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Feedback systems which achieve subharmonic response by use of power-
law nonlinearities and (rigonomeiric identilies are described, and the
problem of “modes,” i.e., mulliple responses to the same excitation, in some
of these systems is discussed. It is shown, by a thorough discussion of an
example, that suitable choices of a irigonometric identity and a loop filter
can be made which lead to locally asymptotically stable subharmonic orbils.
An application to FM demodulation is suggested: the subharmonic modes
can be used to reduce the index of an inpul wide-index wave so that a nar-
rower IF filter than for conventional FM suffices, as in the FM demodulator
with feedback, but without a controlled oscillator or even a mixer.

I. INTRODUCTION

As is known, it is possible to design feedback systems that reduce the
index of an FM wave by an explicit use of power-law nonlinearities based
on certain simple trigonometric identities. Circuits which use feedback to
achieve subharmonie operation, and which are stable under changes in
the input frequency over at least a limited range, have been built,
tested, and deseribed in the literature.! They have the behavior pre-
dicted by the trigonometric identities. Some of them depend on non-
linear conversion of a signal containing harmonies of 8 into one contain-
ing only the first harmonie, and others depend on the inverse process of
generating harmonies.

Our purpose is to discuss the problem of “modes” (i.e., different re-
sponses to the same excitation) in these systems, and the problem of the
stability of the interesting subharmonic modes. We also indicate an
application to frequency modulation: by incorporating the prineciple on
which the systems are based into a frequency modulation receiver, one
obtains circuits with some of the properties and advantages of the FM
demodulator with feedback?® proposed by J. G. Chaffee. However,
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none of the circuits suggested here contains a voltage-controlled oscil-
lator, and some do not even contain a mixer.
To illustrate the principles involved, let us consider the trigonometric
identity!
sin 360 = 3 sin 8 — 4 sin’ 4.

If we set
113

y(z) =sgna- |z
the above identity can equally well be put in the form
¥ (3 sin 8 — sin 38) = 4'" sin .

Thus if we view, as in Tig. 1, 4'"* sin 0 as the output of the nonlinearity

¥(-), and feed this back through a gain of 3-47'* to an adder whose
input is
— sin 36,
we will have a feedback system which is driven by —sin 36, and which
produces sin 6, a 3-to-1 reduction of index of modulation if the angle
30 is taken to be of the form
30(t) = wt + 3e(l), ¢ = signal.

It is apparent' that other trigonometric identities can be used in
analogous fashion to get an n-to-1 index reduction, with n any positive
integer = 2. For example, with

W(z) = sgna- |z
we have
¥ (cos 58 + 20 cos’ 8 — 5 cos 8) = 16" cos 8,

corresponding to the system of Fig. 2.

'
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Fig. 1 — System using 1/3-power nonlinearity.
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Fig. 2 — Loop based on 1/5-power nonlinearity.

Another system, based on the identity
4 cos® § = cos 30 + 3 cos 6,

is shown in Fig. 3. Tt generates the “‘compressed” signal —3 cos 6 by
subtracting 4 cos® 8 from the wide-index signal cos 36.

1I. FILTERING

If the principles illustrated above are to be used in a communications
receiver, it is probably desirable to perform some filtering to remove
undesired components of noise or feedback signal. Thus in practice the
feedback loop would (e.g.) include a filter which removed all components
not in the (essential) band of sin #(-). For many filters, and choices of
input phase 6(-), presence of the filter will of course mean that the
signal in the loop is no longer so simply related to 6(-) as it was in the
examples above: use of the trigonometric identity to relate the loop
signal to the input may be inexact. However, there exist filters and
choices of (- ) for which this does not ocecur. (See Ref. 5, and Section V
herein.) In any case, if the filter passes sin (- ) without essential distor-
tion the identity will remain true for practical purposes. For example,
with

Y(r) = sgna- ||
again, and the identity
¥ (cos 360 + 3 cos ) = 4" cos 6

we would follow ¢ (-) with a filter that passed cos # but removed out-
of-band noise, and get a system like that of Fig. 4.

I1I. THE POSSIBILITY OF SEVERAL ‘‘MODES”

It has been pointed out in the literature! that certain frequency di-
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Fig. 3 — System based on cubie nonlinearity in the feedback.

viders based on regeneration and modulation are not necessarily “self-
starting,” and that sizeable starting voltages may be needed to set them
off. Put in the language of differential equations, this means for example
that there may be two entirely different kinds of steady-state response
(to the same steady-state signal), one (say) oscillating with large ampli-
tudes, and the other taking place in a region of asymptotic stability
around a critical point, with small oscillations. The “starting voltage”
is needed to get the system out of the region of stability.

A. J. Giger has suggested that a similar situation will obtain in realiza-
tions of the circuits described above, even though they contain an adder
rather than a multiplier (modulator). Clearly, whether a realization is
self-starting is going to depend on the circuit details as well as on the
principles at issue here, and each case will have to be studied on its own
merits. However, these general remarks are pertinent:

(1) The non-self-starting frequency divider is just a special case of the
well-known but incompletely understood phenomenon that a system
may not have a unique asymptotic response. It is a property specific to
the systems described so far that they depend on a fractional-power
nonlinearity, and as a result it is possible, though not necessary, that
they fail to have unique periodic responses to some periodic signals.®

(77) The desired operation of the systems proposed above depends on
evoking a suitable subharmonic response. It is known? that not all solu-
tions need contain such components of lower frequency than the input.

(#52) It is also known® that even when a subharmonic periodic solu-
tion exists, it is itsell only unique up to certain phase shifts. Specifically,
if we obtain a solution with a component ¢™™* when the input contains
only harmonics of ¢"™' n > 2, then any translation of a solution by
2k/nfork = 1, --- , nis also a solution.

For example, the steady-state response of the circuit of Fig. 4 might
or might not contain the desired subharmonics, and thus it might not
work as planned unless care is taken to ensure that it slips into the right
“mode” of operation initially, and that this mode is stable under the
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perturbations due to the presence of signal and noise. The mathematical
analysis of such phenomena is often arduous and, in many cases, quite
incomplete. From a practical point of view the mode problem (when it
occurs) might best be resolved by encouraging the desired mode by
pulsing the (tuned cireuit) filter, by adding automatic gain control
features that cut in when the amplitudes of the desired mode are low,
or by designing the filter to have zeros of transmission at certain values
of frequency associated with the undesired modes, such as their funda-
mentals.

However, while it is necessary to emphasize that the problems men-
tioned above exist, it is also important to state that the picture is not
all black: known methods of analysis and design suffice to ensure local
asymptotic stability of some of the subharmonic modes described above
An example is worked out in some detail in Section V.

IV. BIAS

For theoretical reasons it may be undesirable, and for practical reasons
impossible, to use a nonlinear characteristic which has an infinite slope
at the origin. For example the singular nature of the fractional-power
nonlinearities at the origin may preclude a conventional elosed-loop,
open-loop stahbility analysis by linearization around that point. Or, if
the nonlinearities are being obtained by the use of diodes, such a slope
is physically unattainable. These difficulties, along with most passages
of the system through or near such a singular point, can be avoided by
the addition of what amounts in electrical terms to “de bias” at various
points of the system, in such a way as to (roughly) move the operating
point of the system to a desired region of the nonlinear characteristic
¥(+). In this region () might be of Lipschitz character, or it might be
particularly well represented by a particular diode. Such biasing can
also be used to eliminate some equilibrium points of the system, and
thus to reduce the number of solutions; it ean also be used to increase

L
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Fig. 4 — Filtering in a loop using 1/3-power nonlinearity.
: 1 A
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the size of certain regions of asymptotic stability, and thereby enhance
the dynamic stability of desired solutions. It therefore furnishes sub-
stantial latitude for design.

Thus, e.g., to use the identity

cin?g = 1-— cosZB,

2
we can multiply by b* % 0 and add
a’ + 2ab sin 0
to both sides, so that
(@ + bsin 8)" = @ + (b°/2) + 2absin 0 — (b*/2) cos 26.

Choosing |a | > | b | ensures that the right-hand side is bounded away
from zero. Taking the square root of both sides, we base design on the
“biased” identity

a+ bsin 0 = (a® + 1* + 2ab sin 8 — 3" cos 26)""°. (1)

Discussion of an example of design based on (1) follows.

V. EXAMPLE, WITH ANALYSIS OF ORBITAL ASYMPTOTIC STABILITY
We now consider the circuit depicted in Fig. 5, with
) =sgna- x|,
with input
y(t) = a° + 3° — 1b° cos 2,
and a filter whose impulse response k(- ) is integrable and has a Fourier

transform

K(w) = (20)'? fm k(t)e ™“'dt

such that K(0) = 0 and K(1) = (2r)"'*(2a). For our example we
use the second-order filter

(27) 2010
c(iw)? + tw + ¢’
with ¢ > 0, so that poles of K (-) are in the left half-plane.

It is now easy to show, using the theory of Fourier series, that the
system of Fig. 5 has a subharmonic response

Klw) =
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a‘+ % b?- L b2 cos 2t

1
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+
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Tig. 5 — Example for orbital asymptotic stability.

a(t) = a’ + 1° + 2ab sin t — 3" cos 2, 3)

where 2 (-) is the input to the nonlinearity. The loop equation for this
solution (with no transients!) is simply

x(t) = y(t) + f;: E(t — u) sgn a(u) | 2(u) |”2du.

Substituting the expression that (3) gives for z(-), using the iden-
tity (1), shows that the filter removes the dc¢ term a from the output
of the nonlinearity and multiplies the amplitudes of frequencies =1
by 2a. We remark that the constant ¢ > 0 in (2) does not occur in the
subharmonic solution (3), and that the eonstant b does not occur in the
transfer function K (w). Also, for the particular input we chose, the
presence of the filter does not render the trigonometrie identity being
used inexact.

As is well known, for fixed values of @ and ¢ there are many ways of
describing the cireuit of Fig. 5 by differential equations so as to give rise
to (2) as the transfer funetion of the filter. F'or some of these ways the
solution x(-) found above may be orbitally asymptotically stable, for
others it may not. In short, the stability of this subharmonic solution
probably depends on the way in which the action of the transfer func-
tion is represented by differential equations. We shall consider repre-
sentations of the form

i= Az + op Bz + y(1), 4)

where z(-) is a 2-vector valued function, 38 is a 2-vector, é is a 2-vector
proportional to the unit 2-vector, and 4 is a stable 2 X 2 matrix. In
this representation the periodic solution x(-) of (3) will have the form

x(t) = Bz() + y ().

These representations and their simple properties are used merely as an
illustration, because they readily admit an analysis of the asymptotic
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stability of the orbit corresponding to the solution x(-). They do not
come near exhausting the possibilities for finding stable subharmonic
forced oscillations in feedback systems.

Since for f; = #;, (4) gives

B'z(t:) = p'lexp A(te — t1)]2(t1)
ty
+ | Blexp Aty — w)lop(B'2(u) + y(u))du
ty
it is clear that (4) will represent the circuit if and only if

oo —1g _ 1/2 _ 2atw
B8t — A)7'8 = (27)"K(w) = ct(iw)z T e T o

i.e., if and only if both
det (iw] — A) = (iw)® + ¢ fiw + 1,

o1 — 2 Tw — a1 & (‘,)
fo + B2 = 2aiw/c.

8 tw — Go — 2 Bs
The first condition is met if

anlss — 0’«120-21(= det 4) =1,
an + G = —c .

The second condition is equivalent to g8 = 2ac " and g'47's = 0,
taken together. Since, to facilitate stability analysis for this example,
we wish to impose 8, = & = 0, the latter condition is FA™M =01=
unit 2-vector. All these conditions together can be met in many ways.
A convenient choice is 8 = (2a/¢,0)',8 = 1, an = —az , (@1 — Qn)an =
1, and

ﬂrll(—ﬂu - 071) - 0112(—0‘»11 - C_l) =1,

the last imposing a rational relation between ai;; and @y, thus leaving
one parameter still free.

1t can be verified that when the conditions (5) above are met, then
8'z(t) = 2ab sin t does define a periodie subharmonic orbit of the differ-
ential system (4). We are now in a position to make a linear local
asymptotic stability analysis for the subharmonie orbit B'z(t) = 2absint,
by Lyapunov’s classical theorem.’ The (periodic) linearization matrix is

A + diag 8 (t)

where
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(1) = ¢ (a* + 2ab sin t + 3b* — 3b° cos 2)
= ¢/ (2(0))
1

p(a(t))
= 1(a+ bsint)™".

If diag 8 = dI, d a scalar, it is casily verified that the fundamental
matrix associated with this periodic matrix is

d(1) = eult)
where u(-) > 0is defined by

Uy = 1
Unyr (L) = df fw)u,(v)du
w(t) = iﬂu,.(ﬁ).

We are therefore interested in the characteristic values of ®(2x), ie.,
¢ (27).

These are of the form
w(2m)e’™

. . g 6
where g is a characteristic value of A4, and so we may conclude at once
that if

1
—Reu = ,)1— > 5 log u(2x),
2 ~ 2r
then the orbit determined by g'z(t) = 2ab sin ( is locally asymptotically
stable, i.e., there exists a neighborhood of it from which all solutions

approach the orbit.

Clearly
u(t) < exp it sup |d]|-|f(u)]}
0=u=t
whence
1 1 |d]
2 log u(2r) < = 121
27rlog w(2r) < Sa—10]

so that the inequality
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a>cld[+|b]

suffices for local asymptotic stability of the orbit.

Note that changing the sign of b corresponds to changing the sign in
all the odd components in the periodic solution x(t) found above; the
resulting function is also a periodic solution differing from x(f) only in
phase, by exactly .

VI. APPLICATION TO AN FM DEMODULATOR WITH FEEDBACK

The examples of index reduction described in the preceding sections
suggest that it is possible to design FM demodulators with frequency
feedback that contain no voltage-controlled oseillators and even no
mixers. Several methods of realizing such a possibility will be discussed,
based on the principles exemplified.

The simplest demodulation scheme of this sort is obtained by a
specialization of the system of Fig. 4. We merely specify that the filter
have a narrow passband centered around an intermediate frequency
o that is 3 the carrier frequency, and that it introduce negligible ampli-
tude variations for signals in the passband, so as not to interfere unduly
with the trigonometric identity. This gives rise to the demodulator of
Fig. 6, in which #(- ) has the form

0(t) = wt + (1),

with ¢ a baseband signal. The feedback, made at IF, reduces the modula-
tion index 3-to-1. Here the carrier frequency is three times the inter-
mediate frequency, but this relationship can easily be changed by re-
modulating or, for that matter, by using a different trigonometric identity
as the basis of design. We note that no mixer, and no voltage-controlled
oscillator, is used. Also, the phase of the signal fed back is crucial:
excessive phase shift in the filter is as intolerable here as in conventional
I'M with feedback.

As a demodulator, the circuit of Fig. 6 shares with Chaffee’s circuit
the advantage that the wide band of noise which must be passed by the
initial amplifier along with the wide-index signal is not admitted to the
detector. This circumstance is important, because a prineipal object of
feedback (in FM with feedback) is to reduce the noise level at the de-
tector by filtering all but a small part of the noise. However, it remains
to be seen how well the nonlinearity sgn z- | z |'"* performs its function
in the presence of the wideband noise that enters it, since the resulting
amplitude modulation a(-) at the input renders the trigonometric
identity being used here inexact. This AM due to noise might be removed
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Fig. 6 — Possible utilization of 1/3-power nonlinearity in FM demodulator,

by inserting a limiter and filter to follow the IF filter, as in conventional
systems, at the expense of incurring additional phase shift.

A final point, due to A. J. Giger, is that, unlike Chaffee’s circuit, the
present one refains the carrier phase instead of discarding it and operat-
ing independently of it.

VII. CIRCUITS WITHOUT FRACTIONAL-POWER NONLINEARITIES

It is straightforward to gencrate other, quite different designs based
on the same identity,

cos 30 = 4 cos? 6 — 3 cos 4,

designs which do not depend on a fractional-power nonlinearity, and
5o do not incur the problems above. For example, Fig. 7 shows a design
very much like that of the conventional FM with feedback demodula-
tor, except that the detector-controlled oscillator is replaced by the
nonlinearity

49 — 3.

Applied to cos 6, this gives cos 36, to be used as the feedback input to
the mixer. If the other mixer input, i.e., the incoming signal, is the

IF LIMITER cosé@ M
FILTER F?S%R DETECTOR g
4y3-3y |————J

Fig. 7 — Cubic nonlinearity used in FM feedback system with modulator.
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wide-index signal cos 48, the filter can be made to select the difference
frequency component cos 8 to complete the loop and provide the feed-
back signal. In this system the carrier frequency is four times the inter-
mediate frequency.

A particularly simple circuit, based on Fig. 3 and using only an adder,
is depicted by Fig. 8. In this design the feedback is through the simple
cubic nonlinearity

4 3
ﬁi.

If —3 cos ¢ is applied to this, and the output is combined in the adder
with an incoming wide-index signal eos 30, the adder output is —3 cos
6. This passes substantially unchanged through the narrow II' filter
suitable for the low-index wave cos 6, while of the wide band of noise ac-
companying cos 36 at the input only a narrow band can pass the IF filter.
For practical purposes, the cubic characteristic would only be required
over the range |« | = 3, and standard stability analyses can be used.
Again, carrier phase is retained.

COS 38 + -3 C0S# LIMITER
(r FILITFEH AND DETE’STUH —
7 FILTER
4 .3
7%

Fig. 8 — Cubie nonlinearity used in FM feedback system with adder.
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