On the Reception of Binary Signals in
the Presence of a Small Random Delay*

By M. I SCHWARTZ
(Manuseript received March 22, 1965)

Receiver design for a binary communication system which operates over
a linear channel with a random delay is considered. It is assumed that the
vartance of the random delay s very small and that the rate of growth of its
maoments s restricted. Under certain smoothness requirements on the re-
cetved signal an approximation to the test statistic, which is optimum in the
Neyman-Pearson sense, is derived for the case of gaussian receiver noise
with covariance R(r) = R(0)e™® '™ . It is found that the test statistic,
which in general 1s nonlinear, assumes the linear form of a crosscorrelator
when phase reversal signaling is employed.

The case where the noise is white and phase reversal signaling is used s
investigated. The correlation waveform in this case 1s found to consist of the
expected value of the received signal plus a term dependent on the slope of
the signal when the delay s equal to its mean value.

I. INTRODUCTION AND SUMMARY

In any praectical communication system the signal arrival time is
never exactly known. This results in a degradation of the average sys-
tem performance. It would be of considerable interest to determine the
receiver which minimizes the effect of this uncertainty on system error
performance. A special case of this problem will be considered here.

Helstrom! has studied the detection of signals of unknown arrival
time using the method of maximum likelihood with particular emphasis
on the radar problem. Brown and Palermo? consider system performance
in the presence of random delays with applications including least
squares filtering and sampling with time jitter. Balakrishnan® and other

* This work is based on a portion of a thesis entitled “Binary Signal and Re-
ceiver Design for Linear Time Invariant Channels’. This thesis was accepted by
the faculty of the Graduate Division of the School of Engineering and Science of

New York University in partial fulfillment of the requirements for the degree of
Doctor of Engineering Science, Oct. 1964.
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researchers have also considered the problem of time jitter in sampling.
However, to the best of this authors knowledge, no optimum statistical
test, or approximation thereof, has been determined for detection in
the presence of a random delay.

In the subsequent analysis we investigate binary communication for
the case where the variance of the random delay is ‘““very small.” It is
assumed that the transmitted signals and the channel impulse response
are such that the received signal satisfies appropriate smoothness con-
ditions, and that the statisties of the random delay & satisfy the relation
that E[ |8 — §|] = A"\*; where h is some constant, E denotes expecta-
tion, & A s and A’ is the variance of 8. The requirement on the random
delay will always be satisfied when § is restricted to a bounded interval.
Our model will also assume that intersymbol interference is negligible,
or equivalently, that we are dealing with a single transmission.

Under these assumptions an approximation is obtained for the test
statistic which is optimum, in the Neyman-Pearson sense, for the case
of gaussian receiver noise with exponential covariance. Generally the
test statistic involves a nonlinear operation. However, for the case of
phase reversal signals, only linear operations are required.

The form that the test statistic takes for “white noise,” which is con-
sidered as a limit of the exponential covariance case, is obtained. It is
shown that for phase reversal signaling the optimum receiver is a cross-
correlator and that a portion of the correlation waveform is the expected
value of the received signal itself.

Fig. 1 depicts the communication system under consideration. A sig-
nal, s () (z = 1 or 2), which is non-zero only over an interval [0,T1,
is transmitted through a channel. The channel consists of a random delay
s and a linear time invariant filter whose output, z*” (f — 8), is disturbed
by an additive noise source, n (). It is assumed that the variance of the
random delay, denoted by A?, is small. Furthermore, the noise, n(t), will

CHANNEL
BINARY 0 J SMALL .
[{9)] (Lt |
SIGNAL stbt) RANDOM xit(t-8) ™\ yit)
_SOURCE " DELAY h(t) | RECEIVER
(L=10Rr2) | ]

Fig. 1 — Model of Binary Communications System with a Small Random Delay.
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be assumed to be a sample function of a stationary gaussian random proc-
ess with mean zero and covariance B(r) = R (0)3_6 =1 For this system
we seek the test statistic, based on an observation of the received signal
over a fixed interval of length equal to the duration of the transmitted
signal, which gives rise to the minimum error probability in the receiver
decision process.

II. DERIVATION OF THE TEST STATISTIC

It is known that in testing between two simple hypotheses a Neyman-
Pearson test will give rise to minimum error probability. Furthermore,
Grenander* has shown that in the “regular case” the desired test
statistic, which is a random variable called the likelihood function, I,
can be obtained as the limit of an N dimensional likelihood ratio. In the
subsequent development, in which it is assumed that we deal only with
the regular case, the receiver test statistic is obtained as the limit of
such an N-dimensional likelihood ratio.

The receiver input, ¥ (t), is given by

y@t) = 290 —8) +n(t), =12 (1)

where z'” (t — &) is the portion of the input resulting from sending the
signal 5% (t) when the random delay is 8, and n(¢) is the receiver noise.
The noise is assumed to be gaussian with covariance R () = R ) ',
Using a theorem due to Belayev® the noise sample functions can be
shown to be almost surely continuous. Furthermore, almost all sample
functions can be expanded alinost surely in a pointwise convergent series
in terms of the eigenfunctions of the noise covariance kernel. That is,

n(t) = zk:nm(t), (2)

with
E(mm) = o8,

where the ¢, satisfy the integral equation
31
o) = [ dup@RE—w, w<i<a @
to
and

= f‘l dt e (On(t).
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Here {,and &4 2 f, + T mark the beginning and end of the receiver proc-

00

essing interval, Z is used to denote Y , the symbol E signifies mathe-
k

k=1
matical expeetation, and

1 j=k
0 = .
0 i#Ek

Since the {n:} are themselves gaussian and uncorrelated they are

statistically independent. Assuming that the noise has zero mean, the
joint density function of the first N coefficients, px , can be written as

(ﬂ k=1 ...N)Aﬁ ._l'_ilex —.n_kz. (4)
Pr\Nig, s ’ - U\sr) o P 20|
where the n; are ordered corresponding to the relationship that

oL Z 0= .

Now consider a formal expansion of the receiver input in terms of the
eigenfunctions of (3). One can write

y(t) ~ ; Yo (1) = ; viler () + ; i (1)

U ff dter )y ) = fI dt e (0 [ () + n(®)] (5)

[l

w® 2 [ae@:2 - »),

where by definition 7 A (4 , t1]. Since the series Y, nex () is almost surely
k

pointwise convergent to n (¢) we need only investigate the sense in which
E i Vo (t) converges to =" (t — 8). With this in mind we digress to
k

consider some of the properties associated with the eigenfunctions of the
integral (3) with R(t — u) = R(0)e®' ™!, Tt is easy to show that in
this case the solutions of the integral equation are identical to those
which satisfy the following differential equations and boundary condi-
tions:

;%m ) — Bl :;R ) ) = 0

Ber®@ = L u(®lims ©)

d P (f) h:tl .

ﬁiﬂk(fl) = _a
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The solutions of this system are proportional to

wn (1)
-5

for k odd. Here v, satisfies the relation (8° + v°) = 28R (0)/cx".

The differential equation (6) and the associated boundary conditions
together form a Sturm-Liouville eigenvalue problem. The convergence
properties of expansions in terms of the resulting eigenfunctions, the
{¢r(f) } , are stronger than those generally associated with expansions in
terms of the eigenfunctions of the integral equation (3). An expansion
of an integrable function f(f) on the interval (f,,4) in terms of the
eigenfunctions of a Sturm-Liouville system, possesses the following
property:®

In every interval where f(¢) is continuous and of bounded variation,
the expansion converges uniformly and absolutely to f(t). If at the ends
of the interval there are neighborhoods in whichf(¢) is of bounded varia-
tion then the series converges at these points to f(t4) and f(#-).

It will be assumed that the transmitted signal s (¢) and k (¢) are such
that z'” (¢ — &) is continuous and of bounded variation. In fact to make
the suceeeding development valid we shall have to impose more stringent
requirements on s (t) and A(t). Under this assumption the expansion of
2 (t — 8) in terms of eigenfunctions of the integral equation (3) will
converge uniformly and absolutely to 2P (t — 8).

Returning to (5) we have established that kZ ek (1) converges point-

for k& even, and

wise to 4 (¢) for almost all sample functions. That is ¥ (t) = 2 yues (1),
k

almost surely.

Choosing the values of the {1} set as the observable coordinates, the
likelihood funetion, I, can now be determined as the limit of the ratio
of two N-dimensional density functions evaluated at the sample values,
the y;,7 = 1, - -+ N. Here we have used the same symbol, y;, to repre-
sent the sample and the random variable itself.

Thus I can be written as

~(1)
l=]im?3 (yly"'ryN) 7
N—*“’p(2)(y11 "'ryN), ( )
where 77 (1, - -+, yx) is the joint probability density function of the

first N members of the {y:} set.
Noting that 7 = ¥ 4 n and using the fact that the signal and
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noise components are statistically independent the joint probability
density of the first N of the y can be written as a convolution. Thus

f’N“)(yl; "',?]N) =‘[ [ dzlr"';dzNg'(ﬂ(zls"')ZN)

‘Pw(yx — 2k,k = 1’ ...,N)
vy, -y yn) = By @) pa(ye — v k=1,---,N)

(8)

where
Y@, -, zy) is the joint probability density function of the first
N of the ¢'” (8),
E,% denotes an expecta_tion with respect to the random vector,
v = P 6) - e (6)).

Since the 'j/km (8) are all functions of the random variable §, the aver-
aging process can be performed with respect to § instead of the ' (8).
Thus

’.ﬁﬂf{i)(ylr e !lyN) = EﬁPN(yk - wk(i)(ﬁ)s k= 1, e )N)' (9)
Using (4), (7) and (9), and cancelling common factors the likelihood
funetion, I, is given by
N [ (1) (1)
Ejexp {Z L4 (6)] e 9 2(6)}
Il = lim k:l = (22] (Z;k . (10)
Noso wkmyk@
mew (3 [~ ¥ 0 [1
. N[ () ()
Let QN(I)[(S] A E Yo — 12 (5)] Vi 5‘5) .
=1L 2 Ok
Then (10) can be rewritten as
($))
! = lim E; exp {Qy'[8]} (11)

n-w Ej5 exp [QN‘”[ 1}

At this point one may develop an integral form for Q~'"[8]. The in-
tegral will suggest the form of lim @Qy“[5] which will be required in the

N

subsequent development. Define

N (i)
) = 3 “)m
w%m=;w%mm (12)

yn(t) = ;;lym‘(t)'
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Then using the orthonormality of the {¢x(t)} one has the relation -
QN“)[ﬁ] = fdt I:D'N(t) - xﬁg;a)] QNH)(t;a)- (13)
I

It also follows from (3), (12), and the orthonormality relations, that
gn'” (1;5) satisfies the integral equation

ey (1;8) = fdu gn'" (u;8) R(0) exp (—B |t — ul). (14)
I
The solution of the integral equation is

v (1:6) = %RI(O_) (52 - gﬁ) zy (;0). (15)

Thus (13) can be rewritten as

0wt = [[ar[ua - 2] (5 = T) w0

Let us return to the study of the likelihood function of (11).In general
it seems that the expectations appearing in (11) cannot be evaluated.
However it is possible to evaluate the required expectations when the
variance of the random delay & is very small. With this in mind we drop
the superseript and expand Qu(8) in a power series with remainder

around § = &

(6 — 5)

Qxl3) = Qs3] + (6 — D Q18] + Qv"13)

(6—48"

s W+ -], 0=6=1

+
where we have used the notation
e ()
Qv'l8] 2 2 Qu(®) lss.-
It follows that exp {@x[8]} can be expressed as,

exp (Quld]} = exp (@A) exp { (5 — 5) ax

TSRS s

where

ay 2 O] by 2 QB en(8) 2 QY+ 06 — B)].



1130 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1965

On expanding the exponential in a powers series and averaging the
uniformly econvergent series term by term with respect to § one obtains

By exp (Qul]} = exp (Qu (8]} [1 5 d] (18)
where

dm=E.,{[<a—a)N+( Dy 4 =8 )<a):[}

The limit of the likelihood ratio of (10), I, can be expressed as

(4 55)
I =lim exp {Qx™ [6] — Qx™ [3]} ( A1 dklczl (19)
N 1+ Z

Note that if for some number D (N)
| div | < [D@)]* for all &,

then the infinite sums each converge since the series is majorized by
exp [D(N)]. It is observed that

|31+22+zﬂ‘k§ [3m_&x|z"|}k
which implies
lat+z+azal <8 (lalf+ 2+l

Using the definition of dyy and the above inequality in conjunction with
the Schwarz inequality yields

o = 8 {la 21 6 = 9"+ |2
2k H
+(E ‘"’"3(f) E|s— Sr‘“‘)}.

Now we restrict our investigation to the class of random delays whose
probability distributions satisfy the relationship that for some number
h and all k,

B G- 9™
(20)

Ei| 36— 8)"| < hias, (21)

where A* is the variance of the distribution. This condition will be satis-
fied by all probability distribution functions which take on the values
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zero and one in a bounded region of the real line. That is when the values
of & are essentially restricted to a bounded region.
For distributions which satisfy (21) one finds

hﬂ.’cxl‘lk
| diw | = {| aw |* h”“m”‘ + [E | cx (5) |2"]}
However if Qy'"'[8] is bounded, E | ey (8) |*. £ (&) * and
| diw | = 35( | ay | AN 4 | by | RN + (2n)RNY}Y, |div | € AN
where

"t

iy = sup Qv (8],
Ay 2 3( | av | hx 4 | by | BN + (@x)*RNY .

Now it can be shown that under certain restrictions on the channel
and the class of transmitted signals the following limits exist almost
surely:

lim ay = a,
N-+x
lim by £ b,
N-»x
(22)
lim ey (8) & ¢(5)
N=w
lim E | ex(8) |* = &*
N
for all k.
The convergence of lim Y (diy/k!) can now be demonstrated. In

N—+w k=1
this and the subsequent development we will consider convergence in
the almost sure sense. Breaking the sum into a finite sum from % equal 1
through m and a sum from m + 1 to « and taking magnitudes gives

o0
diy
Iim
N ko1 k!

o0

lim Z%”—Z%

N-om k=1 k=1

A - . N
where di = lim dpy . Since | diy | is less than or equal to some number

N—»x

Ax*, then
lim Y Ay .

N->% k=m+1 kl

lim Zd%?— I;%

N—wx k=1

But lim Ay = A exists, thus for all N > N,

N-w
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|A — Ax| <e |Aw| <|A|+ ¢

= |lim de Zz— = E “A

N+ k=1 k ! k=m+1

By choosing m sufficiently large the right hand side of the inequality
can be made less than any positive constant. Therefore

lim > =¥ D _ > i (23)

N-»00 =1 .1{7' k=1 k!

For small A one makes the approximation

lim I:l + de]N 14+d + ds (24)

N-m 21’

where terms involving A to powers greater than A” have been neglected,
and

dr = lim diy .

N
Using the definition of dy , which follows (18), we find
dy ~ (\*/21)b,
d-z ~ )\2&2.

Restoring the superscript notation and using (22) and (24), (19)
becomes

I ~ exp E\l'im (Q~"[8] — Qv™'18} ]
A1 4+ W/2)[@P) = @) + b —b®l (25)

Equation (25) is the desired approximation for the likelihood fune-
tion for the case of small A.

III. STRUCTURE OF THE OPTIMUM RECEIVER

The structure of the approximation to the optimum receiver statistic,
the likelihood function, can be determined from (25). The quantities
appearing there can all be expressed in terms of the received signal, ¥ (t)
and the noise-free filter outputs = (¢) and 2 (¢), which are assumed to
be known. In the Appendix it is shown that almost surely
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i Qa1 = gy {[ [0 — 5]
Bt —8) — 2" (t—8)] dt

— [2"(ts — 8) — Ba(to — 8)] [y (to) — "”—("’2;5)] (26)

+ [2"(h — &) + Bx(ty — )]

'[y(h) - x——u‘z_ S)}},

: 1 x(t —3)
o = mos = gy [v0 452

=82t — & + 2" (1 — )] di
— (= 8) + B2’ (h — Bl [y(t) — a(t — 8)] (27)
+ 2" (o — &) — B’ (to — 8)] [y (to) — 3a(ts — 5)]

+ 32’ (b — 8) + Bt — O [ (L — §)]

- %[-’1’,(% - 5) — Br(ty — 3)] [-’f” (to — S)]}:

. 1 s
b= lim by = S8R (0) {j; [y() —a(t — )]

N-+o
8% (t — 8) — 2 (1 — 8)] dl
+ 182"ty = 8) = 2" (to = $)1 [y (bo) — x(to — 5))
+ B2 (= 8) + 2" (b — O]y () — =ty — )] (28)
— [t - 5) = ot = Dt - )
I
+ [ (ty — 8) — B2’ (ty — 8)]a’ (to — 3)
— [ty = &) + B (t, — )" (t, — S)}.
It is also found that ¢(§) is a piecewise continuous funection of &.
In obtaining these results it is assumed that the second derivative of
z(t) is continuous and that the quantity [—g%"(t — §) + 2" (t — 8)]

appearing in the integral in (27) is of bounded variation and continuous
except at a finite number of points. Similar assumptions are made on
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82" (t — §) — 2" (t — §)] in the expression for b and a similar term in
the expression for ¢(8). One requires that the fifth derivative of x(t)
be of bounded variation and be continuous except at a finite number of
points. These assumptions allow Sturm-Liouville expansions of the
integrands involved in (27) and (28) which, using the orthonormality
of the {g:(t)}, yield the proof of (27) and (28). Thus a sufficient
condition for the validity of these results is that the second derivative of
z(t) be continuous and that the fifth derivative of () be of bounded
variation and continuous except at a finite number of points.

The desired test statistic, , is obtained by substituting (26), (27) and
(28) in (25) with 27 (t), © = 1 or 2, replacing x(t) in the appropriate
places. The resulting expression is nonlinear in y () and rather lengthy
and will not be explicitly stated here. Observe however from (27) that
if phase reversal signaling is used, that is 2? () = —z™ (t), the quan-
tity (a”)? — (a®)® will be linear in y (¢). Furthermore under this condi-
tion, to first order in A%, In I will be linear in y(¢). Therefore for phase
reversal signaling the receiver correlates y(¢) with a signal related to
¢(t — &) and its derivatives evaluated at § = 4.

The “white noise case” will now be obtained as a limit of the exponen-
tial covariance case. Setting R(0) = No8/2 and letting 8 — o« in the
expressions for @, @ and b one obtains

lnlw{f\lr_uffdt [y(t) - “ﬁ;—s)]x(t )

+ows (= [0 - D)

+ z—R;.,(f;d‘[y(‘) —z(t—8la"(t—3d)

=z (1)
~ [t - 7))
I r=2(2)
In the above expression the notation { } =24 is used to indicate
that the expression in braces is evaluated with x(t) = ¥ (¢) and the
result is subtracted from the result which obtains when z(t) = 2 (¢).

For phase reversal signalling, V@) = =2 (@) = z(t), (29) becomes

(29)

]nlw%nj;dty(f) {rc(t —§) — ;—2 I:Nio (@t — &) N
— 2ty —8) 2t —8) — 2"( — S)]}.



BINARY SIGNAL RECEPTION 1135

Let us examine the correlation waveform appearing inside the braces
in (30). The first term represents the receiver input when the random
delay is equal to its mean value, § = 5. If A is set equal to zero the re-
maining terms vanish and one obtains the standard result which is that
the receiver input should be correlated with the signal portion of the
input, z(¢t — §). The remaining terms inside the braces in (30) are the
perturbations introduced by the random delay.

Let us expand z(t — 8) in the Taylor series with remainder

p(t—8) = z(t—35) + (6—8)[-2"(t =)
+ 16 = 8)Y/20k"( — 8] + /(6 — 52).
If 2”'(t — &) is continuous and the moments of & satisfy
;| (6 — 8)"| = A"\,

then for small \, z(t — 8) 4+ (A*/2)z” (¢t — §) is the principal part of
Esz(t — 8). Thus, part of the correlation waveform is essentially the ex-
pected value of the received signal. The other term in the correlation
waveform involves 2’ (t — &), which is the slope of the received signal
when the delay is 5. The weight attached to it is proportional to the
difference in the squared values of the received signal at time ¢ and at
time #; when 8 = §. As yet no physical significance has been found for
this term.

IV. CONCLUSIONS

An approximation has been obtained for a test statistic that minimizes
the error probability of a binary communication system which operates
over & linear channel, with a small random delay, in the presence of gauss-
ian noise of covariance R (0)¢® ™!, For the case of phase reversal sig-
naling, the statistic, which in general is nonlinear, is a linear functional
of the receiver input. Treating the “white noise” case as a limit of the
exponential covariance case, the test statistic is expressed as a cross-corre-
lation operation. The waveform with which the input is correlated is
related to the expected value of the received signal plus a term propor-
tional to the slope of the received signal when the delay is equal to its
mean value.
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APPENDIX

The Evaluation of Terms Arising in the Approximation to the Likelihood
Function

The convergence asserted in (22) will now be established and the
structure of the terms appearing in the likelihood function, (25), will be
exhibited.

First let us note the following property associated with an expansion
in terms of the eigenfunctions of a Sturm-Liouville system. :

Let g(t) be a piecewise continuous function which is of bounded varia-
tion and let z(¢) be a piecewise continuous function. If the sets {g;} and
{21} are the expansion coefficients of g (t) and z(¢) in terms of the above
eigenfunctions, then

frdtg(t)z(t) = k:zlgkz,,. (31)

This expression is obtained by noting that the series expansion of g(t)
converges uniformly except at a finite number of points.
One considers the following integral which is suggested by (16),

K@ & gt [afvo - 272 (¢ - T)ae -0, @

where one requires that [8* — (8°/8¢°)]x (t — ) be of bounded variation
and piecewise continuous. Let

g(t —8) & (32

g(t) can be expanded in a series in terms of the eigenfunctions of (6).
This series converges uniformly to g (¢) where g(¢) is continuous and to
ilg(uy) + g(u_)] at points where g(¢) is not continuous. Thus

0= 9 = 3 4n0), (34)

2

_ gﬁ)w(t —8) =gt —8) — 2"(t —8). (33)

where
Gk = [duwk(u)g(t - 8).
By integration by parts and utilizing (6) one can show that

g = (B + v + ee(bo)d' (o — 8) — Bx(te — )]

, (35)
— @tz (th — 8) + Bx(t — 8)],
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where
¥ is the kth expansion coefficient of z(t — &) in terms of the {¢(2)}
set,
8 + v') = [26R(0)/0)],
i is the kth eigenfunction of (6).
Substituting the expansion for g(¢) in (32) and using (35) one finds

8R(0) E(k—%)"’—’;

ok

K®) = om0 {

+ [2'(ty — 8) — Bax(to — 0)] ; (yk — %) o (to) (36)

k=1

— [ — 8) + Bx(ts — 8] 2 (yk — %) qok(tl)}-

Noting that > (’1 "h‘) ¥ - equals hm Q18] one finds
=

lim Qul8] = K (5) — ['(‘“_5)_‘%(“’5)12( )w(m) (37)

E>® 28R(0) =
(2" (b — 8) + Bty — )] 2
+ 98R(0) :; w— 5 o (t)
One now can proceed to evaluate a = lim ax .
N=o

From the definitions following (17) and (10) one has
., ) .
o = Q= 3, BT8O . (39)

Consider

z(t — 8)
2

K@a faly0 - Ji-sda-o +oa—a1 6o

Let us assume that [—g% (¢ — 8) + 2" (t — )] is piecewise continu-

ous, [8°x(t — 8) — 2’' (¢ — 8)] is continuous and that both are of bounded
variation. Define

f dt o (t) [—8%2" (t — 8) + 2" (¢t — §)]. (40)

Then under these assumptions and using (33) and (34) one finds
ar = gi (3). (41)



1138 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUG. 1965
Applying (31) to K,(8) gives
= )
K0 = 5 (1 - 42w 42)

Using (41), (42), (35) and (31) yields
i (yk — %(5))%'(6) _ K. (8)

= 28R (0)
1 ” ’ E(tl _ 5)
~ 53RO [=" (6 — 8) + B2’ (b — )] l:y(tl) - “T—]
1 " W _ _ .’L'(lu — 5) (43)
+ gm0y 1@ (0= 8 — b (b —d)] [y(to) 2—]

— 1" — 8) — Balto — &)1 (Lo — 0)
+ L't — &) + Ba(t — 8]’ (t — 8).
The left hand side of (43) evaluated at § = §islim ax .

N—=>oo
Proceeding in a similar manner the lim by and lim cy(8) are ob-
N+ N—-®
tained.
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