass, approximately the loss pre-
dicted from (26b) with goe(0)’' = 4/2 and xy’ = 1. As N, increases
beyond 1.3, mode mixing reduces the losses of the (00) mode as the
modified intensity distribution avoids both the aperture and the reflector
edges. While by N,, = 1.6 the (00) mode again has the lowest loss of
the I = 0 modes, its total loss is greater than that of certain [ # 0 modes
and its intensity distribution (Fig. 13) is considerably different from
the simple Gaussian of (16b).

A quantity of interest in the design of lasers with aperture output
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Fig. 16 — Power loss/pass of low-loss modes versus Fresnel number N, for
aperture Fresnel number N, = 0.01.

coupling’ is that value N, of N, for which the losses of the (00) mode
equal the losses of the (10) mode. All other things being equal, the
laser will oscillate in the (00) mode for No < Ny, whereas for Ny >
Ny it will operate in the (10) mode or, for large values of Ny, in still
another mode (ef. Fig. 11). In Fig. 18 we have plotted N, as a function
of N,.. For N,, > 0.6 this curve can be accurately reproduced by the
following expression based upon (26b):

Noe = (koo — k10)/ onno[guu(O)ulz. (27)

This result obtains even for large N, because N, decreases so rapidly
with increasing N,, that mode mixing is never relevant.
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IV. FAR-FIELD PATTERNS, APERTURE OUTPUT COUPLING

If we assume that the useful output coupling of the mode (Ip) is
exclusively through one of the small reflector apertures of Fresnel
number Ny, then at a large distance d from the relevant output aperture
and in a direction making an angle 8 with the cavity axis (see I'ig. 19)
the field amplitude will be proportional to
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9 ro 1.
Ap(be) = ¢ ''¢ %) f dr vJ[27r(b/N)7 sin 8lgip(r). (28)
0

Here ¢ is the azimuthal angle used in (1); r is the radial variable defined
in (6); and g, (r) is the mirror-field amplitude function (8). The deri-
vation of (28) from the Fraunhofer formula parallels that of (2) and
(9).! The basie approximation used is

[@* + p* — 2pd sin 6 cos ¢ ' &~ d — p sin 6 cos . (29)

This approximation is suitable when d >> aq = p and ag’ /M = bNo/d < 2.

In the important case for which ry is so small (No < Ny, is sufficient)
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Fig. 18 — Critical aperture Fresnel number N, for which diffraction losses of
(00) mode equal those of (10) mode versus Fresnel number N,, . Also shown for
each Fresnel number N, is the losa/Fass when Ny = N,, . This loss is approxi-
mately, but not exactly, proportional to Na, .
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Fig. 19 — Geometry appropriate to the analysis of the far-field pattern for
aperture output coupling of cavity.

that we can approximate g¢;,(r) by the lowest-order term (15), we ob-
tain from (28):

1d
-Alp(ﬂpﬁo) = E di:p

The observed intensity pattern for a pure ! mode will be proportional to

_ 1 dlgl:p anNnHZ : 2 2 27!‘(10 SiIl g
M“@*E@wmdmgwww‘mmﬂﬁﬁr—’@”

where §; is an appropriate phase angle. For [ = 0 this gives the cele-
brated Airy diffraction pattern."

X 112 .
,, oile gni\;; ; Tin (21ran)\sm B) ‘ (30)

V. SUMMARY REMARKS

We have computed the eigenmodes of a symmetric cylindrical con-
focal laser cavity of Fresnel number N, = 2.0 and have determined
how those modes change when a small circular element centered on the
axis is removed from each reflector. The calculation methods can easily
be adapted to cylindrical confoeal resonators for which the two mirrors
and mirror apertures have different sizes. (Results relevant to a coupling
aperture in only one end reflector will be published in a subsequent
article.) The basic expansion-truncation methods outlined in Section I
and in the Appendix are quite general® and can usefully be applied to
nonconfocal geometries for which complex-number computations are
required when the mirror surfaces are not surfaces of constant phase.

TFor the cylindrical confocal geometry the results reported above
indicate that, while the infinite-N,. functions with appropriate nor-
malization do approximate the low-order finite-N, eigenfunctions,
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there are significant differences which influence the calculation of both
aperture and edge diffraction losses. For sufficiently small aperture
Fresnel numbers N, the aperture diffraction losses can be estimated by
first-order perturbation theory based upon the finite-N,, eigenfunctions
(or upon the infinite-N,, functions renormalized to the finite-N, am-
plitude at » = 0). The value of N, for which such first-order calculations
are valid decreases rapidly as the Fresnel number N,, increases, because
for large apertures the field distributions distort (higher-order per-
turbation theory) to avoid the aperture. This distortion occurs at
approximately those values of N and N, for which an observer at one
reflector, using light of the relevant wavelength and optics limited by
the radius 7. = N, can resolve the aperture of radius ro = No' at the
opposite reflector."
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APPENDIX

Reduction of Integral Equation (9) to a Matrix Equalion

Truncating the series (13) after M terms and substituting the result
into (9), we obtain® (I = || in this Appendix)

m s M (_1 m—1y 1 _\I4+2(m—1) ,
mp,l]:p(?'} = 27 fm dr r ,E m —I-)l —(?IT)T()m Y g;p('r)
M ( -1 )m_l(‘lﬂ‘) 14+2(m—1)
=27 2 — D l(m — 1)
m=,_: (m+1—1)(m — 1)! (32)
f (i]_r(i‘f)r+2m—1 g!p( )")
0
. () ] & (=)™ wr)™ !
= [ T ] 2 T = D) l(m + 1 = Dy (),

where
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2T
[(m+1—1)!(m— 1}

Tm
. f d?" ?_r(‘n_rrz)m—-l-l-l ,'2glp( T’)-
To

Gu(lp) =

(33)

Solving (32) for g;,(r) and substituting this expression into (33), we
obtain after simple manipulations

_ M (_1)k—1
uslin(ip) = 2 [m — Ditm + 1= DIk = DIk+ =D

[(’n_Nm)l+ﬂl+Ic71 _ ('n'Nu)lm+k71]

T+m+ k=1

We have used the definitions (7) to replace (ro ) by the Fresnel
numbers (No, Nn).

Equation (34) is a matrix equation which must be solved for the
eigenvalue «;, and for the M vector components G, (Ip) appropriate to
that eigenvalue. When these latter components are used in (32), one
obtains the eigenfunction g, (r) appropriate to the M-term truncation
of (13). The normalization condition (10) on g;,(r) is equivalent to the
condition

(34)

X Gi(Ip).

Kby = 25 (=1)"7'G (1p)Giu (Ig) (35)

on the real vector components G, (Ip). The sign condition Re g, (01) >
0 becomes G (Ip) = 0 where, if G;(Ip) = 0, G.(ip) = 0, ete.

In programming the above equations for electronic-computer solu-
tion, one must insure that at each stage the computations maintain
sufficient numerical accuracy. The relevance of this remark is clearly
evident from the fact that, while the Bessel function J;(z) is of order
unity for all real z = 0, some terms of the series (13) will for z > 1
be of order (¢/2)*/2wxz 3> 1. That is, J;(z) will be the small difference
of large numbers and care must be taken to insure that such small
differences are accurately represented.

The program utilized to compute the results reported in this paper
requires 8 nominal 0.0042 hr. of IBM 7094 running time to compute the
M different eigenvalues and eigenvectors of (34) for M = 20. Timing
for other values of M varies roughly as M°.
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