Capabilities of Bounded Discrepancy
Decoding

By A. D. WYNER
(Manuscript received February 23, 1965)

The following four channels are considered: (A) a class of discrete
memoryless channels with q inputs and outputs, (B) the time-discrete,
amplitude-continuous memoryless channel with additive Gaussian noise
and amplitude constraint, (C) the same as channel B bul wilh energy
instead of amplitude constraint, (D) a class of time-discrete, amplitude-
continuous memoryless channels with amplitude constraint and non-
Gaussian noise. For each channel the theoretical capabilities of ‘‘bounded
discrepancy decoding” are studied.

The “discrepancy” between two vectors is a distance or distance-like
quantity defined such that the optimal decoder is a “minimum discrepancy
decoder.”” For example, for channel A the discrepancy is the Hamming
distance, and for channel B the discrepancy is the Euclidean distance.
Bounded discrepancy decoding 1s a nonoptimal decoding scheme in which
disjoint regions in the space of possible received veclors are constructed
aboul each code word, each region consisting of those vectors within a
fized discrepancy of that code word. For example, in channels A and B
the regions are spheres with centers at the code words and radius d/2 where
d is the minimum distance belween code words. If the received veclor is in
the region about code word 1, it is decoded as code word ; otherwise the
decoder announces an error.

For all four classes of channels the following is shown to hold: There
eists a fized positive rate C'y below which it is possible (asymptotically in
n) to oblain exponentially small error probability using bounded discrep-
ancy decoding. In many cases C'y is shown to be strictly less than the channel
capacity.
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I. INTRODUCTION

To fix ideas, let us consider first the special case of coding for the
binary symmetric channel. A code is defined as a set of M binary n-vectors
x= (v,,%,...,%,) wherezy = 0or 1l (k= 1,2,...,n). The indi-
vidual vectors are called code words. The transmission rate R is defined
by M = 2"%. The Hamming distance between two binary nm-vectors is
the number of positions in which they differ.

The code words are transmitted through a noisy channel. The re-
ceived vector y is a binary n-vector whose kth coordinate is

e = T + 2 (mod 2), k=1,2,...,n, (1)
where z; is the kth coordinate of the transmitted code vector, and the
2 (k =1,2,...,n) are statistically independent random variables
which assume the value 1 with probability p,(0 = p, = %), and the
value 0 with probability 1 — p, . Thus p, is the probability that a given
bit is received in error. This channel is the “binary symmetric channel.”
It is assumed that each of the M code words is equally likely to be
transmitted, and it is the task of the decoder to examine the received
vector y and decide which code word was actually transmitted. We are
interested in two types of decoding.
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The first is termed minimum distance decoding or minimum discrepancy
decoding (MDD), and here the decoder selects that code word which
has the smallest Hamming distance from the received vector, and an-
nounces-that word as the one which was transmitted. It is not hard to
show that MDD is optimum in the sense that it minimizes the average
probability of error for a given code. Let us denote by P, the average
probability of error using MDD. The Fundamental Theorem of Infor-
mation Theory' states that for any rate R less than the channel capacity
C =1+ p.log.p. + (1 — p,) logz (1 — p,), there exists a sequence of
n-dimensional codes (one for each n) with rate R such that P,y — 0,
as n — o, Further we may write P,y = 27" %™ where E(R) > 0
when R < C. Estimates of the exponent F (R) have been found.>**

In order to construct specific codes many workers (for example, see
Refs. 5 and 6) have considered codes in which the minimum Hamming
distance between code words is d. Such codes are capable of correcting
errors affecting e = (d — 1)/2 or fewer coordinates. Suppose that the
code under consideration has minimum distance d and that the decoder
corrects only errors corrupting e = (d — 1)/2 or fewer coordinates (and
announces an error if the received vector is not within Hamming dis-
tance e of some code word). We term this type of decoding bounded dis-
tance decoding or bounded discrepancy decoding (BDD) and the resulting
error probability P.;.f Since BDD does not exploit the full error-
correcting potential of the code (an error may corrupt more than e =
(d — 1)/2 coordinates and still be correctable using MDD) it is clear
that P,z = P.u . In this paper we shall study the theoretical capabilities
of BDD, and show quantitatively what is lost by using BDD instead
of MDD.

For the binary symmetric channel the following will be shown to
hold:

Theorem A: There exvists a fived rate Cy (called the bounded distance
decoding channel capacity) below which it is possible (asymplotically in
n) to obtain exponentially small error probability using BDD. In other
words, for every B < Cy, there exists a sequence of n-dimensional codes
(one for each n) with rate R such that P,y = 27" %" where Ex(R) >
0if R < Cp). Further if R > C5, Pop— lasn — =,

Although (' is not known exactly, it can be shown to satisfy

t The Peterson-Chien algorithm for decoding Bose-Chaudhuri-Hocquenghem
codes is an example of BDD. (See Chien, R. T., Cycling Decoding Procedures
for Bose-Chaudhuri-Hoequenghem Codes, ITEEE Trans. on Information The-
ory, IT-10, 1964, pp. 357-3063).
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1—H@p,) £Cz<1-HEG - 31— 4p,), (2)

where H(p) = —plogep — (1 — p) log: (1 — p), and p, is the bit error
probability of the binary symmetric channel. These upper and lower
bounds on Cp are plotted vs p, in Fig. 1. It is clear that C5 is bounded
below the channel capacity C, the maximum ‘‘error-free rate” obtain-
able using (optimum) MDD. The exponent Ez(R) can also be esti-
mated by upper and lower bounds.

In this paper we shall study a number of different channels (continu-
ous as well as discrete). For each channel we shall define a distance-
like function called the “discrepancy” which will be chosen so that
the optimum decoder is a “minimum discrepancy decoder.” (For the
binary symmetric channel the discrepancy is the Hamming distance,
and in most of the cases to be considered the discrepancy is a metric.)
We then define a “bounded discrepancy decoder’” and compare the
capabilities of BDD to those of optimal MDD. In all cases we will
deduce the existence of a “bounded distance decoding channel capacity”
Cp for which Theorem A holds. In many of these cases we will show
that C5 is strictly less than the channel capacity.

A glossary of symbols is included at the end of the paper.

(0.693) 1.0

(0.546) 0.8 \

(0.408) 0.6
Ce

(0.273) 0.4

(0.136) ©.2

Fig. 1 — Upper and lower bounds on Cg (2) (in bits) for binary symmetrie
channel (solid lines). Thus Cp lies in the shaded area. The channel capacity C
is the dotted line. The equivalent value of Cp corresponding to natural logarithms
is given in parenthesis.
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1I. SUMMARY OF RESULTS

We shall consider four classes of channels. In each case the input and
output are n-vectors x = (x;, 22, -+, @) and y = (i, Y2, "+, Yn)
respectively, related by

we=u+z, k=12- - -n (3)

The symbols zx , ¥ and the noise digits z. are as follows:
Channel A (Discrete Channel): The input digits 7 (k = 1,2, --- , n),
the output digits v« (k = 1, 2, -+, n), and the noise digits z. (k =
1,2, -+, n) are members of the finite alphabet of ¢ symbols, 0, 1, - - -,

g — 1. The addition in (3) is modulo ¢. The 2 are independent random
variables assuming the value 0 with probability 1 — p,, and the values
1,2, .-+, q — 1 with probability p,/(¢ — 1). Thus the channel trans-
mits each symbol correctly with probability 1 — p,, and makes an
error with probability p,, all errors being equally likely. The Hamming
distance dy(u,v) between two n-vectors u and v with entries from the
alphabet of ¢ symbols is the number of positions in which u and v differ.

Channel B (Gaussian Channel with Amplitude Constraint): The
digits @, ¥, 2 (k = 1,2, --+, n) are real numbers. The input vector
x satisfies an amplitude constraint:

—AZa =44, k=12 --,n (1)

The noise digits zx (k = 1,2, ---, n) are independent Gaussian random
variables with mean zero and variance N. The Euclidean distance be-
tween two vectors u and v is denoted by dg(u,v).

Channel C (Gaussian Channel with Energy Constraint): The digits
T, Yk, 2z (k = 1,2, - -+, n) are real numbers. The input vector x lies on
the surface of the n-dimensional hypersphere with center at the origin
and radius 4/nP. Thus

> @' = nP. 5)
k=1
As in channel B, the noise digits zx (k = 1,2, ---, n) are independent

Gaussian random variables with mean zero and variance N. The signal
“energy” is 2.z = nP, and the expected noise “energy” is

E(:;Z z’) = nN,

so that the signal-to-noise energy ratio is P/N. This quantity is also
the ratio of signal-to-noise “‘average power.”
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Channel C is of course closely related to the bandlimited channel
with white Gaussian noise." Such an identification, however, must be
made with care, and we shall sidestep the issue here.

Channel D (Continuous Channel with Amplitude Constraint): The
vectors X, y and z are members of @, defined as the set of n-vectors
u= (w, U, **+, ) where the coordinates ux (k = 1,2, ---, n) are
real numbers satisfying

—A=Zu <A (6)

We shall assume that the symbols “4”” and “~” when applied to
coordinates of vectors in @, denote addition and substraction modulo
24, with the result reduced into the interval [—A4,4]. Equation (3) will
thus be rewritten as

yk=:t:k-]-zk, Io=1,2,---,n. (7)

The noise coordinates 2, are assumed to be independent identically
distributed random variables with probability density function p(u)
which satisfies:

@) pw) =0, |u|> A,

(b) p(w) >0, |u|= A

(¢) p(w) is an even function of u. (8)

(d) p(u) is a continuous, strictly monotone decreasing function
ofufor0 £ u £ A.

(e) There exists an a > 0 such that for small » we may write

p(u) = pO)L + O

Thus what we have done is to wrap the interval [—A,+ A] onto the
circumference of a circle, and assume that the noise perturbs each
coordinate along the circumference a distance z: (—A4 = z, < A). Such
a channel is reasonable for the case where the x; correspond to the
phase of a fixed waveform,f and also as an approximation to other
channels.

For each channel we define a code as a set of M n-vectors x satisfying
the above constraints. The transmission rate R is defined by B =
(1/n) In M so that M = e*® We assume that each of the M code words
is equally likely to be transmitted. It is the task of the decoder to exa-
mine the received vector y and to decide which code word was actually

t An example in which this model is applicable may be found in A. J. Viterbi,
“On a Class of Polyphase Codes for the Coherent Gaussian Channel,” IEEE

International Convention Record, part 7, 1965, pp. 209-213.
1 For the remainder of this paper all logarithms will be taken to the base e.
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transmitted. If P, is the probability that the decoder makes an incor-
rect choice when code word 7 is transmitted (¢ = 1,2,3, ---, M), and
if each of the M code words is equally likely to be transmitted, then
the overall probability of a decoding error is

P.= (1/M)Y Pui. (9)

The optimal decoder is defined as the decoding system which minimizes
P, for a given code.

As was done for the binary symmetric channel in Section I we shall
consider two types of decoding.

Channel A: The optimal decoder may be shown to be the one which
selects that code word x which minimizes the Hamming distance,
dn(x,y) between x and the received vector y. Accordingly, we define
the “discrepancy”’ as the Hamming distance, and the optimal decoder
is the minimum discrepancy decoder (or minimum distance decoder) de-
noted by MDD. Let us denote by P.s the probability of error (P.)

using MDD.
The channel capacity of Channel A is readily shown to be
C=C()=Mng—H(p) —p.In (g —1), (10)
where

H(pp) = —plnp — (1 — p)In (1 — p). (11)
The Fundamental Theorem of Information Theory"” states that for

any R < C there exists a sequence of n-dimensional codes (one for each
n) such that P,y = ¢ "EW T (where B (R) > 0 when R < (). Further

if R > C, Py =% 1 so that C is the supremum of those rates for which
it is possible to obtain vanishingly small error probability using MDD.

The second type of decoding is described as follows: For the code
being used, let d be the minimum Hamming distance between pairs of
code words. About each of the M code words we construct a ‘‘sphere”
in the space of ¢" n-vectors, consisting of those vectors not more than
Hamming distance (d — 1)/2 from that code word. All these spheres
are disjoint. If the received vector is in the sphere about code word 7, it
is decoded as code word 1. If the received vector is in no sphere, then the
decoder announces an error. We term this type of decoding bounded
discrepancy decoding (BDD), and denote the resulting error probability
by P.s. (i.e., P.s is the probability that the received veetor is not in
the sphere about the transmitted code word.) Alternately, the bounded
discrepancy decoder corrects crrors affecting up to e = (d — 1)/2
positions and no more. Clearly P.s = P.u .
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In connection with BDD we are interested in the quantity M (n,d),
the maximum number of code words in an n-dimensional code with
minimum distance d. The corresponding transmission rate is E(n,d) =
(1/n) In M (n,d). The following bounds hold:

For d/2n > (g — 1)/2q:

B8
Md) £ ——.
(”’)—ﬁH q—1 (12a)
2q
Ford/2n < (g — 1)/2q:
anllf(zqqunﬂl qd

i & < M(nd) < \[ram 2R (8) , (12b)
=) -1 = () a-v(@-)
where
B = d/2n, (12¢)
K(B) =g/00 —t8q/(qg — 1)], (12e)

and where [v] denotes the largest integer not greater than x. The upper
bound (12a) and the first upper bound of (12b) are the well known
Plotkin bounds,*® and the lower bound of (12b) is the well known
Varshamov-Gilbert-Sacks bound as given in Ref. 8; the second upper
bound of (12b) is established in Section III.

Now let us let » and d become large while the ratio 8 = d/2n is held
fixed, and define R (8) = lim R(n,d) = lim R (n,26n). We obtain from
(12a):

R@) =0, B> (g—1)/2, (13a)
and from (12b):

Ing— H(28) —28In (¢ — 1) = R(B)
( 2¢8
S (1 _ E_) In g, (13b)

Ing— H{B) — 81In (¢ — 1),

where H (p) is defined by (11). The second upper bound in (13b) is the
same as the Elias bound* which was obtained independently. Although
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the bounds of (12) and (13) are of interest in themselves, we make
use of them here to demonstrate the following:

Theorem A: There exists a fived rate Cg , called the “bounded discrepancy
decoding channel capacity,” such that for any rate R < Cy, there exists a
sequence of n-dimensional codes (one for each n) such that P.s = exp
[—nEa(R) + 0(n)] (where Exg(R) > 0 for R < Cg). Further if B >
(g, Pow % 1, s0 that C'y is the supremum of those rates for which it is
possible to oblain vanishingly small error probability using BDD.

For channel A we shall show

C@2p,) £ Cp = Cltp,) < C(po) = C, (14)

so that 'y is strictly less than € the “maximum error free” rate using
MDD.
Finally we can estimate F»(R) by

a(SI:l —‘—‘_ﬁ—_) 4 3]:;00):

8 —'(q_l)

al= < Es(R) = 1
(2'”")513 (R) = (q——l[H(s) + sln (q—l)] p) (15)

2q In g

where s = s(R) is defined by
R=C(s)=Ing— H(s) —sln (g — 1), (15a)
and

( p)
1= pn)’
Channel B: Tor this channel it may be shown that the optimum de-
coder minimizes the Fuclidean distance dgz(x,y) between the received
veetor y and the code word x. Accordingly, we define the diserepancy
as the Euclidean distance d g , so that the optimal decoder is the minimum
discrepancy decoder (MDD). Here too the channel capacity (' is the
maximum rate below which it is possible to obtain vanishingly small
P, . An exact expression for €' is not known but it has been estimated
by upper and lower bounds by Shannon' and a method for computing
(' is outlined by Wolfowitz."" Bounded discrepancy decoding (BDD) is
defined exactly as for Channel A -with the Euclidean distance used
instead of the Hamming distance.
Let M (n,d*) be the maximum number of pomts in an n-dimensional
code with minimum distance d, and let R (n,d*) = (1/n) In M (n,d") be

alpp) = phl% 4+ (1 —p In—— (15b)
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the corresponding transmission rate. We let n and d become large while
the ratio 8 = (d/2)°/n = d°/(4n) is held fixed, and define R (8) =
lim R (n,d*) = lim R(n,48n). Let 3 = B/A*. The following estimate of

n-—»00 n-»o0

R (B) is obtained:

R.(B) = R(B) = Ru(B) (16)
where
0 Afz13
— 9243 1 A 1
K In k(1 — 28) 1l o5 1 17
s R AR I (A
(’G = 3!4:5, "')
and
B mn2+8n @)+ A—-F)In@0-45 =Ru
RL(B) - rna'x{co(4ﬁ) — RL‘.! (18)
where C, (¢) is defined by
Co(£) = In 24K, (¢) — E(E), (19)
and where X (¢) is defined by
A A
f r(w) e My = Ef e MOy, (19a)
0 0
where
r(u) = o, (19b)
and

K () [ ¢ My ] (19¢)
It is verified in Appendix A that for 0 < £/A4° < 1, there exists a
unique X (¢£) satisfying (19a). The first value of the lower bound R, is
dominant for 0.02 < § < 0.5, and the second R, for 0 < 3 < 0.02.
We make use of the estimate of R (8) (16) to establish Theorem A for
Channel B. Here we have

RL(N) = Cs = Ru(N). (20)
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For large values of A%/N,
Cp=C —In2+ e(4/N), @1)

where C is the channel capacity, the maximum “error free” rate using
MDD, and e — 0 as A*°/N — . Thus for large values of the “signal-to-
noise ratio” A*/N, (' is within a constant of C, so that the ratio C»/C' —
1 as A>/N — «. An estimate of F(R) is also obtained.

Channel C: As with Channel B, the optimal decoder is the decoder
which selects that code word x which has the smallest Euclidean distance
from the received vector y. Thus if y = (y1,%2, - -+, ¥a), the decoder
announces that code word x which minimizes (with respect to x)

n

de (XJ) = E (xk - yk)2 = Zk: xke + ; yk2 — 2 kE Tkl - (22)

k=1
. 92 . s . . . .
Since 2, v’ = nP, dg(x,y) is minimized when >z is maximized.
k k

Hence optimal decoding is equivalent to selection of that code word x
which minimizes the angle a (x,y) between x and y, where

kz TrYk
[E T yf]* '
2 k

Thus if we define the discrepancy between x and y as the angle a (x,y),
the optimal decoder is the minimum discrepancy decoder (MDD). Let
us denote by P, the error probability using MDD.

The channel capacity is ¢ = 3 In[l 4+ (P/N)], and is the maximum
rate below which it is possible to obtain vanishingly small P, . Further
for any R < C, there exists a sequence of n-dimensional codes such that
Poy = ¢ "E®FM Fstimates of E(R) are obtained in Refs. 11 and 12.

The bounded discrepancy decoder (and P.z) is defined exactly as for
Channels A and B but with the angle a (x,y) used instead of the Ham-
ming or the Euclidean distance.

In connection with BDD we consider M (n,0), the maximum number
of points in an n-dimensional code with minimum angle 6, and the
corresponding rate R(n,0) = (1/n) In M (n,0). The following bounds

hold for 8 < =/2:
0 —1
[f Sinﬂ_2 %} dqojl
0

cos a(xy) = (23)

L ()

n—1 n+ 2
*(*57)
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= M(n\) (24)

\/aT ("’ = 1) sin ¢ tan ¥

<
= v
ar (g) fﬂ (sin )" (cos ¢ — cos ¢¥)dp

where ¢ = sin™" /2 sin (6/2). The upper bound was obtained by
Rankin,” and the lower bound is obtained in Section V. If we let n
become large while 6 is held fixed and let R(8) = lim R (n,/) we can

obtain from (24)
—Insin § £ R(6) £ — In 4/2 sin (6/2). (25)

Inequalities (25) will be used to establish Theorem A for Channel C.
Here we have

C—-In2—-1lnh(1—-¢°)<Cr=C—1in2. (26)

Estimates will also be obtained for the exponent Ez(R) and compari-
sons to the estimates of F () will be made.

Channel D: For this channel we shall find the optimal decoding
scheme by proceding as follows. Define the function r (u) by

r(u) = %ln i((g)) , —A=sus +4 (2N

where p(u) is the noise probability density function which satisfies
assumptions (8), and X is a constant to be specified later. Equation (27)
is meaningful since by (8b), p(u) # 0. From (27) we see that

p(u) = p(0) exp [—M (u)] = K, exp [—Nr(u)], (28)

where K, = p(0). The n-fold joint probability density for the » inde-
pendent noise coordinates is

pal s, oy 1) = [Ip(w) = K" exp [-A T r(u)l. (29)

Let us now consider the decoder. Suppose that the received vector is
y. It is not hard to show that the probability of incorrect decoding is
minimized when the decoder selects that code word x which maximizes
p(y|x), the conditional probability density of receiving y given that x
is transmitted. This quantity is
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p“(yl = X1, Y2 Xa, o, Yn .’L"n)

p(y|x)
(30)

K," exp [—h; r(ye ~ )]

The subtraction of coordinates i = a5 in (30) is performed modulo 24
with the result reduced into the interval [—A,+ A). Thus for a given y,
the optimal decoder selects that code word x which minimizes

n

do(xy) = 27y = ). (31)

k=1
The function d,(x,y) defined on €. X @, will be defined as the dis-
crepancy function, so that the optimal decoder is the minimum dis-
crepancy decoder (MDD). Denote the resulting error probability by
P.x.
Let us remark at this point that the discrepaney has the following
properties:

(a) d,(x,y) Z 0, with equality if and only if x = y.
(b) do(xy) = du(y,X).

It is not necessarily a metric, however, since the triangle inequality
need not hold.

For any vector @ € @, , let the “region” S, (e,p) be the set of vectors
B € @, satisfying d.(e,3) < p. We say that a code has discrepancy p
if the regions S, (x,p) about all M code words x are disjoint.

We now describe another, though nonoptimum decoding technique.
Let p, be the largest number such that the code under consideration has
discrepancy p, . Hence the regions S,(x,p,) for all code words x are
disjoint. If the received vector y € S, (x,p,) for some code word x, then
it is decoded as x. If y belongs to no region, an error is announced. We
term this type of decoding bounded discrepancy decoding (BDD), and
denote the resulting error probability by P.s . Clearly Pz = Peou .

A case of special interest is that for which p (1) = K, exp (—Xu"). This
channel is similar to channel B when A is large (so that the effects of
wrapping the interval [—A,+A4] onto a circle are minimized]. In this
case r(u) = v’

Suppose we are given a function r(u) defined on [—A,+A]. This
function defines a discrepancy which is appropriate for the class of
noise densities p(u) = K, exp [—M (w)]. Now a given member of the
class could be specified by the parameter X. (K, is then determined by
setting the total mass of p(u) equal to unity.) It is convenient instead
to specify a given member of the class by the parameter N defined by
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+4 "
N = E[r(2)] =j; r(w) p (u) du =f_ r(u) Ko ™ du.  (32)

That is, given the parameter N corresponding to a A = 0, and the fune-
tion r(u), one can solve (32) for A and K,. Thus r(u) and N specify
the channel. For example if r(u) = %’, then N = E[2’] is the average
noise “power.” It is shown in Appendix H that the channel capacity,
the maximum “error free” rate using MDD is

C = C,(N) (33)

where the function C,(¢) is defined by (19) with the appropriate func-
tion r(u). It is shown in Appendix A, that C,(£) is well defined for

0<¢ g%j:‘r(u)du.

Let us now consider BDD. Two important quantities here are M (n,p)
the largest number of code points in an n-dimensional code with dis-
crepancy p, and the corresponding rate R (n,p) = (1/n) In M (n,p). We
let » and p become large while the ratio 8 = p/n is held fixed, and then
define R(8) = lim R (n,p) = lim R (n,8n). It is shown in Section VI that

n-+00

Co(218) = R(B) = Co(B), (34)
where C,(¢) is defined by (19), and 4 is defined by
n = sup r(uy + us) (35)

—A<ujug<+4 T'(U]_) + ?‘(ug) ’

The addition in (35), u; + w2, is modulo 24, with the result reduced
into the interval [—A,+A). It is shown in Appendix B that 7 is finite.

The estimate (34) of R (8) is used to establish Theorem A for channel
D. Here Cp can be estimated by

Co(2nN) = Cp = Co(N) = C. (36)

Tor the special case of the quadratic diserepancy r(u) = «’, the quan-
tity m = 2, so that the left-hand member of (36) is C (4N ). It will be
shown that in this case C'z is bounded above by C,(2N) so that

C,(4N) = Cs» = C,(2N) < C,(N) = C. (37)

Hence in this case Cjp is strictly less than C. Further, both the upper and
lower bounds of (37) will be refined for small values of the ‘signal-to-
noise” ratio A*/N.

For large values of “‘signal-to-noise ratio” 4%/N, (37) becomes



BOUNDED DISCREPANCY DECODING 1075
1, 1 4° A* 1, 14° (A”)
“ln — 2 S )<, <Z1n =2 il
3 e N T “(N) sGsghoFtely) 69
where €, 2 — 0 as A°/N — =, It will follow that C's is within a con-
stant of C, so that the ratio C5/C — 1 as A*/N — o,

III. CHANNEL A (DISCRETE CHANNEL):

3.1 Lower Bound on M (nd)

Our first task is to obtain the second upper bound on M(n,d) of
inequality (12b). We need the following lemmas:

Lemma 3.1: Let gy , g2, - - -, g be real numbers. Then

o'z (500" (39)

n
k=1

Proof: From the Schwarz inequality

Lemma 3.2: Given a code with minimum distance d, let X; = (Tu, Tia,
oo, ), €= 1,2, -+ m be any set of m points from the code. Let z be
any n-vector and r; (i = 1,2, ---, m) the Hamming distance dn(X;, z)
from x; to z. Then

(g "‘) 20— 1)m(; "‘) + 8D -ndso @

n q n

Proof: Without loss of generality assume z = 0. Arrange the m code
words in an array

X; = i, %12, """ Iin

Xm = Tmly Tm2, """y Tmn

Denote by sjx (j = 0,1, ---, ¢ — 1; k = 1, 2, ---, n) the number of
times symbol j appears in column k. Then, since the code has minimum
distance d,

(?) d=s 2, du(x,x) = i !E Fsi(m — six)

P l=rigm k=1 j=0



1076 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1965
— 1 2
= 20D Imsi — 20 2 dsik

k3 k7

Now Y 2 sj = mn so that
T G

(2) d < Z % zk‘, > Sk (41)

k

Since sox = m — 2 8;, by Lemma 3.1,
i>0

S s [E -S| -Lim-T5al @

k=1 >0

Also by Lemma 3.1,

i Z i Z > L [; 2 sl (43)

=1 =1 (g — n

Observing that Y, D sjx = E r: , and substituting (42) and (43) into

k>0 =1

(41), we obtain
()15 —siom - F
e (B = m R = g (T

On dividing (44) by ng/2(g — 1), the lemma follows.

(44)

Derivation of the Bound:

Let us assume that we have an n-dimensional code with minimum
distance d(d/2n < (g — 1)/2q) with M = M (n,d) code points. Con-
sider the “sphere” of radius £(d/2) in the space of n-vectors about each
code point where

_q—l _ 2q r
L= (1 1/1"<q—1)‘3) (45)

and 8 = d/2n. (Since ¢ = 1, these spheres are not necessarily disjoint.)
To each point of the sphere at Hamming distance r from the center
assign weight w(r) = {d/2 — r. The “mass” p of each sphere is there-

fore
a2l £y (1
w= 3 () (g—1) (5 -1). (46)
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If an n-vector z is simultaneously in the sphere about the m code

words Xy , Xs, - - -, X, , then we assign a weight w, to z given by the sum
of its weights in each sphere, ie.,
I (47)
i=1 i=
where r; = du(x;,2). If z lies in no sphere w, = 0. Consequently, we
have
mass of all n-vectors = > wo= Mnd)p.  (48)

all n-vectors
z

We will bound M by finding a boundon Y, w, . Letting s = s, = w,/n,
(47) becomes

Z " i

L= — —s=mif — s (49)
n 2n
Substituting (49) into (40) we get
m* 8 — 2miBs + & — 2 (_q_;_l) m'iB
(50)
+ 2 (r‘r;l)_ ms + 2 ({]—_ 1), n]‘ﬂ{j‘ — 2((]4_3_ ﬁ]n = 0.
q q q
Rewriting (50)
0= m[?tﬂﬂ
q
-1 -1
_mﬁ(ﬁ pl=1, 154 }) (51)
{ ¢
— g (g g—=1 _ 3;3)]
q
Since by choice of ¢ (45),
gzﬂ_gqu(Q_—_l):o,
q q
and
2u—2ﬂ£>0 when B<q_ 1,
q 2q
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(51) can be satisfied only when

8 A
< = K(B). 52
ST mya—n 1@ 52
Thus
| w, = E s-n £ K(B)ng" (53)
all n-vectors
Hence from (53), (48) and (46) we have
K n
M(ﬂ,ﬂ)-) é [tBn] n (B)nq ] (54)
Zﬂ (T) (tn — 1) (g — D"
where
_g—1 ( 208 _ 8
it ==——1(1— 1 - =), K = ’
B i—1 ® = T =By =D

and 8 < (g — 1)/2¢.

3.2 Asymptotic Estimates of M (n,d) (13)

Equation (13a) and the first upper bound of (13b) follow directly
from (12a) and the first upper bound of (12b) by writing R (n,28n) =
(1/n) In M (n,28n) and letting n tend to infinity. The lower bound on
R(B) of (13b) follows from the lower bound on M (n,d) of (12b) and
the fact that (Ref. 8, Appendix A)

En

lim L 1n 3 (“) =17 =H® —th g—1. (5

nsow 1 r=0

The second upper bound of (13b) follows from (54) and (55) and the
fact that

[tBn] [tAn]—1
> (n) (tii - ﬂ') @-1"2z 2 (n) (@—1D%  (56)
=0 r 2 r=0 i

In the important special case of binary codes (¢ = 2), the second
upper bound of (13b) is always sharper than the first upper bound. Thus
for ¢ = 2 we have for g < 1:

1—H@B8) =RB)=1-—HGE — /1= 4p). (57)

These upper and lower bounds converge at 8 = } yielding R(8) = 0,
B = % Inequality (57), is plotted in Fig. 2.
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0.7
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0.5
_-~HAMMING BOUND
0.4
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\"-
"-\.‘
0 | 1 [
0 [eB] 0.2 03 0.4 0.5

Fig. 2 (Channel A) — Upper and lower bounds on R(8) for the binary sym-
metrie channel (57). The dotted lines are the best bounds given in Ref. 8.

3.3 Bounded Discrepancy Decoding Channel Capacity

When Shannon’s Fundamental Coding Theorem is applied to channel
A, one finds that for every R less than the channel capacity ¢ = 1 —
H(p,) — poIn (g — 1), there exists a sequence cf codes (one for each n)
with transmission rate R such that the error probability using MDD,

Py 2 0. Further R > C,P.x " 1. Thus the channel eapacity (' is the
supremum of those rates I for which it is possible (asymptotically in n)
to obtain vanishingly small error probability using (optimal) MDD. We
now ask what is the largest rate for which it is possible to obtain asymp-
totically vanishingly small error probability using BDD?

Let us suppose that for every n, an n-dimensional code is available
with d/2n = 8. Using BDD we have error probability

P.s = Pr [number of errors = d/2 = #nl. (58)

Since the errors in each digit oceur independently with probability p, ,
we have by the weak law of large numbers that lim P,z = 0 or 1 according

n->oo

as g > poorB < po.
If we define the bounded discrepancy decoding channel capacity, de-
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noted by Cp, as the supremum of the rates for which it is possible
(asymptotically in n) to obtain vanishingly small P.p, we have from
the foregoing that Cs = R(p,). Making use of the second upper bound
on R (8) of (13b) and the fact that ¢ > 1 for 8 > 0, we have for p, > 0

B=R(pu) §1'—H(t?39)—fpolﬂ (q_l)=c(tpu) <C (59)

Thus C5 is bounded away from C.
In the binary ease (¢ = 2), we make use of (13b) or (57) to obtain

1—H@p) =Cp=1—HG - 3V1 — 4p,). (60)
Inequality (60) is plotted in Fig. 1.

3.4 Exponential Behavior of P,s

For a fixed R < C», denote by P,s" the smallest attainable value of

P.» . It was shown above that P.;* % 0. We shall now show that P.z" =
g mERB (M where By > 0 and obtain estimates of Eg(R).

Given an » and R, denote by 8, (R) the largest value of 8 attainable
for an n-dimensional code with transmission rate B. With R held fixed,
let 8(R) = lim B.(R). Then B(R) satisfies

n—>w

R.(B(R)) = R = Ruv(B(R)), (61)
where R.(8) and R, (8) are the upper and lower bounds of (13b). If we
define the parameter s = s() by

R=Ing— H(s) —sln (g — 1), (62)
we obtain from (61) and (13b)

q — I[H(S) +sln (g — 1):|
2¢q In g

s
s(‘ 50 — 1))'

Thus for any R there exists a code (for n sufficiently large) with
minimum distance d = B(R)-2n. With R fixed, this code minimizes
P.s . Thus from (58)

P.z* = Pr [no. of errors = ng(R)]

- > (Mwa-m (64

r=[8(Rk)n]

< B8(R) < (63)

(] ]
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Making use of the fact that (Ref. 8, Appendix A)

lim — ?—llln > (?) pr (1 — p)™" = alppy), (65)
n-w r=pn

where a(p,p,) = pIn (p/po) + (1 — p) In [(1 — p)/(1 — p,)], we have

from (64):

Es(R) = — lim (1/n) P = a(B(R),p.). (66)
Inequality (63) provides bounds on B(R) and hence an estimate of
Ez(R). Let us observe that for R = 0 (s = (¢ — 1)/g) the upper and
lower bounds on B(R) (63) converge yielding 3(R) = (¢ — 1)/2q so
that

Ea(0) = a (9 % 1 ,p,,). (67)

Further since a(p,, po) = 0, Ez(R) vanishes when B = R(p,) = C5.

In the binary case, the second upper bound on 8(R) (63) is always
sharper than the first, so that (66) yields

a(:%—, po) é EH(R) = C!(S(] - "-“)r ?’a)' (68)

Tnequality (G8) is plotted in Tigs. 3(a) and 3(b) for p, = 5 X 10°°
and p, = 10~ respectively. It can be seen from Fig. 3 (b) that for certain
values of R the upper bound on E,(R) is greater than the lower bound
on E(R) (the best exponent for MDD). Thus although E = E;
(since P,y < P.s), there is nothing to indicate that the strict inequality
always holds.

IV. CHANNEL B (GAUSSIAN CHANNEL WITH AMPLITUDE CONSTRAINT)

Our first task is to establish the bounds on R(8) given in Section II.
4.1 Lower Bound on E(8)

4.1.1 Bound for Large

It would not violate the code constraints if the coordinates of the
code words were further restricted to be =A. In this case the code is a
binary code and the Hamming distance dy(x,y) between two vectors
x and y is related to the Euclidean distance dg(x,y) by
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Fig. 3(a) (Channel A) — Upper and lower bounds on the exponent Ez(R) for
the case ¢ = 2 with p, = 0.05 (solid lines). Upper and lower bounds on E(R) are
in dotted lines.

Fig. 3(b) (Channel A) — Upper and lower bounds on the exponent Fz(R)
for the case ¢ = 2 with p, = 107 (solid lines), Upper and lower hounds on E(R)
are in dotted lines.

du(xy) = di’ (x,y)/4A". (69)

Thus if a code (with coordinates restricted to ==A) has minimum
Hamming distance dy = d/44°, the minimum Euclidean distance is d.
Thus 3 2 g/A° = d/4A’n = du/n.

Now let Rz (n,dx) be the maximum rate for which a binary n-dimen-
sional code with minimum Hamming distance dy exists. We let n, and
dxz become large while the ratio « = dg/n is held fixed, and define
Rs(a) = lim Rs(n,an). In the light of the above R(8) = Rs(3). The
Gilbert bound (13b) (Ref. 8, p. 52) tells us that

Re(@) 22+ A+ (1 —4)In(1— ) for0=
Thus we have

R@zm2+pfmf+ Q-1 —3) =R,. (70)

™
IIA
b3l

4.1.2 Bound for Small 8

Consider a maximum size n-dimensional code with minimum distance
d, and with M = M (n,d") code points Xy, - -, Xy . About each code
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point x, construet an open hypersphere in n-space of radius d. Let V.
denote the volume of the intersection of this sphere with the n-cube
[—A,+A]". Now the union of these 3/ spheres must cover the n-cube:
for if x, € [—A,+A]" is not contained in one of the spheres, d (x,, x,) =
d for all », so that x, may be added to the code destroying maximality.
Thus

ME

V.= (24)" (71)

®
Il
-

Now let S be the n-dimensional hypersphere of radius d with center at
the origin, and V,(d) the volume of S N [—A,+A]". It is not hard to
show that

V.2 Vald), w=12 M.

Consequently from (71)

M
MV, (d) =2 2 V,z (24)",
=1

so that
M (nd") z [(24)"/Va(d)]. (72)
Applying the result of Appendix C to (72) yields
R(B) = lim (1/n) In M (ndBn) = C,(48). (73)

It is shown in Appendix D that for small 8
Ru(8) = R, (8) = 3 In (47/2me8) + €(8), (74)

where ¢(8) = 0as 8 — 0.
R.(B) is plotted in Figs. 4(a) and 4(h).

42 Upper Bound on R (8)
The approach used in this derivation is similar to Plotkin’s technique

for binary codes. We begin by obtaining the following:
Lemma 4.1: If n < d*/24* (3 = d°/44™n > ),

d 28

= . 5
— 24 925 —1 (75)

2
nd?) <
Mnd) = 7

Proof: Consider the maximum size n-dimensional code with minimum
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distance d with M = M (n,d") code points X; ,X:, -+, Xar. Let X, =
(1,25 -+, Twn). Then
M T
(2 )d2 = ¥ dx,x) =2 (@ — 2w’
lsp<vr =M k=1 u<l»

n 2
=3 {M > — (Z m) }
k=1 v v
n M
<MY S .
k=1 v=1

: 2 2
Since x4 < A7,

2
MM — 1) é _ (M) d = M'nA®,
b) 2
from which
M(nd)y(d* — 24°0) = &,
and if n < d*/24°,
2 d’
4 <
Mnd) = Y el (76)

completing the proof.
Lemma 4.2: Let a be an integer not less than two. Then
Mnd) € aMn — 1,d° — (24/a)].
Proaf: Again consider the maximum size code with M (n,d) points.

Partition the code into « classes S;, 8., -+, S., where S, consists of
those code points X, = (¥, , ¥, -+, 2a) such that

—A4+ (1—1) 24/a) Ean < —A +1 (24/a), 1=1,2,---, a,

In other words we partition the interval [—A,+ A] into « subintervals
of length 24 /e, and assign x, to class S; according as its first coordinate
2, is in the 7th subinterval. (To be precise we must close the last sub-
interval (i = «) at both ends to make the « subintervals cover
[—4,+4].)

Now delete the first coordinate from each point in the code. Each
class S; is now a code of length n — 1 with minimum distance not less

than
P
o
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20

(a)

Fig. 4(1) (Channel B) — Upper and lower bounds on R(B) vspB (
Fig. 4(b) (Channel B) — Upper and lower hounds on R(8) vs g (!

A

0.5

0.20

1085

sinee the first coordinates of two code words in class S; do not differ by

more than 24 /a.

Further some class S, has at least M (r,d*)/a points, so that
Min — 1,d — (24/a) = (1/a) M (n,d"),

and the lemma follows.
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Corollary: Let a < (da/2A)" be an integer. Then
M(nd®) < " Min — a,d* — a(24/a)’]. (77)

Proof: Inequality (77) follows by repeated applieation of Lemma 4.2.
Since by hypothesis d® — a(24/a)’ > 0, the expression M[n — a, d* —
a (24 /)" is meaningful.

Derivation of the Bound

Let n, be the greatest integer satisfying

1 [ 24 2}
Mo < 27“42 [d (n nu) (?) y (78)
where & = 2. Rearranging (78) we obtain
o —d2 — 2
24,  [285 — 2
R R = L 79)

Let us also assume as an additional constraint on « that o' > 1/5,
so that [(28a° — 2)/(a® — 2)] > 0, and for sufficiently large n, n, = 1.
In fact for large n we may approximate n, by

Mo =n [2"‘—3—‘3] : (80)

o — 2

Now by choice of n, (78),0 < 24°1, < [d* — (n — n,) (24/a)’]. Hence
the Corollary to Lemma 4.2 applies with a = n — n, yielding

M(nd') £ " " Mln,,d" — (n — n,)(24/a")]. (81)
Alsoby (78), we may apply Lemma 4.1 to get

M (n,, ,db— (n — n,) (%—)2)
d? — (n — no) (%)2 (82)
&= (n— ) (%)2 — 24, = QG

Thus from (81) and (82) we have
Mnd) £ «" ™ Q(a,d,n). (83)

IA

Taking logarithms yields:
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R(nd) £ ha I:l — ;E:I + }L In Q(a,d,n). (84)

We now let n and d become large while holding the ratio § = d*/44™n
fixed. It is easy to show that

L ln Qe 24v/Fan) 2,0, (85)

so that using (80) we obtain

R® swa1- 22— e[ T -2, 60

a? — 2

where @ is an arbitrary integer satisfying « = 2, and o' > 1/8. Using
the choice of « indicated in Appendix E we obtain R (8) < Ry (8) where

2(In 2) (1 — 23), 1221
RU()G) = !‘72 . 1 n ,1
P (In k) (1 — 23) = > 3= 7 (87)
(IC = 3: 4: )

Ry (8) is plotted in Figs. 4(a) and 4(b). For small values of B, a
1/4/f so we obtain

Ru(®) = —31In (B) + (@), (88)
where ¢(3) — 0as 8 — 0.

4.3 Bounded Discrepancy Decoding Channel Capacity

Suppose that for every n, an n-dimensional code is available with
d*/4n = B. Using BDD we have error probability

P = Pr(d(xy) = d/2] = Pr [d*(xy) = Bnl. (89)

Since d*(x,y) = Z zi', where the z, are the (normally distributed)
=t

noise components we have

P = Pr [Z £in = ,B:|. (90)
k=1

By the weak law of large numbers 2 z°/n tends in probability to

N(= E(z%)). Thus lim P,z = 0 or 1 according as 8 > N or 8 < N.

n-sw

We define the bounded discrepancy decoding channel capacity de-
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noted by C's as the supremum of the rates for which it is possible (asymp-
totically in n) to obtain vanishingly small error probability using BDD.
From the foregoing we see that s = R(N). Making use of the bounds
on R(3) established above we have

R.(N) £ Cs = Ru(N), (91)

where R, and Ry are defined by (17) and (18) respectively. These
bounds on C are plotted vs the ‘‘signal-to-noise ratio” A®/N in Fig. 5.
For large values of the ratio A*/N (91) becomes [using (74) and

(88)]

—_

1 1 A* Al A? A?
— — — 4 1< < - — + _
2 In 2we N “ (N) =0 = 2 In N € N (92)

where ¢ , & — 0 as A*/N — .

The channel capacity is the “maximum error free rate” using MDD
(clearly € = Cp). An exact expression for €' is not known, however for
large values of the ratio A°/N Shannon' has shown that

1, 24 A*

where ¢ — 0 as A*/N — o . Combining the left inequality of (92) with
(93) we obtain

C—In2+ (4*/N) £ Cp = C (94)

| 2 5 10 20 50 100 200 500 {000

Tig. 5 (Channel B) — Upper and lower bounds on Cs vs A?/N.
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where ¢ — 0 as A*/N — =. Hence for large signal-to-noise ratio 4°/N,
('p differs from €' by no more than a constant. Alternately C/C — 1
as A*/N — =,

4.4 Exponential Behavior of P.p

For a fixed R < Cy, denote by P.;" the smallest attainable value of
P.s , the error probability using BDD. Tt was shown above that P.»"
0. In this section we shall show that P,," = exp [—nEz(R) + o(n)] and
obtain estimates of E5(R).

Given an n and R, denote by g.(R) the largest value of 8 attainable
for a code of length n and with transmission rate R. With R held fixed,
let 8(R) = lim 8. (R). We can estimate 3(R) in terms of R by

R.(B(R)) = R = Rv(B(R)), (95)

where R, and Ry are given (17) and (18) respectively. Inequalities
(95) result in upper and lower bounds on 8(R). Thus for any R there
exists a code (for n sufficiently large) with minimum ‘distance corre-
sponding to B(R) (e, d = 2 v/Bn). With R fixed, this code mini-
mizes P.s. If code word x is transmitted and y is received, the error
probability is [from (89)]

Ps" = Prld(xy) = 8(R)n]. (96)

This quantity depends only on the noise and not on x. It is shown in
Appendix F that

P.p" = exp [—nEyz(R) + o(n)], (97a)

where

(97b)

Ea(R) = ﬂ_z(f,) A~ T A(R) = BB 1w eﬂ;ﬁ) ,

where #(R) = B(R)/A*. The upper and lower bounds on g(R) (95)
yield corresponding bounds on E(R). These bounds are plotted in Fig. 6
for the case A*/N = 10.

V. CHANNEL C (GAUSSIAN CHANNEL WITH ENERGY CONSTRAINT)

5.1 Lower Bound on M (n,8)
The following bound is similar, though slightly sharper, than the
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Fig. 6 (Channel B) — Upper and lower bounds on the error exponent Eg(R)
vs R (for A?/N = 10).

lower bound on M (n,0) obtained by Shannon." The derivation used
here is based on a similar argument in Blachman.™
Let

g2
n-a" n—1

S.(r) = m-r
2

be the surface area of a sphere in Euclidean n-space of radius r, and
let A,(r,0) be the area of the n-dimensional spherical cap cut from a
sphere of radius r about the origin by a right circular cone of half
angle 6 with apex at the origin and axis the semi-infinite line connect-
ing the origin and the point (r,0,0, - - -). It is not hard to show that

(n — 1)g»0r2 j‘" . (n—2)
A (rp) = _—_r(ﬂ n 1) r ), sin @ de.
2

Derivation of the Bound

For a given n and 6 consider the maximum size n-dimensional code
with minimum angle # between code points. This code has M (n,0)
code words. About each code point x, construct the spherical cap cut
from the surface of the sphere of radius 4/nP about the origin by the
right circular cone with half angle # and axis the semi-infinite line
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joining the origin and x. Thus the cap is the set of points y on the surface
of the sphere such that the angle a(x,y) < 6. Now the set of all such
caps (about each of the M code points) must cover the entire surface
of the sphere. This is so since if x, is a point on the surface of the sphere,
and X, is not on any cap then a(x,, x) = 8 for all code words x, so that
x, may be added to the code destroying the maximality. Since the area
of each of the M caps is A, (v/nP,0), we have

M-A,(A/nP,8) = S.(\/nP)

or

g (n + 1)

/ S (v/nP) " =

Mod 2 T T m-n Y (”’ + 2)
2

[
[f Sin(n—Z) ° dlp:|_l
0

This result taken together with Rankin’s upper bound"” yields the
following estimate of M (n,0):

. ir(n-l-l)
n — 1\/‘”1‘(”—2_2)

I: fn ' sin" o d"r < M(nf) (99)

(98)

/AT (“ =
1 )
2I‘(§) j; (sin ¢) " *(cos ¢ — cos B)de

where ¢ = sin™' /2 sin (8/2).

1) sin ¢ tan ¢

52 Asymplotic Estimates of M (n,8)

For a given n and 6, M (n,8) is the number of points in a maximum
size n-dimensional code with minimum angle between code points 6.
Let the corresponding transmission rate be R (n,0) = (1/n) In M (n,8).
Now with @ held fixed, let n become large and let R(6) = lim R (n,8).

n-—>%
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We shall obtain upper and lower bounds on R (6) from the behavior of
(99) for large n.
Taking logarithms of both sides of inequality (99) yields

n+ 1
1 n _o1, 2 1 f“.H P
'f_alnn—l\/r-i—-ﬁlnr -n+2)_1_1]“ \ sin" " ¢ de
2

+1
. I‘(” ) (100)
é R(n’ﬂ) é %In;w.ﬂ._t—%lll __2_

2 n
(3)
1 ¥
- In f sin"* o (cos ¢ — cos ¥)dy,
0

where ¢ = sin”' 4/2 sin (8/2).
It is shown in Appendix G that

I

o
lim ! In f sin" ¢ dp = In sin 6, (101a)
0

n—=o 1

and that

In sin ¢, (101b)

¥
lim 1 In f sin"* e (eos ¢ — cosy)de
0

n-»0 M
from which we obtain (by lettingn — =),
—Insin 8 £ R(8) £ — In /2 sin (6/2). (101)
The bounds on R(6#) are plotted in Fig. 7.

5.3 Bounded Discrepancy Decoding Channel Capacity

We now assume that a code with minimum angle 6 is employed and
a bounded discrepancy decoder is used. We may assume, without
loss of generality, that the transmitted word is x = (+/aP)0, -+, 0).
The received word y = (v/nP + 21, 22, -+, z) will be correctly
decoded if and only if a(x,y) < 8/2. Since

/2P (v/nP + 2)
\/ﬁTJ( (v/nP + z)° + ; ZkE)h

cos a(xy) =

we have
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2.5

20

0.5

o] | | |
o] 20 40 60 8o 90
# IN DEGREES

Fig. 7 (Channel C) — Upper and lower bounds on R(8) vs 8 (101).

‘\/;LT)‘l‘Zl \/T’-l-(Z]/\/E)

N k>1

Hence the probability of error is
5 _
P = Tr I:cot a = cot f—)] = Pr M\@ < cot
1 2
(tz+)
n>1

- 2
Now assume that for each n we use a code with minimum angle 6.
We shall show that P.; ™ 0 or 1 according as cot (6/2) < +/P/N
or cot (6/2) > +/P/N: Recalling that z; (k =1, --- , n) are independ-
ent normally distributed random variables with mean zero and variance
N we obtain

(102)

RS

VP + z/v/n LBrob, /P,

and

lz 5% Prob. Ar

N i>1
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Thus the ratio

] —— .

Gy Vs
N >

If cot (68/2) < v/P/N, then /P/N — cot (8/2) = ¢ > 0 so that

from (102) and (103)

Py(e) = Pr ﬁ—%)e 2,0
(5

n k>1

Similarly if cot (6/2) > v/P/N, Ps(e) = 1.

Hence we can obtain vanishingly small error probability by choosing
6 > 2 are cot A/P/N or 8 > 2arcsin (1 + P/N)™’. The bounded dis-
crepancy decoding channel capacity Cs is defined as the supremum of
rates for which it is possible to achieve P,z = 0, or equivalently the
largest rate for which § > 2 arc sin [1 + (P/N)T % ie., Cs = R{2 arc
sin [L + (P/N)]™Y. Since the channel capacity is C = $In[1 + (P/N)],
we may write [I + (P/N)F = ¢ ° hence Cy = R(2 arc sin ¢ °).
We estimate C'p from inequality (101):

—Insin 2sin”' e ) = Cp £ —In v2e C. (104)

Using sin 24 = 2 sin A cos 4, the left member of (104) becomes —In

2¢ cos sin ¢ °. Since cos sin” ¢ ¢ = (1 — ¢ )}, inequality (104)
becomes

C—l2—-—3ln(d—-¢*)=Cp=C—-§n2 (105)

Inequality (105) is plotted in Figs. 8(a) and 8(b). We see that C» = 0
forC £3ln2o0r P/N £1,and C5/C — 1 as P/N — .

54 Exponential Behavior of P.s

In this section we show that for a fixed rate R < Cjp, the smallest
attainable probability of error P* = exp [—nEs(R) + o(n)], and
obtain estimates of Ex(R). Given an n and R, denote by 6,(R) the
largest minimum angle attainable for an n-dimensional code with trans-
mission rate B. With R held fixed, let 8 (R) = lim 8, (). From inequality

(101) "
—Insin 6(R) £ R £ —In /2 sin [0(R)/2],

from which
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P/N

CglC

0.346 0.50 ] 2 5 10 20 50 100

l Fig. 8(a) (Channel C) — Upper and lower bounds on Cg vs €' and P/N (solid
ines).
Fig. 8(b) (Channel C) — Upper and lower bounds on Cg/C vs C.

Lsin'e™® 2 6(R)/2 £ sin”' (¢ "/4/2). (106)

Thus for every R there exists a code (for n sufficiently large) with
minimum angle #(R), where 6(R) is estimated by (106). For such a
code P,z is minimized. If code word x is transmitted and y received,
the error probability is

P." = Prla(xy) > 0(R)/2]. (107)

This quantity depends only on the noise (and not on x). Shannon
[Ref. 11, equation (4)] has obtained an expression for the asymptotic
behavior of (107), which shows that

P.s* = exp [—nEsz(R) + o(n)] (108)
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where
P 1. /P 0 .0
Ex(R) =N éVﬁGcosi InGsm§
8 = 0(R) (109)

(P s 4 i/ aa?
G—§(4/Ncos§+ N0052+4).

The bounds on 6(R) in (106) yield corresponding bounds on Es(R).
These bounds are plotted in Fig. 9.

VI. CHANNEL D (CONTINUO‘US CHANNEL WITH AMPLITUDE CONSTRAINT):

As in the previous sections we begin by obtaining bounds on M (n,p),
the maximum number of points in an n-dimensional code with dis-
crepancy p.

AY
0B \
\

\ \

\ Y

\ \

\ N

\
\
0.6 [~ \‘ \
\ \
Eg(R) N \
\
B N \
\\ \\
N \
0.4 M \
\\ \\
\\ \
C-linz2 ~ N
-in(i-e-2¢)

0.2

Fig. 9 (Channel C) — Upper and lower bounds on the exponent Eg(R) vs R
for P/N = 4. Upper and lower bounds on E(R) are in dotted lines.
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6.1 Upper Bound on R(8)

We have defined S, (x,p) as the region consisting of those vectors
a € @, for which d,(x,a) < p. Applying the Euclidean measure to
@, in the obvious way, we set V,(x,p) equal to the volume of S, (x,p).
Now consider a maximum size n-dimensional code with diserepancy p
consisting of M = M (n,p) points X;, X2, -+, Xy . Since the regions
S, (x;, p) about each of the M code points x; are disjoint,

Z V.(x:, p) < volume of €, = (24)". (110)
Since V. (x:, p) is independent of x; (due to the homogeneity of €,

brought about by wrapping the interval onto the circumference of a
cirele) we set V,(x;, p) = Va(p), and (110) yields

M(np) = (24)"/V.(p), ‘ (111)
thus
R(nyp) = - ln M(np) = (T?A()) . (112)
If we set p = Bn and let n — o while 8 is held fixed we obtain
R(@B) = llm - ln (24) = Ru(8). (113)
Vﬂ(Pn)

It is shown in Appendix C that Ry (8) = C,(8) which establishes our
upper bound.

6.2 Lower Bound on R(B3)

Again let us consider a maximum size code with discrepancy p and
M = M (n,p) code words. About each of the code words x; (7 = 1, 2,
, M) consider the region S, (x;, 29p) where

r(w + u)
= su — 114
" —AZ up,us S+4 r(ul) + T(uz) ( )
M
We claim that the union of these regions | S.(X:, 27p) contains €, .
=1

First let us observe that by definition of 7,
r(u 4 w) < alr(n) + r ()],
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so that for x,y,z € @€, ,

d.(xy) = ;er(ﬂ':k Zoy) S n[; r(te — z) + )k: r(ze — yk)]
= 'Tda(x’z) + ﬂdo(Z,Y)- (115)

Now suppose there existed a vector x, € €, such that
M

X, ﬁt. -l.'.'IS" (xl' H 21"’)- Then

do (X, , X:) 2 29p (116)

for each code word x; (# = 1,2, ---, M). Let @« € S,.(x;, p) for some
code word x; so that d,(e,x;) < p, hence from (115) and (116) we have

do (X0 @) = (1/9)do(X, , Xi)
— do(xi, @) > (1/7)(2n0) — p = p.

We conclude from (117) that e ¢ S.(%,, p), so that S,(x,, p) N
8. (X;, p) is empty for all code words x;, and X, may be added to the
code destroying the maximality. Thus we conclude that

(117)

M
c. C QIS,. (x;, 2mp). (118)
As in the previous section, let V., (29p) be the volume of S, (x;, 29p).
Trom (118) we have
volume of €, = (24)" £ M-V, (25p),

or
(ZA) n

M = .
Again as in the previous section,
.1 (24)"
> Iln 22 =
R@B) = hmn]n V. @nfn) R.(8). (120)

It is shown in Appendix C that R.(8) = C,(298), establishing our
lower bound.

6.3 Bounded Discrepancy Decoding Channel Capacity

Suppose that for every n, an n-dimensional code is available with
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discrepancy p = @n (B fixed). Using bounded discrepancy decoding we
have error probability

Py = Prld.(xy) = p| = Prld.(xy) = Bnl, (121)

where x is the transmitted word and y is the received vector. Since

n

d.(x,y) = 2, r(z), where the z are the statistically independent

k=1
noise components, we have

P,z = Pr [Z; r(z)/n > ﬁ]. (122)

k=
n

By the weak law of large numbers, Y. r(z:)/n tends in probability to

k=1

N (= E(r(z))). Thus lim P, = O or 1 accordingas 8 < Norg3 > N.

We have defined the bounded discrepancy decoding channel capacity
denoted by Cj as the supremum of the rates for which it is possible
(asymptotically in n) to obtain vanishingly small error probability
using bounded discrepancy decoding. From the foregoing we see that
Cs = R(N). Making use of the bounds on R () established above we
have

C,(29N) = Cp = C.(N) = C, (123)

where €' is the channel capacity (the supremum of those rates for which
it. is possible (asymptotically in n) to obtain vanishing small error
probability using (optimum) minimum discrepancy decoding). The
error exponent Fz(R) could be estimated exactly as for channel B in
Section IV.

Thus it is an open question whether C'p is strictly less than the channel
capacity. In the special case of the quadratic discrepancy where
r(u) = o', ie., the case where p(u) = K, exp (—\u*), it is possible
to show that C'; < C'. This is done in the following section.

6.4 The Quadratic Discrepancy

We now consider the case of the quadratic discrepancy where
r(u) = u°, which corresponds to a noise probability density function
p) = K,exp (—Mu*), and a discrepancy function

d.(xy) = .;; (2 - ﬂk)z-

Note that the subtraction x, — w; is performed modulo 24 with the
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difference reduced into the interval [—A,A], but the squaring and
summing operations are ordinary arithmetic.
Let us first observe that

r(u 4 u) o (n + w)® | 4
r(u) + r(uz) = w4 ud (uﬁ + u,”_)'
‘ 2

Since for any two numbers u” and ", the algebraic mean () + u,")/2
is not less than the geometric mean wus ,

AT DM I )

r(u) + r(us) — a

Thus, since this value is achieved when vy = u £ A/2, n = 2. The
lower bound on R (8) (34) is therefore

R(B) z C.(48). (124)
6.4.1 Upper Bound on R(B)

Now we establish a new upper bound on R (8) for this special case.
First we need the following

Lemma: Let x, = (@, T2y ++ 5 Tm)y v = 1, 2, +++, m, be any m
points selected from a code with discrepancy p = fn. Let y be any n-vector
and letd, = do(%,,y),»=1,2, --- , m. Then

2. d, = 2(m — 1)p.
=1
Proof: First we show that for 1 £ p < » < m that
dy (X, , X,) Z 4p. (125)
To show this consider the vector z € @, :

z=($!1'i‘x,ul xﬂ"i'Inz xm'i-xnn
2 ’ 2 ’ ! 2 :

The addition z,x + . is, as always, modulo 24. Clearly

dy(%,,2) = do(x,,2) = kZ::l @ = 2)® _ do(%o, %) . (126)

4 4

Since the regions S.(x,, p) and S.(x., p) are disjoint, d,(x,, 2),
d,(x,,z) = p. Thus (126) yields do(x,, x,) = 4p. We now continue
with the proof of the lemma.
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Without loss of generality take y = 0 so that d, = ) 2’ . Since
k=1
do(XIf}xll) ; 4P (.LL < V).,

(ZL) 4p = 1<;< d"(xﬂaxr) = Z Z (x.uk - z"*‘)2

k=1 p<v

Z Z (T — @u)® (127)

ko p<v
=m2;x,f—¥(z:m)2§m2d,.

The lemma follows on dividing through by m. We now obtain the
upper bound on R (3)}.

Consider again a maximum size n-dimensional code with discrepancy
p and with M = M (n,p) code words X;, Xs, -+, Xy . Consider the
regions S, (%, , 2p) about each of the code wordsx, (» = 1,2, ... , M).
These regions are not necessarily disjoint. At each point y in S, (x,, 2p)
define a density o (d):

IIA

o(d) = 2p — d, (128)

where d is the discrepaney d, (x, , y). The mass of each region is
w=[ o@av. (129)
d<2p

If a vector y € @, belongs simultaneously to the regions about the m
code points X; , X2, - - -, X, , We assign to y a density equal to the sum
of the densities contributed by each region; i.e.,

o(d,) = 2mp — i d,, (130)

v=l

Ms

Oy =

Il
-

¥

where d, = d(x,,y). Thus we have
mass of @, = f aydV = M(n,p) . (131)
Cn

We will bound M (n,p) by finding an upper bound on the mass of €, .
By applying the above lemma to (130) we obtain
gy Z 2mp — 2(m — 1)p = 2p. (132)
Thus
mass of €, £ (2p) (volume of €,) = 2p(24)". (133)
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Applying (133) to (131) yields

M(n,p) £

2024)" (134)
—

Now,
w=[ Go—aavz f AV = V@2 — 1) (135)
d<2p d<2p—1

where V,(2p — 1) is the volume of the region S,(x,2p — 1) (which
is independent of x). Applying (135) to (134) yields

26n(24) "
M(’J’L,ﬁn) = Wl—) (136)
where p = fn. Applying the result of Appendix C to (136) yields
R({@) = lim (1/n) In M (n,8n) = C,(28). (137)

n-—+o

This is our upper bound.

6.4.2 Refinements of Bounds for Large 8/A*

The upper and lower bounds on R (8) obtained above are plotted
vs. B/A* in Fig. 10. It can be seen that these bounds diverge for large

R(B)

[s] 0.05 /12 0.0 0i5 /6 0.20
B/A?

Fia. 10 (Channel D) — Upper and lower bounds on E(8) vs 8/A? for quadratic
discrepancy.
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values of g/A*. We will now obtain new upper and lower bounds on
R(8) which in fact converge at 3/A* = %
6.4.2.1 Upper Bound

A new upper bound on R (3) will be obtained which will tell us that
R(8) = 0,8/A* > L. First we need the following:

Lemma: Let ay, as, -++, @, be a sel of real numbers such that
—A=a; =4+A4,7=1,2,---,m. Then
> (ai ~ a;)’ £ A'm'/4
1=i<i=m

Note that, as usual, the difference (a; - a;) is performed modulo 24
with the result reduced into the interval [—A,+A], and the squaring
and summing operations are ordinary arithmetic.

Proof: Let us wrap the interval [—A,+A] onto the circumference
of a circle of radius A/x (so that the circumference is 24 ). Denote by

dn(a’f ) ai) = l(a'i - ai)l)

the circumferential distance between a; and a; , and by de(a;, a;) the
Euclidean distance between a, and a; (see Fig. 11). It is easy to see that

N o A 1d, (a.-, a,-)
dela:, a) = Z;SInEW. (138)
v
ap=(ui,vi)
>
A,
Al
defane) | e @)
+dc(apap)--1
Al
=(upv)

Tig. 11 — Diagram illustrating proof of lemma.
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Since, for 0 = 2 < 7/2,sin ¢ = (2/7)z, (138) yields
dg(a;, a;) = (2/7) de(ai, a;). (139)

Now taking the origin to be the center of the circle, we may assign
Cartesian coordinates (u;, v;) to the point a;, where

u; + v} = A7 (140)
Thus from (139) we have

2
3 (a = a)? = Y di ey, a) £ Y di’(aiya).  (141)
i<y 1<J 4 <]

Since dg’(a;, a;) = (ui — u;)* + (v — v;)*, we have

Z (a; = a,-) = — Z (ui — uj)z + (v — 7)5)2}

1<y 1<j

=B m ) - (T W - (o)

<[

4

(142)

\ E]

bhu:-

Hence the lemma.

Derivation of the Bound

Suppose we have a maximum size code with discrepancy p and
M = M(n,p) code words X, = (T, T2, ~* 3 Tum), » = 1,2, -+, M.
We have shown [inequality (125)] that d(z,, ,) = 4p (u # »). Thus,
making use of the above lemma, we have

(1;4’) 4P é Z d (xy, x,u) E E (x#k = wv.’r)z
1ZpvEM =1 p<v

SATM _ AMn

k=1 4 4 '

A

so that for 8 = p/n > A°/8,

M = M(ﬂ,p) =

8 — An A? (143)
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Hence,
1 1 B8
= = y < =
R(n,p) n In ﬂ'[(n,p) =5 In 1 (144)
-3
Letting n — = with 8 held fixed we obtain for g8/4* > },
R(8) = lim R(n,8n) = 0. (145)

n—>o

In a manner similar to that used in Section IV we can use (143)
to obtain the following bound on R (8) valid for 8/A* < }:

R(@B) =9 (In3)[1 — (88/4%)]. (146)

As is evident from Fig. 12, inequality (146) does not yield much im-
provement in our upper bound, hence the derivation is omitted.

6.4.2.2 Lower Bound

A new lower bound on R(8) will now be obtained. This bound is
always sharper than the previously obtained bound R(8) = C,(4N),
however the best improvement is for large B/A%

Suppose that we require that x; be one of the following m points on
the interval [—A4,+A], where m is an even integer:

Col28)

R(B) Cs(“ﬁ)
P
g ,CA(“.B)
05| ’
Ca(aB)
\9ln 3 (1-84/A2)
N\
0 e
0 0.05 0.10 1/8 0.15 0.20

B/A?

Fig. 12 (Channel D) — Refined upper and lower bounds on R(8) vs B/A? for
quadratic discrepancy.
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0, :i:%, :I:Z(%),:lﬁ (%A), ---,:I:(m > 2) (%),A. (147)

Such a code certainly satisfies the requirements set forth in Section II.
In the exactly the same manner that the previously derived lower
bound R (8) = C,(43) was obtained, we can show that

R(g) =z Cn(48)
where
Cn(§) = In AK,.(£) — Em(£), (148)
where A, (£) is defined by
2ol = £ ¢, (149a)
and K,, (¢) is
Kn(®) = [ ™7, (149b)

k

where the u, are the m points of (147).
Since no value of m yields a uniformly strongest bound we write
R(3) = max C,.(48). (150)
This new bound is plotted in Fig. 12. Let us observe that the lower bound
R(8) = (»(48), and the upper bound R(8) = 9 In 3[1 — (88/A")]
agree when 8/A° = §. Thus Cz = 0 for 3/A" = }.

6.4.3 Estimation of Cp

We now obtain an estimate of Cs for the case of a quadratic dis-
crepancy function. As discussed above Cz = R(N). The bounds on
R(B) of (137), (146), (150) yield

C,(2N),
max C,(4N) £ Cy = min 8N (151)
91n 3 ( ) .

meven 1 — F
Since the channel capacity C = C,(N) > C,(2N), the first upper bound
of (151) implies that C is strietly less than the channel capacity C.
For large values of the “signal-to-noise” ratio A’/N, the left side of
(151) may be approximated by C,(4N ). We can make use of the asymp-
totic form of C,(¢) obtained in Appendix D:

Cot) = 3 In (24/met) + €(8), (152)
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where e(£) — 0 as £ — 0. Applying (152) to (151), we obtain
A® Az) A? A*
1 I < < 1 R + J—
2 N €1 (N = CB = 3 In meN €2 N ’ (153)

where ¢ , es — 0 as A’/N — =. Further since the channel capacity C
is (for large A*/N)

C=CMO) =1 ”A+qej (154)

where ¢ — 0 as A>/N — =, (153) may be rewritten as
C—In2+ &(A°/N) £Ca2C —1In2+ «(4Y/N), (155)

where €, e — oas A°/N — . Thus for large values of A*/N (and hence
('), the bounded discrepancy channel capacity Cp differs by no more
than a constant (In 2) from the channel eapacity C. Thus the ratio
Cp/C — 1as A*/N — =,

Let us remark at this point that the channel capacity of the Gaussian
channel with amplitude constraint has been shown by Shannon' to be
approximately C,(N) (for large A®/N), which is the same as the
capacity of the present channel. This fact lends plausibility to the
claim that the present channel is an approximation to the Gaussian
amplitude constrained channel for large values of A*/N.

APPENDIX A

In this appendix we show that for any function r(w) for which
r(w) — 0as u — 0, and for any £ satisfying

A
0<ts [ rwa, (156)
Ado
there exists a unique A (£) which satisfies
A A
f r(w) e P My = Ef e NP, (157)
0 0

For channel B we are interested in the case r(u) = u°, however for
channel D we need this proposition for arbitrary r (u). If we define the
function £(\) by

A
f r(w) e “du
(1]

—a
hr(w)
f ey
0

=}
A

EQN) = A< o, (158)
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it will suffice to show that

(a) £()\) is strictly monotone decreasing,
®) £ = 1 [ reay,
() 11& £\ = 0.

If (a), (b) and (c¢) are true, £(\) is a one-to-one mapping of the half
line [0, ) onto the interval

(0,:1 f: r(u)du:l.

(a) To show that £(A) is monotone decreasing, consider

o ([ o) ([ e+ ([ )
d\ ( f: i ’du)z )

by the Schwarz inequality,

( fo ! 7'8"“{11’7,.:)2 < ( fu ! rze_)"du) ( j; ’ e‘”du) , (160)

(the strict inequality holding). Thus d§ (A\)/d\ < 0 and (a) is established.

(b) &£(0) = [: r(u)du/LA du =££Ar(u)du.

(¢) (due to H. O. Pollakt) since £(\) is monotone decreasing and
positive for A < «, we know that lim ¢(A) = 8 = 0. If 8 =0 (c) is

A=0
established. Thus we assume the contrary, ie., 8 > 0. Since £(\) is
monotone decreasing we have §(\) = 8, all A < . Thus for any A,

(159)

A
f; ¢\ dx = BA. (161)

Now let us observe that £(A) may be written

£ = — d%(]n fo ’ e‘“‘“’du). (162)

t An alternate proof was given to the author by L. A. Shepp.
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Substituting (162) into (161) we obtain
A A
f EN AN = —1nf e ™du 4+ In A = BA. (163)
0 0
Or,
L [* aw —A
= e du < e . (164)
A Jo
Dividing through by ¢ ** we have
A
_lf GHAB=T g < (165)
A Jo

Now sinee r(u) — 0 as u — 0, choose § sufficiently small so that r (u) <
B/2 whenever 0 < u =< §. Equation (165) now becomes

1 A
1= 1 e Ay
1]

1 1

z fn g gy (166)
1 appe fﬁ 6 Apj2

> = = > M,

= e ) du Y e

Now (166) holds for all A < . Thus we need only choose A large
enough so that

8
;—le‘Wz >1

to deduce a contradiction. Thus (¢) follows.
APPENDIX B

Proaof That n vs Finite

Define the function

r(uw 4+ us)
r(u) + r(us)’

where — A4 £ w, us £ +A4 and (w1, u2) # (0,0), and the function
r(u) is given by (27). Note that the addition w; 4 wu, is performed
modulo 24. We must show that n = sup g(u, %) is finite, or that

g (u , us) is bounded.

(167)

g(ul ) Us) =
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By assumption (8d), r(u) is continuous, and by assumptions (8c)
and (8d) r(u) > 0 when u # 0. Thus g(u, , u) is continuous over its
domain. If ¢ is unbounded, let (u,'"”,w"™ )51 be a sequence such that
g ('™ ™ ) 7 . Then it is easy to see that (u,'™ ™) — (0,0).
Thus to show that 5 is finite we need only show that g is bounded in the
neighborhood of the origin.

Now let By = { (uy, uz): 11 , us = 0}. We shall show that

n = sup glu,us) = sup g, us). (168)

—AZujup<+A4 (up,up)eRy

If (uy, us) ¢ Ri, then either u; and u. are both negative or u; and us
have opposite signs. In the first case g (u1, u2) = g(—w, —ua), where
(=u;, —u2) € Ri. In the second case say |u;| = | ua|, then by as-
sumption (8d) and (8¢) r(uy + %) = 7(w). Thus g(uy, uz) = r(w)/
[r(u) + r(us)] €1 = g(A4,0) where (4,0) € R, . Thus we need show
only that g is bounded in the neighborhood of the origin where
Uy, U = 0.

With u; and . sufficiently small, the addition w; 4 . = w + e
Also by assumption (8e), we may write

r(u) = au” (1 + e(u)), (169)
where a > 0, @ > 0, and e(u) — 0 as u — 0. Thus

g (uy , us)

_ aluy + u2)*(1 + e(ur + ua))
= ) (1 F () + am (1 + e(an)) (170)

— (u1 =+ uz)" 1+ E(ul + uﬂ)
UW* + U™ 1 _|_uau1 Uz “e(uz) .

nf(u!) + p
Uy Uy

1* + + uq
Now,
ula 'Mgﬂ
< <1 171
0_u1“+u2", w® + w7 a7
so that
g(ur, us) = %*% 1+ elw, u)l, (172)

where € (u; , us) — 0 as 1 , up — 0. Thus, since
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Uz
(u1 + uz)“ _ (1 + El) < 2a_1 (173)
w® + w1+ (ug/ur)* = !

we conclude that ¢ is bounded in the neighborhood of the origin, and
therefore that 5 is finite.

Let us remark at this point that diserepancies r () do exist for which
n = «. For example, r(u) = exp (—1/4"). If we set u; = u, and let
u; — 0 we obtain

0=

—1/(2uy)?

— o, (174)

g(ul y Us) = 26_”“1,_
In this case, of course, r (1) does not satisfy (169) so that p(u) does not
satisfy (8e).

APPENDIX C

For channel B, let V,(p) be the volume of the intersection of a sphere
in Euclidean n-space of radius p and center at the origin with the cube
[—A4,A]". For channel D, V,(p) is the volume of S,(x,p) = volume of
Sn (0,0), where

8.(0,0) = {a =(w,m,e, -, ) € C:d,(0,0) = ;T(Oﬁk) < p}-

In this appendix we evaluate

‘) n
fim L D" _p (175)

nax . Valan) O °

We shall find E, by solving an equivalent probability problem: Let

X, Xz, --- be a sequence of random variables uniformly distributed
on the interval [—A4,+A]. Let ¥,, = 3 r(X,). For channel B, r (u) = «".
k=1

It is clear that

) _ Valp)
Pr[Y, <pl = @A)’ (176)
hence
—lim (1/n) InPr[¥, < an] = E,. (177)

n-+0

We now make use of
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Chernoff’s Theorem': Let Z,, Z>, --- be a sequence of independent
identically distributed random variables with moment generating

function E(exp (Zit)) = M (t). Let P, = Pr |:Z Z; = an], where
=1

a < E(Z)). Then
1

n
~InP,— Inm,
n

where m = min ¢ "' M (t).
t<0
If we let Z; = r(X;) where X, is the above random variable, then
Y. = 2 Z:. Thus from (177) E, = —In m.
=1

The moment generating function of Z; is

M@) = Ele™] = ety
24 1,4 !
so that
E —at _ 1 —al f+ r(z)t 3.
fit) =e*M@) = 51 |, ¢ dz, (178)
and
m = min f(1).
t=0
To minimize f(t), let us differentiate (178) with respect to ¢:
df(t) _ _ 1 —alt [[+A | riz)t _ f+A riz)t
T _O_E{B A?(:c)e dx aj e dx |,
so that
+4 +4
f r(z)e’ @ 'de = a[ e 'dx. (179)
—A A
The solution of (179) for ¢t is t = — A(a) where A(£) i8 defined by
(19a). With ¢ so chosen
1 A (a) 4 (x)\ (@)
_ - —+ah(a —r{z)hia
m=3) = o ™ [ N,
so that
Inm = — In 24K,.(a) + ax(a) (180)
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where K,(a) is defined by (19b). Thus
E,= —Inm = In 24K (a) — a\(a¢) = C,(a), (181)

where Cy(a) is defined by (19).

_— If we apply this result to (73) (channel B) with @ = 48, we obtain
R.,(8) = C,(48). If we apply this result to (113) and (120) (channel

D) with ¢ = 8 and 298 respectively, we obtain Ry(8) = C,(8) and

R.(8) = C,(298) respectively. Finally, applying this result to (136)

(channel D with quadratic discrepancy) with a = 28 yields R{3) =

C.(28).
APPENDIX D

Estimate of C,(¢) for Small £ with r(u) = u*

We first obtain an estimate of A (¢) for small £ and then show how this
estimate can be used to estimate C (£).
The quantity A (£) is defined by (19a):

A A
f W M Ody = & f e MO gy, (182) .
0 0

Observe that A (£) monotonically approaches infinity as £ — 0. Chang-
ing the variable of integration in (182) we obtain

\/ﬁA 2 .
j; ~F e = ONE f e de. (183)

Integrating the left integral by parts yields:

Vaxa VoK 22 Va4, N
+ f e dr = ‘2?\5[ e Pde.  (184)
0 1]

]

_—
—xe ™!

Rearranging terms we obtain

- 21 (1= k) (185)
where
() = 24T
M j-w—,.a st ’ (186)
e dx

Since p(A) = 0 we have an upper bound on A:
A S 1/2¢ (187)
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To obtain a lower bound on A set

A= (1/28) — A (188)
From (185)
8=t = S = AV
# fo e x — A~/2ne M’ (189)
_ N
D(\)

It may be verified by differentiation that for A = 3/ (24%) the numerator
N (M) is monotonically decreasing and the denomination D (A) is mono-
tonically increasing so that A is monotonically decreasing. With A =
3/(24%) we obtain by substitution into (189) A = 0.76/A” and by
substitution into (185), £ = 0.224”. Thus for { < 0.224"

1 1 0.76
= T —A> Y
A 5 A= : T AT (190)
Returning to (189), we may write
1 076
(i)
A=< _M
- D(3/2)
o A(L12)e (191)
= 0.76
_Azlrzf
=1354% .
£
Thus we have for ¢ < 0.224%
1 1 2.70Ae“’”‘]
== —Ax=_|1-=220 192
A 2% A= 2¢ I:l g (192)
Since the quantity C,(g) is defined by
C,(£) = In 24K, (¢) — & (§), (193)
where
A 0 -1
K,(%) = [ f e “*’du] , (194)
—A

we could then use the upper and lower bounds on A (¢) of (187) and
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(192) to obtain an estimate of C',(¢). However, this turns out to be a
very cumbersome procedure and we shall side-step this chore. Suffice
to observe that A\ (¢) approaches 1/(2£) very rapidly as £ approaches
zero so that for small £ we could take A to be 1/(2£) and obtain

42

C® =12t 4 @, (195)
wef

where ¢(() > 0as & — 0.

APPENDIX E

Completion of Derivation of Upper Bound on R(B) for Channel B
Inequality (86) expresses the fact that
R() < f(a)(1 — 2B) (196)

where

2
(43

o — 2

and « is any integer satisfying e = 2, " > 1/8 (0 = 8 < %). To
obtain the tightest bound we seek to minimize f(a) subject to these
constraints. It may be verified by differentiation that f(e) is a mono-
tone increasing function for integer values of @ for @ = 2. Thus to
minimize f(a) we choose & as the smallest integer satisfying o« = 2,

o' > 1/B. Thus we choose

a=2 when 3=p32=1,

fla) = Ina (197)

and

APPENDIX F

Estimate of Ez(R) for Channel B

Equation (96) expresses the fact that

Pg* = Pr [Z 2l > cm], (198)

=1

where the z; are independent normally distributed random variables
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with mean zero and varia.nce N,and a = ,B(R) = A’8(R). We seek an

expression for Ez(R) = — (1/n) In P,". We again make use of
a form of:
Chernoff’s Theorem'®: Let ¥y, ¥y, - -+, ¥, be independent and identi-

cally distributed random variables with moment generating function
Elexp (Yit)] = M (). Let P, = Pr [i ) = an], where e = E(Y;).
Then o

lim (1/n)P, = In m,

n-—+ow
where

m = mine “M(t).
t20

If we set ¥; = 2 then Ez = lim — (1/n) In P, = —In m. The

n—>
moment generating function is

1 1
zzt -:cz.fZN _ _
M@ = \/—f d"’*u—zm)*(‘gzz\r)'
It may be verified by differentiation that the quantity M () is
minimized at ¢t = (1/2N) — (1/2a) (which is positive if @« > N ). Thus

m = ex [— L ——-l:IM L-——l-)
S OP|T\aV T 2+/1" BN T 2a/°

Setting « = A’8(R) and taking logarithms we obtain

1 _ B A 1 A2
_BR) lln eB(R)
2N 2 N °

APPENDIX G

Completion of Asymptotic Estimates for Channel C

)
1. Let I, = f sin"? ¢ dp. We must show that
0

E = lim 10 7, = In sin 6. This is (101a).

ns 1
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@
(a) I, = f sin"* 6 dp = (6) sin" 6, so that
0

—1nI,.§~I B-I— lnsmﬂ—alnsmﬂ

]
(b) I, = sin" Yo de = sin" (6 — AL , 50 that
o n/ln

n

L Inil, = n—2 In sin ( — ‘2) + 1 In o — In sin 4. This completes
n n n no n

the proof.

v
2. Let I, = f sin" " ¢ (cos ¢ — cos ¥)de. We must show that
0

F = lim

n->%

I, = In siny. Thisis (101b).

1
n
(a) I, < fo in"™ y(cos ¢ — cos ¥)dp = sin" " Ylsin ¢ — ¢ cos ¥,

so that l Inli,
n

IIA

— 2 . .
nn In sin ¢ + %In [sin ¢ — v’zcosw]ilnsimp

v
b) I. = j; v sin" ? ¢ (cos ¢ — cos ¥)de

\%

[
*2( - %) j; P (cos ¢ — cos ¥)de (200)

v
(cos ¢ — cos ¥)de

=sinnp—sin(xp—%)—%eosw

Nongf
v

¥ V¥

sin ¢ — sin:,bcosﬁ-!—coswsm?—l—-ﬁcos Y.

[

Expanding sin (y/n) and cos (¢/n) into power series in (¢/n) we ob-

tain
I = sin \0[2%—2 + o0 (—)] = "b—zsm ¢(1 + o(1)).

n?
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Thus
1 1, ¢ . 1 n
lnl=-mXt z )
Sln nln2nzsm¢+nln(1+o(1))—>0

Thus from (200) we have
n—2

LEME AN
n n

In sin (u’z — f) + }?’ Inf i» In sin .
Thus £ = In sin  which completes the proof.

APPENDIX H

The Capacity of Channel D
The channel capacity is defined! by
C = max [H(y) — H(y| )], (201)

B(z)
where z is the input digit, y the output digit and H (y | ) the conditional
uncertainty of y given x. The maximization is performed over the input
distribution p (). Since y = « + 2, H(y | ) = H (2) so that

+4
H(ylz) = H(z) = —_/:A p(u) In p(w)du,

independent of p(x). Now H (y) is maximized when the random varia-
ble y is uniformly distributed on [—A,+A). Due to the symmetry of
the channel, this occurs when p(z) = 1/(24), —4 =z = +4. In
this case

ol 1
H@=—[Aﬂmﬂ@=mm.
Thus the channel capacity is
+4

C =124 + p(w) In p(u)du. (202)

Writing p (u) = K, exp [—Ar(u)] we obtain

+4 +4
C=In24 + InK, '[A puw)du — A id r(u)p (uw) du (203)

= In 24K, — \N,
where N is defined by (32) or



BOUNDED DISCREPANCY DECODING 1119

+4
N = f r(u) K,e ™ du. (204)
—4
Also, since p(u) integrates to unity,
+4
1= [ K, (205)
— A
we have
+4 4
f r(w) e du = N _[ e qu, (206)
—A A

with N and r(u) specified, N may be found as the solution to (206).
With A so specified we may find K, from (205), thus

(' =In24K,(N) — NA(N),

where A (V) is the solution of (206) and K,(N') is the solution to (205).
This is the same as €' = C, (N') where C (£) is defined by (19).

GLOSSARY OF SYMBOLS

The following symbols are used throughout the paper:

number of words in a code.

(1/n) In M = transmission rate.

P.; = probability that the receiver makes an incorrect decoding
decision when code word 7 is transmitted (7 = 1,2, --- , M).

M
P, = (1/M) Y. P.; = over-all error probability.
=

n = dimension of input, output and noise vectors.
x = (x,22, -+, x,) = input vector or code word.
y= (5,9, -, ya) = output vector or received vector.
z= (21,2, " ,2,) = noise vector.
M =
R

MDD = minimum discrepancy decoding (always optimum for the
channels considered in this paper).
BDD = bounded discrepancy decoding.
P,y = error probability (P,) using MDD.
P,z = error probability using BDD.
C = channel capacity = ‘“maximum error free rate” using MDD.
E(R) = the best attainable error exponent using MDD, (at rate R).
('s = bounded distance decoding channel capacity, or
“maximum error free rate” using BDD.
Es(R) = the best attainable error exponent using BDD (at rate R).
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The following symbols are used in connection with specific channels:

Channel A
q = the number of symbols in the input, output and noise alpha-
bets.
p. = the probability that the channel transmits a given symbol
correctly.

dn(u,v) = the Hamming distance between two n-vectors u and v = the
number of positions in which u and v differ.
C(p,) = Ing — H(p,) — p.In (g — 1) = channel capacity of channel
A with symbol error probability p, .
H(p) = —plnp— (1 — p)In (1 — p) = the entropy function.
d = the minimum distance between code words.
e = (d — 1)/2 = number of correctable errors in a code with
minimum Hamming distance d.
M (n,d) = maximum number of code words in an n-dimensional code
with minimum Hamming distance d.
(1/n)M (n,d) = rate corresponding to M (n,d).
d/2n, a ratio appearing in our bounds.
[(g — 1)/g81 1 = v/1 — [2¢/(q — 1)]8], another quantity
appearing in our bounds.
[2] = largest integer not exceeding z.
R(B) = limit R (n,28n), asymptotic form of R (n,d).

alppo) = pIn (p/po) + (1 — p) In [(1 — p)/(1 — po)], & quantity
appearing in our error bounds.

parameter defined by R = Ing — H(s) — sln (g — 1) =
C(s)

R(n,d)
g
¢

I

Il

8

Channel B

A = maximum amplitude of input coordinates.
N = variance of normally distributed noise coordinates.

de(uy) = zll (u; — v:)* = Buclidean distance between the
n-vectors u and v.
d = the minimum distance between code words.
M (n,d’) = maximum number of code words in an n-dimen-
sional code with minimum Euclidean distance d.
R(nd) = (1/n) In M (n,d") = rate corresponding to M (n,d).
B = d*/an,3 = B/A’, ratios appearing in our bounds.



BOUNDED DISCREPANCY DECODING 1121

R(B) = l..l.T., R (n,48n), asymptotic form of R (n,d’).

R.(8) and Ry(8) = lower and upper bounds on R(8) given by (18)
and (19) respectively.

The function C,(¢), 0 < £ < A%/3, is defined as follows: A (£) is the
quantity defined by

A A
f » (u) e—l(flf(wdu — £ f e—)\(E) r(u)du
o0 0

where r () = ', and

K(E) — [fA e—HEJr(u)du]gl.

Co(8) = In2 AK,(§) — & (8).

Then

Channel C

P = (1/n) X the energy of a code word.
N = variance of the normally distributed noise coordinates.
dr(u,v) = the Euclidean distance between u and v.
a(u,v) = the angle between n-vectors u and v.
# = the minimum angle between code words.
M (n,0) = maximum number of code words in an n-dimensional code
with minimum angle 8.
R(n,8) = (1/n) In M (n,0) = rate corresponding to M (n,f).
¢ = sin”' /2 sin (8/2), a quantity appearing in our bounds.

Channel D
@, = set of real n-vectors u = (u;,us, - - -, u.) satisfying | ux | =
A.
+,= = addition and subtraction modulo 24 (with result reduced

into the interval [—A4,+A]).

p(w) = noise probability density funetion.

r(w) = (1/A) In [p0)/p(w)] (A = v £ +A), quantity related
to the discrepancy.

d,(u,v) = ; r(ux = v,) = discrepancy between n-vectors u and v
1

belonging to @, .
N = E(r(z)), a parameter associated with the noise density p (u).
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C,(t), defined exactly as for channel B but with the appropriate
r(u) used instead of u".

n = sup M , & quantity appearing in our bounds.

—asup,ug=a T(w) + r(us)
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