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The Ewald method was originally invented to compute the Madelung
constant. In this paper we consider a lattice whose siles are associated with
an arbitrary potential function. The “charge,” or the scale factor for these
potential functions, need not be the same at each site. We consider the evalua-
tion of the resulting laltice sum al an arbitrary point, not necessarily at a
lattice site. The method involves two generalizations over previous work:
(1) the displacement of the origin off a lattice site and (2) the handling of
arbitrary periodic charge distributions by decomposing such distributions
into stimpler ones involving only +q and —q. The method should prove
particularly useful for evaluating the expansion coefficients of the crystalline
polential when this polential 1s expanded in the usual spherical harmonic
series.

The problem of summing slowly converging series is an old one. One
physical context in which the problem has been widely studied is the
calculation of the potential due to an ionic crystal lattice. The methods
of Madelung' and Evjen® depend on collecting ions into neutral groups.
The convergence obtained in this way, however, is conditional: that is,
the result depends on the way in which the neutral groups are chosen.
Ewald’s* method, which hinges on doing part of the summation in
reciprocal space, gives rapid convergence and the limit is unique.
Subsequent discussions'"” of this topic have been extensions and general-
izations of these methods. This work too is an extension of the Ewald
technique. In particular it is a generalization of the approach taken by
Nijboer and DeWette.®

For purposes of orientation, we summarize the basic philosophy of
the Ewald method. Suppose we have a function ¢ (r) such that the series

S= o) )

n=1
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is slowly converging. The symbol 2, is to be understood as a shorthand
for D n, 2.ns 2ns . It represents independent summation on all three
components of the vector r. We now construct some function g(r),
which falls off rapidly with r, and its partner

f@r) =1—g(r), 2)
which rapidly approaches unity as r increases. We now write
8= X e)gm) + 2 e)f ). (3)

The first sum converges rapidly, because of g. The second sum con-
verges like ¢, i.e., slowly. Its Fourier transform, however, will converge
rapidly. In fact the more slowly this sum converges the more rapidly
will its transform converge. To complete the argument we need Parse-
val’s theorem:

Tt
a(h) = [ exp (i2rh r)p(r) dr (4a)

and
F(b) = [ exp (2eher)y(r) dr (4b)

then
[emr+n) dh = [ o(x)s*(x) dr (40)

where the symbol * denotes “complex conjugate.” The formal passage
from sums to integrals can be accomplished by means of Dirac delta
functions & (r — r,), as we shall see below. Thus Parseval’s theorem
guarantees that the summation in transform space yields the same
result as the summation in the original coordinate space.

We now apply this scheme to the calculation of the potential due
to an ionic lattice. To begin with, we consider what we shall call a
“primitive” lattice. Such a lattice is generated from primitive transla-
tions ¢, €z, €3 in such fashion that

I, = 2 niCi , (5)

with n; , n2, ny taking on independently all integer values from — o to
w ; and in addition there is associated with each lattice point r, a charge

o = qo(—1)mmtm (6)
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where go is some constant. A typieal primitive lattice is NaCl, in con-
trast, for instance, to Cal, , which does not obey (6).
We define reciprocal vectors h; by the usual relation

hi-c; = &, )
and the reciprocal lattice as the aggregate of points
h, = > nh; (8)

where the n’s again run from — = to . It is trivial to show that if
these two lattices are represented respectively as 2 .6(r — r,) and
D n6(h — h,), then the reciprocal lattice is simply the Fourier trans-
form of the coordinate lattice, the Fourier transform being understood
as in (4a) and (4b). If we define the special reciprocal lattice vector

k = $(h, + hy + hy), )
then (6) can be rewritten
¢n = qoexp (127k-r,). (10)

In addition to g., we associate with each lattice point a function
¢(r). For the present we place no restriction on ¢(r), except that it
possess a Fourier transform. Of course there would be no practical
motivation for the calculation unless ¢ (r) fell off slowly with r. We
wish to sum the contribution of all the ¢’s at some arbitrary point R:

S =2 ¢(. —R)exp (:22rk-1,). (11)

To change the sum into an integral, as required for the eventual
application of (4c), we define

w(r) = exp (2zk-r) Y. 8(r — r,), (12)
so that,
§ = [w(re(r - R)dr. (13)

In exact analogy to (2) and (3) we can break S into two parts:

S = fw(r)p(r — R)g(r — R)dr
(14)
+ [ w(x)e(z — R)f(x — R)dr.

The first integral in (14) corresponds to the first sum in (3):
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> ¢(r, — R)g(r, — R)(—1)""mFm, (15)
n

The second integral we wish to evaluate in the conjugate domain. For
brevity we define

p(r) = o(r)f(r) : (16)

¥(h) = fm exp (i2h-1) Y(r) dr. (17)

—o0

Then the Fourier transform of ¢(r — R)f(r — R) is given by
f exp (i2rh-r) ¢(r — R) dr = exp i27h-R ¥(h). (18)
The transform of w (r) is easily evaluated (see Ref. 9) and is given by

[ ew @b w@ =L T+ x-n),  (19)
where v, equals ¢;-¢; X ¢, or the volume of the coordinate unit cell.
By Parseval’s theorem [(4a), (4b), (4c)], the second integral of (14)
now becomes

:‘Z exp [i2r(h, — k)R] ¥(h, — k). (20)

This completes the essential derivation, since S is now expressed in
terms of the two sums (15) and (20), both of which converge rapidly.

We consider some special cases. If R = 0 — that is, if we are sitting
at a lattice point — we presumably will want to exclude the contribu-
tion of that point itself. If ¢(0) is finite, the contribution can be sub-
tracted outright. If »(0) diverges, as is usually the case, one must be
clever about picking the functions g and f so that ¢ (0) = f(0)e(0) does
not diverge. One then simply omits from the sum (15) the term for
n = 0, and subtracts from the sum (20) the quantity ¥ (0). Note that
one subtracts ¥(0), not ¥(0). The Ewald calculation is obtained in
this way, if one takes

o) =|r[™ (21a)
g(r) = Erfe (|r]) (21b)
f(r) = Erf (|r]). (21c)

We note that if ¢ is real (for example, any central potential) and if
we pick ¢ real, then ¢ will be real also. The function w is both real and
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symmetric because of our particular definition of the reciprocal vector
k. It follows that the sum S as defined in (14) is real. But if we look
at the partial sum (20), this reality is not at first sight apparent, since
the R can be chosen arbitrarily. But ¢ real implies that ¥ is Hermitian:
¥(—h, + k) = ¥*(h, — k), and clearly exp [2r (h, — k)-R]is Her-
mitian. Again, because of the peculiar choice of k, the arguments
=+ (h, — k) are bound to occur in pairs. Since the sum of a function
and its complex conjugate is real, the sum (20) is always real, which
we may emphasize by rewriting it:

f_ Re 3" exp [i2x(h, — k)-R] ¥(h, — k). (22)

+
Here 2 means that we sum only over half the space. This can be
accomplished by summing n;, for instance, from 1 to <« instead of
from — o to o,

If ¥ (r) is symmetric, ¥ (h) will be real, and in the sum (22) we will
obtain only cosine terms. Conversely, if ¢ (r) is antisymmetrie, the re-
ciprocal sum will contain only sine terms. Again this is independent
of the choice of R.

We now also see clearly why the Ewald method ‘“works.” The con-
vergence difficulties with the series S of (1) concern its asymptotic
behavior. But this behavior is related to the behavior at the origin of
the series in reciprocal space.”” By means of the vector k, we guarantee
avoidance of the origin in reciprocal space, regardless of any other
conditions in the problem.

The sums that most frequently occur in practice are related to the
expansion of the erystalline potential in spherical harmonics:

w0 1
Viz) = 2 ; Cim | |' Yioom (62, ¢2) (23)
Cim 2£ + l E q" J rn -1 }rl.m (9rn y 99:',.,) (24)
— LI
Vim () = [ 23102 m;:] & Pu(0).  (25)

The notation is well known and conventional. Qur definition of the
spherical harmonies ¥, implies V1,,* = Vi . Also Vi (7 — 6,7 + @) =
(=1)'Y1.(8p). The evaluation of the crystal sums C;, has been
discussed by Nijboer and DeWette.” In our notation, ¢(r) here cor-
responds to P 'Y i (0,0). Nijboer and DeWette’s choice of g is the
incomplete gamma function'
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gr) = Tn + Lor)/T(n + 1) (26a)
J@) =1—g@) =y +Lm")/T{n +1). (26b)

They solve the problem subject to the restrictions that (a) the po-
tential is expanded about a lattice point, i.e., R = 0, and (b) the lattice
is primitive, in the sense of (5), (6) and (10). Our discussion has made
it obvious how to remove the first restriction. Generalizing their re-
sult, via (20),

dr 1
2041 T+ 3)
[E I r. — R 1_1_111(‘! + %:T | r. — R IZ)YIm(Gr,.—R r@rn—R)

Clm(r - R) =

-exp (12rk-1,) (27)
+ i Y exp (2w (h, — kK)-R)| b, — k |°

. I‘(l,'ﬁ'l hn - k |2) x Ylm(ghn"'k ) ‘Phn_k)]‘

The next generalization of the procedure lies in its application to
nonprimitive lattices. Such application will clearly be possible if an
arbitrary lattice can be decomposed into a sum of component primitive
lattices. We illustrate what we mean by a one-dimensional example.
Consider a one-dimensional lattice with charges distributed as follows:

L=210-3210-3210-3 ---.

Thus we have ¢ = 2, 2 = 1, ¢z = 0, ¢4 = —3. If the distance between
successive ¢’s is 1 distance unit, then the basic periodicity is 4. We note
that 2 g = 0, since we must have a neutral lattice, and that zero is
itself an allowable ¢ value. Now consider the following sequences of
numbers of periodicity 4:

1 1
L3=0_\/§0—\/§"'.
We can represent L as the sum L = 2L, + V2L + 24/2L;. We
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note that L, , L, , Ly are all primitive since they fulfill both (5) and the

two equivalent equations (6) and (10). In terms of (5), for L, |¢| = 1;
for L, and Ly, | ¢| = 2, but their origin of coordinates is shifted by
one unit.

We can define a dot product for the L’s in the following sense. Sup-
pose we have L, = 2 ;"% (r — r.) and Ly = D 4" — ;).
Then L, Ly = Z,-q,-(’”q,-(m, where the sum runs over a unit cell.
We note that, in our example, the components I; are orthonormal,
and that the projection of L on each L; can be found by taking the dot
product.

We also observe that we have three components, which is just enough
to account for 4 numbers which are subject to the one constraint
> ¢: = 0. Our three components L; “‘span the space” of L, and it is
clear in general that if L consists of a periodic sequence of P numbers
whose sum is zero, we shall need (P — 1) primitive components.

The question is: Is it possible to decompose an arbitrary periodic
sequence I into orthonormal primitive components? Can one devise
an algorithm for finding these components? Can one do this in three
dimensions? In considering these questions, we have collaborated with
Dr. R. L. Graham, and we are particularly indebted to him for pointing
out the great simplification that results if one confines oneself to
sequences of periodicity 2" in each dimension.

Consider a linear sequence 1. of periodicity 2". If ¢ is the primitive
translation of I, we define a = ¢/2". The basic vectors for generating
primitive component lattices are b’ = a,b® = 2b", ... b = 2p"" ",
Each b for ¢ > 1, will generate a set of primitive lattices differing
only in their choice of origin. There will evidently be n such sets of
components. Primitive component lattices containing 2™ nonzero entries
per unit cell will have a basis vector of length | ¢ [/2"™™ and will have
2"~™ possible shifts of origin. We note that )_,.—," 2" ™ = 2" — 1, which
is the correct total number of components. The number of primitive
components of the same periodicity but with shifted origins doubles
every time the length of the generating basic vector b; doubles, and of
course the number of nonzero entries per unit cell halves at the same
time. The set of origin positions [R;} associated with b; is clearly the
set of all translations R such that R; — R; = b, . This includes the set
{Ri_1} plus a new set formed by adding b, ; to all R in {R;_,}.

All the primitive component lattices are orthogonal to each other,
in the sense that L;-L; = §;; . Within each “phase-shifted” set, each
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component has numbers in locations where all the other components
have zero, so that the members of such a set are obviously orthogonal.
Now consider two sequences L; and L, ; belonging to sets generated
by b; and b,_; . Bither L;_; will have numbers only where L, has zero.,
Otherwise, each alternate number in L;; will have zero as a partner
in L; ; the remaining numbers in L;_; all have the same sign, but their
nonzero partners in L, have alternating signs. Hence once again the
dot product is zero. The same argument applies clearly not only to
members of contiguous sets L; and L;_;, but to members of any two
sets, L; and L;, i # j. To produce not merely orthogonality, but ortho-
normality over the unit cell, the normalization factor, or ¢ in (6) and
(10), must clearly be 27" for a component with 2™ nonzero entries.

In the example we have given, n = 2, and all the above arguments
can be seen to be rather trivially verified.

Txtension of the preceding to two dimensions is straightforward.
We consider a two-dimensional array, doubly periodic with periodicity
2" % 2". The primitive translations ¢, and ¢, carry any ¢ into the cor-
responding ¢ in another cell. Within each cell, the different ¢’s are sepa-
rated by multiples of ¢;/2" and c,/2", and we shall call these vectors
a, and a, . As before, we define a set of components of equal periodicity
by defining the basic vectors which will generate the primitive lattice.
The translations by which components within a set differ we denote
by R. The algorithm for producing a complete orthonormal set of
components is simple:

b, = a, (28a)
b = a, (28b)
b,? = a, + a (28c¢)
b? = a, — a (28d)

b, P = 2p,™ (28e)

b, = 9p™ (28f)
¢ =2 (29a)
£ = ¢ /3 (20b)

RV} =0 (30a)

{R(n+l)} _ {R(n)] + {R(ﬂ) + bl(")}' (30}))
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The set labels appear as superseripts in (28-30). The vectors b
are the basis of a primitive lattice, and |R} indicates the set of all
translations R which relate primitive lattices having the same basis.
Equation (30b) says that the translations for set » include all the
translations for set » — 1, plus all translations formed by adding any
one of the vectors b" ' to all the R’s of set n — 1. Again all components
are orthonormal over the unit cell, so that the decomposition of any
2" % 2" dimensional eell can simply be found by taking dot products.
Normalization is insured by our definition of ¢., and orthogonality
becomes clear from the same type of reasoning as in the linear case,
which we shall not repeat here.

In three dimensions, we consider an array triply periodic with perio-
dicity 2" X 2" X 2", We define ¢, , ¢, ¢3, and a; , as, a3 in analogy with
the two-dimensional case. We present the basic vectors for the primitive
lattices, plus the associated translations:

b," = a, (31a)
bV = a, (31b)
b, = a, + a (31c)
b,” = a; + a, (31d)
b = —ay + a (31e)
by — a (31f)
b, = a, + a, + a, (31g)
b, = a, — a, + a, (31h)
b, = a, + a, — ay (311)

b, = 9p, M (31j)

b, "t = 9p, ™ (31k)

by = 9p,™ (311)
g® = g (32a)

" = ¢" /2 (32b)

(R®) = 0 (33a)

RO} = (R + {R™ + b}, (33b)
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The choice of b’s is not unique, and we have given a set that seems to
bear a maximum analogy to the two-dimensional case.

Many lattices can be represented as 2" X 2" X 2" dimensional ar-
rays. We note that the primitive translations ¢;, ¢, ¢; need not be
orthogonal. Even if a lattice does not lend itself to such a representation,
by choosing a fine enough grid (with a correspondingly large number of
zero charges), one can approximate any lattice to any desired degree of
accuracy.”

We now return to the problem of the lattice sum. We will obtain a
sum of the type (20), or more specifically of the type (27a), for each
primitive component. For a particular set of components which are
translated from each other by [R.}, it clearly makes no difference whether
we sum the contribution of each component at the origin or the contri-
bution of any one component at the points given by {R,}. (The difference
between shifting the function and shifting the coordinate system is
merely a conceptual one.) Hence the shift vectors R, correspond to
the position vectors R in expressions (20) and (27a).

In the present approach, we have completely split the geometrical
character of the lattice from the charges assigned to each lattice point.
This suggests the possibility of computing the lattice sums arising from
all the primitive components of commonly occurring grids, once and
for all. The problem of computing a particular lattice sum would then
involve only the decomposition of the given lattice into primitive com-
ponent, lattices, whose contribution to the sum would already be known.
Work along this line is in progress.
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