An Algorithm for Solving Nonlinear
Resistor Networks

By JACOB KATZENELSON
(Manusecript received May 17, 1965)

This article describes an algorithm for solving electrical networks which
consist of linear and monlinear resistors and independent sources, and
where the characteristics of each of the resistors is described by a function
Gi(+), 1 = Ge(v), where Gi(-) 1s continuous, monotonically increasing, piece-
wise linear, and one-to-one from (— w,») onto (— = ,=), and where k
is an index which spans all the resistors in the network.

The solution is found by solving successively equivalent linear networks
which represent the nonlinear network locally and which correspond to a
‘“splution curve.” Essential to the efficiency of the computation process is
the method of modifying matrices which enables the process to find the in-
verse of a conductance matriz by modifying another matriz rather than by
matrie Mmersion.

The algorithm provides a fast computation method for both of the follow-
ing two cases: (1.) the network contains both linear and nonlinear resistors
and (2.) the sources are functions of time and the solution is required for
successive values of time. In the latter case the algorithm compules each
solution from the previous one rather than solving each case independently.

I. INTRODUCTION

This article considers an algorithm for solving electrical networks
which consist of linear and nonlinear resistors and independent sources
and where the current-voltage relation of each of the nonlinear resistors
is described by a function Gi(-), i = Gx(v), where ((-) is continuous,
monotonically increasing, piecewise linear, and one-to-one from (— =, )
onto (— o, o), and where k is an index which spans all the resistors in
the networks.

A piecewise linear network of this type can be considered to be an
approximation to a more general nonlinear resistor network where the
corresponding function G%(-) is continuous, monotonically increasing,
and one-to-one from (e ,— =) onto (— «,=) but not necessarily piece-
wise linear.
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Networks of the last type were discussed by various authors,!:2:3.4
&7 in particular Duffin, who has shown' that such networks have a
solution which is unique. Various methods were proposed for finding the
numerical value of the solution. Birkhoff and Diaz? gave an iterative
method similar to Seidel’s method® which is a form of relaxation proce-
dure for solving linear equations. A direct iterative method® similar to
the “standard’” method of solving linear equations by iteration was
described by Katzenelson and Seitelman.® An exact method (convergence
in a finite number of steps) was described by Minty.” This latter method
approximates a monotonic increasing characteristic by “stairs” and
solves the approximating network by a search procedure.

The algorithm described here approximates the nonlinear resistors by
piecewise linear resistors. The solution is found in a finite number of
steps by successively solving linear networks, which locally represent
the original network, along a path which is called the “‘solution curve”
(Section IIT). Essential to the efficiency of the computation process is
(6) by which the inverse of a conductance matrix is found by meodifying
another matrix rather than by matrix inversion.

In comparison with other solution methods, *:¢7 the advantage of the
algorithm is in providing a fast computation method for the cases where
(a) the network contains both linear and nonlinear resistors and where
(b) the sources are time dependent and the solution is required for all
time ¢ in some interval [{y,{,]. The iteration methods, ?:® and Minty’s
method,” do not take direct advantage of the occurrence of linear re-
sistors in the network. In this algorithm, however, these resistors sim-
plify the computation considerably. Case (b) is solved by sampling the
time interval and for each instant of time solving the networks with
constant sources whose value is equal to the value of the time-varying
sources at that instant. The algorithm eomputes each solution from the
previous one in a rather simple manner resulting in a significant redue-
tion of computation time. Our interest in a fast caleulation method for
resistive networks with time dependent sources is related to the problem
of solving nonlinear RLC networks. It was shown* that these networks
can be viewed as a combination of three one-element-kind networks: a
capacitive network, a resistive network and an inductive network. Gen-
erally, finding the time response of the ELC network involves solving,
for each instant of time ¢, the three one-element-kind networks. Each of
these networks is solved as a purely resistive network with the currents
or voltages of the other networks playing the role of sources. An al-
gorithm of the type described here can be used to obtain efficiently the
solution of each one-element-kind network at time { from its solution at
[ — Al
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Properties of piecewise linear network which are relevent to the al-
gorithm are discussed in Section II. Section IIT contains a general de-
seription of the algorithm. Section IV contains a convergence proof.
Section V considers the computation time which is required for solving
nonlinear resistor networks. The various methods of solution are com-
pared from this point of view. Appendix A describes a modification which
reduces the computation time used by the algorithm. A step-by-step
description of the algorithm is given in Appendix B.

1I. PROPERTIES OF PIECEWISE LINEAR NETWORKS

This section describes the type of networks which are solved by the
algorithm. A network n can be solved by the algorithm if it satisfies the
following conditions:

(1.) 5 consists of a finite number of branches. Each branch is either a
resistor (linear or nonlinear) or an independent source. Without loss of
generality it can be assumed that » is connected, is nonseparable and
does not contain cut sets of current sources only or loops of voltage
sources only. It follows from the above that n contains a tree = such
that all voltage sources are tree branches and all current sources are
links. Without loss of generality it can be further assumed that each
current source appears in parallel with a resistive tree branch, and
that each resistive tree branch has only one current source connected
in parallel with it.*

(2)) The characteristics of each of the resistors of 7 satisfy the follow-
ing conditions:

(a.) Let 7 and v be the current and the voltage of the resistor. The sign
convention of 7 and v is shown in Fig. 1. The characteristics of the resistor
can be represented by a function G(-), i = G(v), where G(-) is a con-
tinuous, piecewise linear, monotonic increasing function which is one-to-
one from (— ®,=) onto (— = ,=). (Fig. 2).

(b.) Each characteristic has a finite number of breakpoints in any
finite interval.

It follows from (a.) and (b.) that in each finite interval the slope of
G(-) is bounded from above and below. The lower bound is positive.

Let us discuss the properties of networks which satisfy (1.) and (2.).
1t follows from Duffin’s work' that networks of this type have a unique
solution. Thus, to any value of the sources corresponds one and only

© . ANVN— o

TFig. 1 — Sign convention for a branch of the network.
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Fig. 2 — A monotonically increasing piecewise linear resistor characteristic.

one set of voltages and currents of the resistors which satisfies the
Kirchhoff’s laws and the branch characteristics. The purpose of our
algorithm is to evaluate these voltages and currents for a given value of
the sources. Before proceeding let us make a few notations. We ghall
choose a tree of the network and refer to branches which are in the tree
as tree branches and branches which are not in the tree as links. Let
7 be a tree of 5 such that all voltage sources are tree branches and all
current sources are links of . Let v, (i,) be a vector whose components
are the voltages (the currents) of the resistive branches. Let e, denote
the vector whose components are the voltages of the resistive tree
branches. Similarly, E and J denote the voltage and current sources of
the network.

From the fact that » has a unique solution for any value of (E,J),
it follows that there exists a (single valued) function which maps (E,J)
into e, . The domain of this function is & X 4 where & and 4 denote the
vector spaces corresponding to the domains of E and J, respectively.

Similarly, it follows from conditions (1.) and (2.) that E and e, de-
termine uniquely the currents in all the resistors and since the com-
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ponents of J are the fundamental cut set current sources it follows that
there exists a (single valued) function which maps (E,e,) into J. The
domain of this function is & X & where &, is the vector space correspond-
ing to the domain of e, .

Let us fix E. It follows from the above that the mapping J — e,,
for a given E, is one-to-one from ¢ onto &, . In addition, it was proved*
that for networks satisfying conditions (1.) and (2.) the mappings
J — e, and e, — J are continuous and satisfy Lipschitz conditions on
any bounded set of their respective domains.

The network 5 of Fig. 3 will be used for illustrating the next property
of interest. Let n satisfy conditions (1.) and (2.). The tree 7 of 5 consist
of three branches 1, 2, and 3. Since 3 is a voltage source e, and J are
two dimensional vectors and the spaces §, and g are planes.

Denote the voltage corresponding to the kth breakpoint of the first
resistor by e,". Consider the space & and the locus of all points e, such
that the voltage on the first resistor, e, is equal to the voltage cor-
responding to one of the breakpoints of the resistor characteristics,
e,k =1,2, -+, n This locus is a set of straight lines parallel to the
e axes. Similarly the locus corresponding to the breakpoints of the
second resistor are lines parallel to the e, axes. The lines corresponding
to the third resistor satisfy E + e, — e = e which are lines which
form a 45° angle with the axes. These lines partition the plane &, into
regions as shown in Fig. 4. In the case of larger networks these loci are
suitable hyperplanes which partition the space &, into similar regions.

The interesting fact about the regions is that inside each, the mapping
e, — J is linear. This property is heavily used by the algorithm.

With each region we associate a linear network called the linear

. TREE
0 @ @ BRANCHES

(@) (5) (6) Links

Fig. 3 — Resistive network.
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Fig. 4 — The partition of & into linear regions and the solution curve.

equivalent network of the region. It has the same topology as the original
network with each nonlinear resistor replaced by a linear resistor with
conductance equal to the incremental conductance of the nonlinear
resistance at the region.

Before proceeding with the algorithm let us describe a convenient
notation. Consider the network of Fig. 3. The cut set equation could be
written as

g-l(erl) + 9‘4(&1 + E — 31'2) = Js
gelern) — galen + E — €n) = Js
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where g, , g2, and gy are the funetions which correspond to the charac-
teristics of the resistors. This can be written symbolically as
e
()

where G is a mapping from & X &, to g and (;;
components are the components of e, and E arranged as the notation
implies, namely components of e, first and components of E second. This
notation is used as a shorthand notation for the network equations.
(Somewhat more elaborate notation for equations of this type is dis-
cussed in Ref. 4).

This concludes the discussion of the properties of piecewise linear
resistor networks. The algorithm itself will be discussed next.

) denotes a vector whose

III. A GENERAL DESCRIPTION OF THE ALGORITHM

The following contains a general description of the algorithm. A
detailed, step-by-step description will appear in Appendix B.
The solution of the network problem requires the evaluation of e,

from
* e" p—
G (E) =TI (1)

Consider the spaces &, and 4. Let us chose a point in & and denote it
by e, . The corresponding point in g is given by

Consider the points e,» which are a solution to
G* (‘}j) =L+ AJ - T (3)

where A attains all values between 0 and 1.

For 0 = A = 1, the right hand side of (3) describes a straight line in
g which connects the point J, with J. For a given E, (3) describes a
mapping of this line from ¢ to &, . The image of the line (Jp,J) in &,
space has the following properties: for A = 0, e, = eq; for A =
1, ea = e, ; which is the solution of (1). As the mapping is continuous
and one-to-one onto the line will be mapped to a path from e, to e, .
As within each region the mapping from ¢ to &, is linear, inside each
region of &, the path consists of a linear segment. An example of such
a path is given in I'ig. 4. This path is called the solution curve.
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Generally speaking the algorithm calculates the solution of the non-
linear network by tracing the solution curve from its beginning at the
point chosen arbitrarily e = e, A = 0, to its end, e = e, A =1
which is the solution of (1). This operation will be explained in the
following,.

The solution curve is traced by taking advantage of the fact that
inside each region the mapping is linear. Consider the example of Fig. 3
and its corresponding &, and g spaces of Fig. 4. In Fig. 4(a), the regions
A4y, Az, ete., are the regions through which the solution curve passes
and the points e, , €., ete., are the intersections of the solution curve
with the boundaries. The point e,, is on the boundary of region 4,
which includes the initial point e, . The point e, can be calculated from
e, as follows. Let A; be the value of A corresponding to e, . Let Gy,
denote the conductance matrix of the linear equivalent network for
region A, .

e, — €0 = MG (J — Jo). (4)
To find e, , Ae, is first evaluated from
Ae, = G '(J — Jo). (5)
Next, we find the largest M,0 < M = 1 such that e, + M Ae, is in re-
gion 4, .
Thus,

e = en + MAey.

The actual computation of M is deseribed in detail in Appendix B,
steps 5 and 6. Now e, is considered to be a part of 4, and e, is calcu-
lated from e, in the same way as e,», was calculated from e,, . The proc-
ess continues in this way and proceeds along the solution curve until
M = 1 indicates that A = 1 and that the solution is found.

At this point let us consider the computational aspects of the algo-
rithm. The network of Fig. 3 and the corresponding Fig. 4 will be used
again for illustration.

At each region, (5) is used to find the intersection of the solution curve
with the region boundary. The use of (5) involves the inverse of the
conductance matrix of the corresponding region. In our example, the
€\, is obtained from e,,, and e, from e, by using the madtrices GAI_I
and G, ' which correspond to the conductance matrices of the equiva-
lent linear network in regions A; and A,. The main point is that the
process of obtaining the conductance matrix and inverting it directly
is slow in comparison with all other operations in the algorithm and
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the required time increases rapidly with the size of the network. The
algorithm circumvents this difficulty as follows: The inverse of the
matrix of the new region is obtained by modifying the inverse of the
matrix of the previous region. Consider again our example:

The algorithm computes G,,~' in the first step. However, once a
houndary is crossed G,, ' is obtained from G,, ' by the method of
modifying matrices.””'"" This is a method of inverting a matrix which is
a modification of another matrix whose inverse is known. The formula
involved is

(F+IHK) = F' — F'I(KF'I + H)'KF"' (6)

where F, I, H and K are matrices of suitable dimensions and the inverse
of H is assumed to exist. Note that if I is a column vector, K a row
vector, H a 1 X 1 matrix and F' known then the calculation of the
left hand side requires the inversion of a 1 X 1 matrix only. The appli-
cation of (6) to linear networks is quite well known.” It is related to the
Kron method and is used for finding the inverse of conductance matrices,
adding resistors and nodes to a network, ete. The application of (6)
to nonlinear networks is believed to be new.

In the example of Fig. 3, assume that while moving from A, to A.
only one boundary was crossed which implies that the two equivalent
linear networks differ in the conductance of one resistor only. Let this
be the second resistor and let this difference be AG. Thus,

G 0 0
G:=0Q0 G 0 |Qs
0 0 G

where Q is the fundamental cut set matrix, after voltage sources are
replaced by short-circuit and current sources removed from the network.
The subseript 7' denotes transposition. Then

G 0 0 |‘0 0 0
G2:Q0 Gu‘l‘AG 0 QT=G[+Q0 AG OQT
0 0 GJ Lo 0 0

= Gl + Qc?.'AG"[Qcﬂ]'f'

where Q. is a column vector equal to the second column of @. Thus to
find G,,”" from G4,”", (6) can be used with

I=0Qg, K = [chlr, F'= G'Al_l and H = AG.
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It is to be noted that when one boundary is crossed, the use of (6) re-
quires the inversion of a 1 X 1 matrix only since both H and KF'1
are 1 X 1.

Thus, a difficult matrix inversion is performed only once for the initial
region in which the computation starts. Inverses of matrices correspond-
ing to other regions along the solution curve are computed successively
by modifying the matrix corresponding to the previous region. This
process takes only a small fraction of the time required for a direct in-
version and essentially makes the algorithm as described above a usable
computation process.

When the solution curve intersects a boundary it always continues
to the adjacent region. The identity of the adjacent region is quite clear
in Fig. 4 where the solution curve crosses one boundary at a time. Fig.
5 illustrates the case where the solution curve passes through the inter-
section of two boundaries and there are three adjacent regions. In order
to apply (6) to this case it is necessary to find the region in which the
solution curve continues behind the double boundary point. The region
can be found by a search procedure which selects a region and attempts
to continue the curve in it. If the attempt fails the next region is selected.

The occurrence of a solution curve intersecting a multi-boundary point
is admittedly rare. However, when it occurs the search procedure can
be quite lengthy for large networks. Large networks can have points
in which a large number of boundaries intersect forming a large num-
ber of adjacent regions namely 2* — 1 where » is the number of bound-
aries which intersect in one point. Appendix A describes a method to
overcome this difficulty.

€rxa

€ry

Erg —

Tig, 5 — Crossing of a boundry intersection.
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IV. CONVERGENCE OF THE ALGORITHM

In this section, it is proved that the algorithm converges in a finite
number of steps. It will be proved that the solution curve (Fig. 4) crosses
a finite number of boundaries and therefore this algorithm converges
in a finite number of steps.

For simplicity, consider the network of Fig. 3. In g space the image of
the solution curve is a straight line joining J, and J. Consider the bound-
aries of a region, say 4,, (Fig. 4(a)) in &, . These boundaries are linear
segments and since the mapping & — 4 is continuous and linear inside
each region the image of each segment is a linear segment. Now, if a
segment and the solution curve have some points in common, one of
two possibilities exists: (1.) they have one common point or (2.) they
have a common finite interval. The first case corresponds to one bound-
ary crossing. When a segment of this type is crossed the solution line
never crosses it again. In the second case, the solution curve remains in
one region since each region includes its boundaries.

Let || A || denote the square norm of A and for a given J, Jo let S,
be the set

Tl =Joll < T = Toll +¢ &> 0l

Let S; be the image of S, in &, . S, is bounded since S; is bounded and
the mapping is continuous. It follows from the last part of condition (2.),
Section 11, that S, contains a finite number of regions. Therefore, S; con-
tains a finite number of segments. Now the image in g, of the solution
curve is the linear segment (J,Jo). As it is linear and included in S; it can
cross each boundary segment only once; it therefore has a finite number
of crossing points. Therefore the solution terminates in a finite number
of steps.

V. COMPUTATION TIME

This section is concerned with the computation time required by the
algorithm and with the way this time is used by various parts of the
algorithm. The times quoted corresponds to a FORTRAN program
written by the author and run on the IBM 7094.

From the nature of the algorithm, it is clear that the computer time
is a function of the size of the network and the distance of the initial
point from the solution. The size of a network, whose resistors are all
nonlinear, was defined as the number of nonlinear resistors. As the dis-
tance between initial point and result changes from problem to problem,
the following parameters rather than the total solution time were used
to investigate the dependency of the computation time on the size of
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the network: (i) set up time — most of it is the time to invert the con-
ductance matrix, (ii) the time used by the solution curve to cross a region
from one boundary to the other, and (iii) the time used by the solution
curve to reach from a boundary of a region which contains the solution
to the solution itself. While (i), (ii), and (iii) depend on the size of the
network, they do not depend on the initial point or the particular values
of the resistors. The results for (ii) are given in Table I. Parameters (ii)
and (iii) are approximately equal, and if (6) is used for setting and
inverting the (i) is approximately equal to (ii) times the number
of resistors in the network.

VI. CONCLUSION

We shall conclude the article by considering again the properties of
the algorithm and by comparing the algorithm with the iteration method
of Ref. 6.

Let us again consider the solution of the nonlinear resistor network
with time-varying sources where the solution is required on some time
interval [ty , at]. Once the solution is found for £, , the solution for {; +
At can be found by modifying the conductance matrix which has been
used to get the solution for #,. Thus, the solution at each instant of
time is obtained by modifying the results of previous calculation rather
than setting up an independent calculation and a significant reduction
of computation time is obtained.

Another problem in which the algorithm can be used advantageously
is finding a solution of a network which was obtained from another
network by adding or subtracting branches. This use is similar to the
use of (6) in linear network problems.

If some of the network resistors are linear the time required for solu-
tion is reduced. This is a result of the fact that neither boundary cross-
ing nor checking for boundary crossing is done for the linear resistors
in the network.

We have compared the computation time required to solve identical

TasLE I
Number of Resistors (All Nonlinear) Time for Crossing a Region (msec)
2 2
5 8
9 20
15 36
24 (11 nodes) 78
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problems by this algorithm and the direct iteration method® which is
given by (11) of Appendix B.

All the networks solved for comparison met the following conditions:
(1.) The initial point was a few regions away from the result, (2.) Let
€ be the number which is compared with the norm of the error after
each iteration step to determine termination. In all the tested cases e
defined a region which was much smaller than the “typical” regions
defined by the characteristics breakpoints. It was found that under
these conditions the algorithm performed much better than the iteration
method and terminated in a considerably shorter time.
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APPENDIX A

C'rossing of a Boundary Intersection

This appendix considers the case where the solution curve passes
through the intersection of two or more boundaries. This case is illus-
trated in Fig. 5. The problem of finding the region in which the solution
curve continues behind the double boundary point arises. Section ITI
suggested finding the region by means of a search procedure. This pro-
cedure was judged inefficient since it is lengthy, especially for large
networks. The purpose of this appendix is to describe the method by
which the algorithm overcomes this difficulty.

Let the boundary point be e,,, (Fig. 5). When the solution curve
meets a multi-boundary point the algorithm makes a small “jump”
across the boundary. The “jump” is a choice of a new point e,; which
is (1) near e, and (2) nearer (in norm) to the solution than e, is.
The next step is to consider e,; to be a new initial point and to continue
the solution curve from it. The new initial point does not require a new
inversion of the conductance matrix but might require one or more sue-
cessive uses of (6) for obtaining the corresponding matrix inverse.

The point e,; is found as follows:

€ ; = €n)\, + }b(J - J)m) (7)
where k is given by
Main(k;)

k:W (8)
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where k; is the smallest slope of the ith resistor and the minimization
is carried out on all the resistive tree branches. G is the conductance
matrix of a linear network obtained from the original network by re-
placing each nonlinear resistor by a linear resistor with a conductance
equal to the largest slope of the replaced resistor. || G || denotes the
square norm of the matrix.? It was proved® that (7), written in the
form

€41 = €, + ‘TC(I - Jn) (9)

withk given by (8), can be used for solving the nonlinear resistor network
problem by iteration. This interation converges in a way which decreases
the error in each step and, therefore, the use of (7) implies

1T =Tl <T =Tl

Thus, the new starting point e,; is nearer in norm to the solution e,
than e, ; hence the multiple boundary point is passed.

Consider the convergence of a modified algorithm which contains
“jumps” whenever the solution curve meets a double boundary point.
It will be proved that the modified algorithm converges in a finite
number of steps.

Since (7) defines a convergent iteration process it follows, first, that
the modified algorithm does converge. The fact that the solution is
attained in a finite number of steps is proved in the following way. Let
the solution e, lie inside some region, say region 4. Since the algorithm
converges, it will be inside any containing e, in a finite number of steps.
Once the solution curve is in A4, the solution is attained in one step. Thus,
the algorithm terminates in a finite number of steps.

In case e, is on the boundary, A is considered to consist of all regions
which share this boundary. The proof proceeds as above.

APPENDIX B

A Step-By-Step Description of the Algorithm

This section gives a detailed description of the algorithm. It is assumed
that the network satisfies conditions (1.) and (2.) of Section II and that a
tree r was chosen such that all voltage sources are tree branches and all
current sources are links. The algorithm proceeds as follows:

(1.) Arbitrary values are chosen for the resistor tree branch voltages
e, . Let the region of &, in which the point e is located be called region
‘a’.
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(2.) Form the conductance matrix G, of the linear equivalent net-
work of region ‘a’ and calculate its inverse G, .

(3.) Calculate the change in the tree voltages
Ae, = G,7'(A(J — Jo)) for A = 1. (10)

(4.) Calculate the branch voltages v, for all resistors and check if
the new voltage value requires the crossing of a boundary.

(5.) Set A\; = 1if no boundary crossing is needed for the 7th resistor.
If a boundary crossing did oceur, set

3 i
v — VUro

Ai = A
Av,?

where v’ is the breakpoint voltage of the first boundary that was crossed
(Fig. 2), and Av,," is the change in the ith resistor voltage which cor-
responds to a change Ae, in the tree voltages. v, is the 7th branch volt-
age which corresponds to e, .

(6.) Set

Ae = min A;.

This is the largest value of A for which the point e, = e,0 + Me, is in
region ‘a’. Thus the boundary point of region ‘a’ is given by

€, = €y + At:sAerh (11)

e =Jo+Md = Jo). (12)

Note that A, is the M of Seetion III.

(7.) If o = 1, the solution of the problem is in region ‘e’ and its
value is given by (11) and (12). If A < 1, the process continues as
follows. e, is on a boundary of region ‘e’. This point is either on a
boundary between only two regions, as point e, in Fig. 4, or an inter-
section of two or more boundaries (Fig. 5). In the former case, the
algorithm proceed to Step 8. In the later case the algorithm proceed to
Step 9.

(8.) The boundary point e, is on the boundary between regions
‘a’ and ‘v’. The point is considered now as part of the region ‘b’ and is
taken to be the initial point in this region. Thus, e, and J, are made
equal to e,, and Ji, respectively. The inverse of the conductance matrix
for region ‘b’ is caleulated by modifying the inverse of the conductance
matrix for region ‘e’ and the algorithm return to Step 2 to perform with
respect to region ‘b’ the same operation as was performed with respect
to region ‘a’.

Il
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(9.) Choose a new point e,; such that

erj = erla + k(J - J?‘n)

where k is a constant having the dimension of resistance and given by
a bound on (8). Consider e,; to be a new initial point, set the suitable
G—! matrix (by successive use of (6)) and return to Step 3.
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